106 research outputs found
๊ตฌ๊ฐ ํธํ์ํผ์ธํฌ์์ข ์์ C/EBP Homologous protein์ ํตํ ์๊ฐํฌ์๊ณผ ์ธํฌ์ฌ๋ฉธ์ ์ ๋ํ๋ ์๊ฐ์ถ์ถ๋ฌผ ๋ฐ ์๋ฆฌํ์ฑ๋ฌผ์ง์ ํญ์ ํจ๋ฅ์ ๊ดํ ์ฐ๊ตฌ
ํ์๋
ผ๋ฌธ(์์ฌ) -- ์์ธ๋ํ๊ต๋ํ์ : ์น๊ณผ๋ํ ์น์๊ณผํ๊ณผ, 2022. 8. ์กฐ์ฑ๋.Background: Rhizomes of Zingiber officinale (Z. officinale) display anti-oxidant, anti-inflammatory, anti-ulcer, and anti-tumor properties. I examined the effects of an ethanol extract of Z. officinale rhizomes (ZOE) against human oral squamous cell carcinoma (OSCC) in vitro and identified the components responsible for its pharmacological activity.
Methods: I performed a Cell Counting Kit-8, soft agar, and trypan blue exclusion assays to examine the growth inhibitory effect of ZOE in human OSCC cell lines. ZOE-induced apoptosis in human OSCC cell lines was determined by DAPI staining, measurement of the sub-G1 population, annexin V/PI double staining, and western blot analysis. I measured the effect of ZOE on autophagy and autophagic flux by microscopic analysis. High-performance liquid chromatography (HPLC) analysis was used to identify the active components of ZOE.
Results: ZOE exhibited an anti-proliferative effect on human OSCC cells and induced apoptosis as evidenced by increased cleaved PARP levels and apoptotic cells by fluorescence staining and flow cytometric analysis. ZOE treatment also induced LC3-II conversion, increased formation of autophagosomes or autolysosomes, and accumulation of endogenous LC3 puncta. However, ZOE disrupted autophagic flux by blocking lysosomal acidification, which was similar to that of chloroquine, a late autophagy inhibitor. Furthermore, ZOE simultaneously induced autophagy initiation and apoptosis induction through the accumulation of C/EBP homologous protein (CHOP), an endoplasmic reticulum (ER) stress marker protein. An HPLC analysis of ZOE revealed that 1-dehydro-6-gingerdione and 8-shogaol were the active components, which were sufficient to induce autophagy initiation and apoptosis induction by enhancing CHOP expression.
Conclusion: The results suggest that ZOE and its two active components target CHOP, initiate autophagy and apoptosis, and may be useful therapeutics against human OSCC.1. ๋ชฉ์ : ์๊ฐ์ถ์ถ๋ฌผ ๋ฐ ์ฃผ์ ์๋ฆฌํ์ฑ๋ฌผ์ง์ ์ฌ๋ฌ ์์ข
์์ ๋ค์ํ ๋งค์ปค๋์ฆ์ ํตํด ํญ์ ํจ๋ฅ์ ๋ณด์ด๋ ๊ฒ์ผ๋ก ์๋ ค์ ธ ์๋ค. ํ์ง๋ง ๊ตฌ๊ฐ ํธํ์ํผ์ธํฌ์์ข
์์ ์ด๋ค์ ํญ์ ํจ๋ฅ์ ๋ํ ์ฐ๊ตฌ๋ ํ์ฌ๊น์ง ๋ฏธ๋ฏธํ ์ค์ ์ด๋ค. ๋ฐ๋ผ์, ๋ณธ ์ฐ๊ตฌ์์๋ ๊ตฌ๊ฐ ํธํ์ํผ์ธํฌ์์ข
์ธํฌ์ฃผ์์ ์๊ฐํฌ์ (autophagy) ๋ฐ ์ธํฌ์ฌ๋ฉธ (apoptosis)์ ์ ๋ํ๋ ์๊ฐ์ถ์ถ๋ฌผ๊ณผ ์ฃผ์ ์๋ฆฌํ์ฑ๋ฌผ์ง์ธ 1-dehydro-6-gingerdione ๋ฐ 8-shogaol์ ํญ์ ํจ๋ฅ์ ๋ํด ์กฐ์ฌํ์๋ค.
2. ์ฌ๋ฃ ๋ฐ ๋ฐฉ๋ฒ: ๊ตฌ๊ฐ ํธํ์ํผ์ธํฌ์์ข
์์ ์๊ฐ์ถ์ถ๋ฌผ ๋ฐ ์๋ฆฌํ์ฑ๋ฌผ์ง์ ์ธํฌ์ฌ๋ฉธ์ ๋ํ ํจ๋ฅ์ cleaved PARP ๋จ๋ฐฑ์ง์ ๊ฒ์ถ, DAPI ์ผ์, sub-G1 ๋ถ์ ๋๋ Annexin V/PI double staining์ ํตํด ํ๊ฐ๋์๋ค. ์๊ฐ์ถ์ถ๋ฌผ ๋ฐ ์๋ฆฌํ์ฑ๋ฌผ์ง์ ์๊ฐํฌ์์ ๋ํ ํจ๋ฅ์ LC3-โ
ก ๋จ๋ฐฑ์ง์ ๊ฒ์ถ, ํฌ๊ณผ์ ์ํ๋ฏธ๊ฒฝ ๊ด์ฐฐ, acidic vesicular organelle ๋๋ LC3 puncta ํ์ฑ์ ๊ด์ฐฐํจ์ผ๋ก์จ ํ๊ฐ๋์๋ค. ๋ํ, ์๊ฐ์ถ์ถ๋ฌผ์ ์๊ฐํฌ์ ์ ๋ (autophagic flux)์ ๋ํ ํจ๋ฅ์ ์๊ฐํฌ์ ์ต์ ์ ์ธ ํด๋ก๋กํธ (Chloroquine)์ ๋ณ์ฉํฌ์ฌ ํ ํ, LC3-โ
ก ๋จ๋ฐฑ์ง ๊ฒ์ถ, LC3 puncta ํ์ฑ ๋ฐ mCherry-GFP-LC3 ํ๊ด๋ฒกํฐ๋ฅผ ์ฌ์ฉํจ์ผ๋ก์จ ์ฆ๋ช
๋์๋ค. ์ํฌ์ฒด ์คํธ๋ ์ค (ER stress)๋ C/EBP Homologous protein (CHOP)์ ๊ฒ์ถ์ ํตํด ํ์ธ๋์๋ค. ์๊ฐ์ถ์ถ๋ฌผ์ ์๋ฆฌํ์ฑ๋ฌผ์ง์ gas chromatography/mass spectrometry (GC/MS)๋ฅผ ํตํด ํ์ธ ๋ฐ ๋ถ๋ฆฌ๋์๋ค.
3. ๊ฒฐ๊ณผ ๋ฐ ๊ณ ์ฐฐ: ์๊ฐ์ถ์ถ๋ฌผ๊ณผ ์ฃผ์ ์๋ฆฌํ์ฑ๋ฌผ์ง์ธ 1-dehydro-6-gingerdione ๋ฐ 8-shogaol์ ๊ตฌ๊ฐ ํธํ์ํผ์ธํฌ์์ข
์ธํฌ์ฃผ์์ ์ธํฌ์ฆ์์ ์ต์ ํ์๋ค. ์๊ฐ์ถ์ถ๋ฌผ์ cleaved PARP ๋จ๋ฐฑ์ง์ ๋ฐํ์ ์ฆ๊ฐ์ํค๊ณ , ํต ์์ถ๊ณผ DNA ๋ถ์ ์ ์ ๋, sub-G1 population ๋ฐ Annexin V-stained population์ ์ฆ๊ฐ์ํค๋ ๊ฒ์ ํตํด์ ์ธํฌ์ฌ๋ฉธ์ด ์ ๋๋์์์ ํ์ธํ์๋ค. ๋ํ ์๊ฐ์ถ์ถ๋ฌผ์ LC3-II ๋จ๋ฐฑ์ง์ ๋ฐํ์ ์ฆ๊ฐ์ํฌ ๋ฟ๋ง ์๋๋ผ, ์ด์ค ๋ง ๊ตฌ์กฐ๋ฅผ ๊ฐ์ง ์๊ฐ์ํฌ (autophagosome)์ ํ์ฑ, acidic vesicular organelle ๋ฐ LC3 puncta ํ์ฑ์ ์ฆ๊ฐ์ํด์ผ๋ก์จ ์๊ฐํฌ์์ ์ ๋ํ์์ผ๋ฉฐ, ์ด๋ ์๊ฐํฌ์ ์ ๋ ์ต์ ๊ฐ ๊ด๋ จ๋์ด ์์์ ํ์ธํ์๋ค. ๊ตฌ๊ฐ ํธํ์ํผ์ธํฌ์์ข
์์ ์๊ฐ์ถ์ถ๋ฌผ์ ์๊ฐํฌ์ ๋ฐ ์ธํฌ์ฌ๋ฉธ์ ๋ํ ํจ๋ฅ์ ์ํฌ์ฒด ์คํธ๋ ์ค ๊ด๋ จ ๋จ๋ฐฑ์ง์ธ CHOP์ ์ฆ๊ฐ๋ฅผ ํตํด ์ด๋๋จ์ ํ์ธํ์๋ค. Gas chromatography/mass spectrometry๋ฅผ ํตํด ์๊ฐ์ถ์ถ๋ฌผ์ ์ฃผ์ ์๋ฆฌํ์ฑ๋ฌผ์ง์ธ 1-dehydro-6-gingerdione ๋ฐ 8-shogoal์ ๋ถ๋ฆฌํ์๊ณ , ์ด ์ฃผ์ ์๋ฆฌํ์ฑ๋ฌผ์ง์ด CHOP์ ๋ฐํ์ ์ฆ๊ฐ์ํด์ผ๋ก์จ ์๊ฐํฌ์ ๋ฐ ์ธํฌ์ฌ๋ฉธ์ ์ ๋ํ ์ ์๋ ์๊ฐ์ถ์ถ๋ฌผ์ ํญ์ ํจ๋ฅ์ ๊ธฐ์ฌํ๋ ์ ํจ ์ฑ๋ถ์ผ ๊ฐ๋ฅ์ฑ์ด ์์์ ํ์ธํ์๋ค.Abstract in English 1
1. Introduction 5
2. Materials & Methods 8
3. Results & Figures 21
4. Discussion 54
5. Conclusion 58
6. References 59
Abstract in Korean 64์
์์ ์กํ ๊ณต์ ์์ LNG ํ์ฉ์ ๋ฐ๋ฅธ ์ ๋ ฅ ์ฌ์ฉ๋ ๋ถ์
ํ์๋
ผ๋ฌธ(์์ฌ) -- ์์ธ๋ํ๊ต๋ํ์ : ๊ณต๊ณผ๋ํ ์ ๊ธฐยท์ ๋ณด๊ณตํ๋ถ, 2023. 2. ์ค์ฉํ.๊ธฐํ๋ณํ ์๊ธฐ์ ๋์ํ์ฌ ์์๊ฒฝ์ ์ฌํ๋ฅผ ๊ตฌ์ถํจ์ ์์ด์ ์์์ ํจ์จ์ ์ธ ์ ์ฅ๊ณผ ์ด์ก์ ์ํ์ฌ ์์์กํ ํ๋ํธ ๊ฑด์ค์ ๋ํ ๊ด์ฌ์ด ์ปค์ง๊ณ ์๋ค. ๊ทธ๋ฌ๋ ์์์กํ ํ๋ํธ์์ ์์ ์กํ ๋น์ฉ์ ์์ ๊ฒฝ์ ์ฌํ ๊ตฌ์ถ์ ์ด๋ ค์์ ์ค๋ค. ์ด๋ฅผ ํด๊ฒฐํ๊ธฐ ์ํ ์ฌ๋ฌ ๋ฐฉ์ ์ค ํ๋๋ก ์์์๋ ๋จ๊ณ์์ ๊ทธ๋ฆฌ๊ณ ์์ ์๋ ํ ์ง์ ์ฌ ์กํ ๋จ๊ณ์์ ๊ฐ๊ฐ ์กํ์ฒ์ฐ๊ฐ์ค์ ๋์ด์๋์ง๋ฅผ ์ฌ์ฉํ์ฌ ์์์กํ ๋น์ฉ์ ๋ฎ์ถ๋ ๋ฐฉ๋ฒ์ด ์๋ค. ํนํ, ์ฐ๋ฆฌ๋๋ผ๋ ๋ฐ์ ๊ณผ ๋๋ฐฉ ๋ฑ์ ์ํ์ฌ ์ฐ๊ฐ 33 Mtons์ ์กํ์ฒ์ฐ๊ฐ์ค๋ฅผ ์ฌ์ฉํ๊ณ ์์ผ๋ฉฐ, ๊ทธ์ค ๊ธฐํ๊ณผ์ ์์ 0.85 Mtoe์ ๋์ด ์๋์ง๊ฐ ์๋ฏธ ์์ด ๋ฐ๋ค๋ก ๋ฒ๋ ค์ง๊ณ ์๋ค. ๋ณธ ์ฐ๊ตฌ๋ ์ค์ ์์ฉํ ๋ ๋ํ ํ๋ํธ์ธ 30 TPD๊ธ ์์์กํ ํ๋ํธ์ ์์์๋ ๋จ๊ณ์์ ์ก์ฒด์ง์๋ง์ ์ฌ์ฉํ๋ ๊ฒฝ์ฐ์ ์ก์ฒด์ง์์ ์กํ์ฒ์ฐ๊ฐ์ค์ ๋์ด์๋์ง๋ฅผ ๋์์ ์ฌ์ฉํ ๋ ๊ฒฝ์ฐ๋ฅผ ์๊ฐํ๊ณ , ๋ ๊ฒฝ์ฐ์ ์์์๋์ ์ธ๊ฐ์ง ์ฌ์ดํด (ํด๋ก๋, ๋ฆฐ๋ฐํ์จ, ๋์ผํ๋ ์
๋ฆฐ๋ฐํ์จ ์ฌ์ดํด)์ ์ ์ฉํ ์ง์ ์ฌ์กํ ์ฌ์ดํด์ ๋ํ์ฌ ๋น๊ต ๋ถ์ํ์๋ค. ์ถ๊ฐ์ ์ผ๋ก ์ด ์ฌ์ฏ ๊ฐ์ง ๊ฒฝ์ฐ์ ๋ํ์ฌ ๊ฒฝ์ ์ฑ ๋ถ์์ ํ์๋ค. ์ฌ์ดํด์ ์ฌ์ฉ๋ ์ก์ฒด์ง์์ ์กํ์ฒ์ฐ๊ฐ์ค์ ๋์ด์๋์ง์ ์ด ์ฌ์ฉ๋์ ๋ถ์ํ ๊ฒฐ๊ณผ ์์ ์๋์ ์ก์ฒด์ง์์ ์กํ์ฒ์ฐ๊ฐ์ค์ ๋์ด์๋์ง๋ฅผ ๋์์ ์ฌ์ฉํ๊ณ ๋ฆฐ๋ฐ ํ์จ ์ฌ์ดํด์ ์ ์ฉ ๊ฒฝ์ฐ์ ์์ ์๋์ ์ก์ฒด์ง์์ ์กํ์ฒ์ฐ๊ฐ์ค์ ๋์ด์๋์ง๋ฅผ ๋์์ ์ฌ์ฉํ๊ณ ๋์ผ ํ๋ ์
๋ฆฐ๋ฐ ํ์จ ์ฌ์ดํด์ ์ ์ฉํ ๊ฒฝ์ฐ๊ฐ ์กํ์ฒ์ฐ๊ฐ์ค์ ๋์ด์๋์ง๋ฅผ ์ต๋ํ์ผ๋ก ํ์ฉํ๊ณ , ์ก์ฒด์ง์์ ์ฌ์ฉ๋์ด ๊ฐ์ฅ ์ ์๋ค. ์์คํ
์ ์ฒด์ ์๋น ๋๋ ฅ ์ธก๋ฉด์์๋ ์์ ์๋์ ์ก์ฒด์ง์์ ์กํ์ฒ์ฐ๊ฐ์ค์ ๋์ด์๋์ง๋ฅผ ๋์์ ์ฌ์ฉํ๊ณ ๋์ผ ํ๋ ์
๋ฆฐ๋ฐ ํ์จ ์ฌ์ดํด์ ์ ์ฉํ ๊ฒฝ์ฐ๊ฐ 2109.46 kW๋ก ๊ฐ์ฅ ๋ฎ์์ผ๋ฉฐ ์ฐ๊ฐ ์ ๋ ฅ ์๊ธ์ 1.57 MUSD (85 ยข/kW)์ผ๋ก ๊ณ์ฐ ๋์๋ค. ๊ฒฐ๋ก ์ ์ผ๋ก ์กํ์ฒ์ฐ๊ฐ์ค์ ๋์ด์ ํ์ฉํจ์ ์์ด์ ์ก์ฒด์ง์์ ํจ๊ป ์์๋ฅผ ์๋ํ๊ณ , ์ด๋ ๋ฐ์๋ ๊ธฐ์ฒด์ง์์ ์ฌ์กํ ๊ณผ์ ์์๋ ์กํ์ฒ์ฐ๊ฐ์ค์ ๋์ด์๋์ง๋ฅผ ์ด์ฉํ์ฌ ๊ธฐ์ฒด์ง์๋ฅผ ์๋ํ๋ ๋ฐฉ๋ฒ์ด ์์์๋์ ์ก์ฒด์ง์๋ง์ ์ฌ์ฉํ ํ ๊ธฐ์ฒด์ง์ ์ฌ์กํ์ ํด๋ก๋ ์ฌ์ดํด์ ์ ์ฉํ ๊ฒฝ์ฐ ๋ณด๋ค 66% ์๋น๋๋ ฅ์ด ๋ฎ์๋ค.In response to the climate change crisis, realizing hydrogen economy society that has a higher interest in constructing hydrogen liquefaction plants for efficient storage and transportation is emerging. However, the higher liquefaction cost of hydrogen is a barrier to realizing a hydrogen economy society. Among several methods to resolve the drawback of hydrogen liquefaction, adopting cold energy of liquefied natural gas (LNG) in the hydrogen precooling process and nitrogen re-liquefaction process after the hydrogen precooling is one of the approaches to reducing the cost of hydrogen liquefaction. The Republic of Korea demanded an LNG quantity of 33 Mtons in 2020, driven by power generation, heating, and in the vaporization process, 0.85 Mtoe of cold energy of LNG was meaninglessly dissipated into the sea. This study introduced the 30 TPD large-scaled hydrogen liquefaction plant-based hydrogen precooling that uses nitrogen only and hydrogen precooling that uses not only nitrogen but also cold energy of LNG and analyzed the three types of nitrogen re-liquefaction cycle (Claude, Linde-Hampson, Dual-pressure Linde-Hampson cycle) that applied first two hydrogen precooling. In addition, economic analysis was conducted based on a total of six case studies. Analysis of total usage of liquid nitrogen and cold energy of LNG shows that the case with hydrogen precooling using not only nitrogen but also cold energy of LNG and application of Linde-Hampson cycle for nitrogen re-liquefaction and the case with hydrogen precooling using not only nitrogen but also cold energy of LNG and application of Dual-pressure Linde-Hampson cycle for nitrogen re-liquefaction maximize the utilization of cold energy of LNG and minimize the liquid nitrogen usage. In terms of net power consumption, the latter case shows the lowest power consumption at 2109.46 kW, and its annual electrical cost was calculated as 1.57 MUSD (85 ยข/kW). In conclusion, in the utilization of cold energy of LNG, the case with hydrogen precooling using not only nitrogen but also cold energy of LNG and application of Dual-pressure Linde-Hampson cycle for nitrogen re-liquefaction has 66% lower net power consumption compared to the case with hydrogen precooling using nitrogen and the application of Claude cycle for nitrogen re-liquefaction.Chapter 1. Introduction 1
1.1 Necessity and background 1
1.1.1 Characteristic of hydrogen 1
1.1.2 Current state of liquid hydrogen liquefaction plant worldwide 4
1.1.3 Current state of liquid hydrogen liquefaction plant in the republic of Korea 6
1.1.4 Current state of LNG utilization 6
1.2 Literal review 7
1.3 Objectives 8
Chapter 2. Case Overview 9
Chapter 3. Methodology 15
2.1 Aspen HYSYS simulation 15
2.2 Conditions and assumptions in HYSYS 16
Chapter 4. Simulation Results 17
4.1 Hydrogenprecooling 17
4.1.1 Hydrogen precooling with LN2 only 17
4.1.2 Hydrogen precooling with LN2 and LNG 18
4.2 Claude cycle for nitrogen re-liquefaction 19
4.2.1 Case (1): Hydrogen precooling with LN2 + Claude cycle 19
4.2.2 Case (2): Hydrogen precooling with LN2 and LNG + Claude cycle 22
4.3 Linde-Hampson cycle for nitrogen re-liquefaction 24
4.3.1 Case (3): Hydrogen precooling with LN2 + Linde-Hampson cycle + N2 precooling with LNG 24
4.3.2 Case (4): Hydrogen precooling with LN2 and LNG + Linde-Hampson cycle + N2 precooling with LNG 26
4.4 Dual-pressureLinde-Hampsoncyclefornitrogenre-liquefaction 28
4.4.1 Case (5): Hydrogen precooling with LN2 + Dual-Pressure Linde-Hampson cycle + N2 precooling with LNG 28
4.4.2 Case (6): Hydrogen precooling with LN2 and LNG + Dual-Pressure Linde-Hampson cycle + N2 precooling with LNG 30
Chapter 5. Discussion 33
Chapter 6. Conclusions 37
References 38
Appendix 42
Abstract in Korean 48
Acknowledgement 50์
'ํ์น์'์ ๊ด์ ์ ์๊ฐ, ์์น ๊ธฐ๋ฐ ์ฐจ๋ ํด๋ฌ์คํฐ UI ๋์์ธ ํ๋ ์ ์ ์ ์ฐ๊ตฌ
ํ์๋
ผ๋ฌธ(์์ฌ)--์์ธ๋ํ๊ต ๋ํ์ :๋ฏธ์ ๋ํ ๋์์ธํ๋ถ ๋์์ธ์ ๊ณต,2019. 8. ์ ์์ฒ .One important design issue is the examination of how the user
interface (UI) supports the new user role in future mobility. However, there
are few design studies on the passengers cognitive needs and behavior in
Autonomous Vehicles (AVs) based on empirical data. There is no doubt that
autonomous mobility technologies are growing. The technology is already
aiding the driving experience, and it will change the mobility culture and the
transition of driver into passenger. This study is based on the premise that
future AV is capable of performing all driving tasks. It proposes a set of
passenger-centered automotive cluster UI designs for future mobility
employing two factors: time and path. A set of empirical data is provided to
understand the passengers perspective.
In this study, a solid set of empirical data on the cognitive needs of
passengers is collected. Human cognitive characteristics and driving tasks are
investigated from various viewpoints to understand the passengers
iii
perspective. The cognitive relationship in the driving environment is analyzed
through a literature review on situation awareness (SA) and structuring of the
data flow framework. The framework is further explored by connecting the
technological role transformation to the passenger. To construct the empirical
database on the passenger, three sets of user tests and in-depth interviews
were undertaken. The user tests were designed employing the Wizard of Oz
method, and the results were summarized using descriptive and exploratory
analysis. Based on these insights, a set of UI designs from the perspective of
the passenger was proposed, and usability tests were conducted to verify its
effectiveness and usability.
The results of the tests demonstrate that a major percentage of the
information request was related to time (current time and duration) and path
(vehicle location and surroundings). Based on the data, a UI framework was
built. Two usage scenarios were designed, time-full and time-less, for better
in-situation comprehension. Time- and path-based UI were proposed to flow
with the scenarios. A usability test was conducted, and a passengers
cognitive framework was defined. There are two aspects to this study: the
data flow frameworks of the driver/passenger, and the UI design proposal.
Situational precision from the perspective of the driver was analyzed to
understand the relationship between the user, the vehicle and the road
conditions. Further, the cognitive framework of the passenger was proposed
based on the data.
This study provides a solid understanding of drivers emerging needs
when they are relieved of the cognitive burden of driving tasks. The UI
features for AV are introduced based on the empirical data and research
related to the provision of better situation awareness, focusing on time and
location. This study contributes to the extant literature by observing the
iv
perspective of passengers in Autonomous vehicles based on a qualitative
study. The proposed UI design will be further explored as a communication
method between the system and the passive user in future mobility.์ฌ์ฉ์ ์ธํฐํ์ด์ค๊ฐ (UI) ๋ฏธ๋ ์ด๋์ฑ์์ ์๋ก์ด ์ฌ์ฉ์ ์ญํ ์
์ง์งํ๋ ๋์์ธ ๋์ถ์ ๋ฏธ๋ ์ด๋์ฑ ๋ถ์ผ์์ ์ค์ํ ๋์์ธ ์ด์์ด๋ค. ๊ทธ๋ฌ๋
์ฌ์ฉ์ ์คํ์ ๊ทผ๊ฑฐํ์ฌ ์์จ์ฃผํ์ฐจ๋ (AV) ์ ํ์น์์ธ์ง ์๊ตฌ์ ํ๋์ ๋ํ
๋์์ธ ์ฐ๊ตฌ๋ ๋ฏธ๋ฏธํ๋ค. ์์จ์ฃผํ์ด ๊ธฐ์ ์ ๋ฐ์ ๊ณผ ๊ทธ ์์ญ์ ์ ์ฐจ ๋์ด์ง๊ณ
์๋ค. ํด๋น ๊ธฐ์ ์ ์ด๋ฏธ ์ด์ ํ๊ฒฝ์ ์ ์ฉ๋๊ณ ์์ผ๋ฉฐ, ์ด๋ก ์ธํด ๋ฏธ๋
์ด๋๋ฌธํ์์ ์ฌ์ฉ์์ ์ญํ ์ '์ด์ ์'์์ 'ํ์น์'๋ก ๋ณํํ๋ค. ๋ณธ ์ฐ๊ตฌ๋ ๋ฏธ๋
์์จ์ฃผํ์ฐจ๋์ด ๋ชจ๋ ์ด์ ์ํฉ์ ๋์ฒํ ์ ์๋ค๋ ๊ฒ์ ์ ์ ๋ก ํ๋ค. ์ฌ์ฉ์
์คํ์ ํตํด ํ์น์์ ๊ด์ ์ ๋ํ ๋ถ์์ ์งํํ์๊ณ , ์ด๋ฅผ ๊ธฐ๋ฐ์ผ๋ก ๋ฏธ๋
๋ชจ๋น๋ฆฌํฐ ํ๊ฒฝ์ ์ ์ฉ๋ ์ฌ์ฉ์ ์ธํฐํ์ด์ค๋ฅผ ์ ์ํ๋ค. ์ ์๋ ๋์์ธ์ ์ด์ ์
์ค์ฌ์ ์ํฉ์ธ์ง์์ ๋ฒ์ด๋ ํ์น์ ์ค์ฌ ์ธ์ง ์ ๋ณด ์์๋ฅผ ๋ถ์ํ์๊ณ , ์๊ฐ๊ณผ
๊ฒฝ๋ก ๋ ๊ฐ์ง ์์๋ฅผ ๊ฐ์กฐํ UI ๋ฅผ ์ ์ํ๋ค.
๋ณธ ์ฐ๊ตฌ์์ ํ์น์์ ์ธ์ง ์ ๋ณด ์๊ตฌ์ ๋ํ ์คํ์ ๋ฐ์ดํฐ๋ฅผ
์์งํ์๋ค. ํ์น์์ ๊ด์ ์ ์ดํดํ๊ธฐ ์ํด ๋ค์ํ ๊ด์ ์์ ์ธ๊ฐ์ ์ธ์ง์ ํน์ฑ ๋ฐ ์ด์ ํ์คํฌ๋ฅผ ๊ด์ฐฐํ์๊ณ , ์ํฉ์ธ์ง (SA) ์ ๊ดํ ๋ฌธํ ์ฐ๊ตฌ์ ๋ฐ์ดํฐ
ํ๋ ์์ํฌ ๊ตฌ์กฐํ๋ฅผ ํตํด ์ด์ ํ๊ฒฝ์์ ๋ฐ์ํ๋ ์ธ์ง์ ์์ ๊ด๊ณ๋ฅผ
๋ถ์ํ์๋ค. ์ ์๋ ํ๋ ์์ํฌ๋ ๊ธฐ์ ๋ณํ์ ๋ฐ๋ผ ์ด์ ์๊ฐ ํ์น์๋ก
๋ณํ๋์์ ๋ ์ด์ ํ๊ฒฝ์์์ ๋ฐ์ดํฐ ๊ด๊ณ ๋ณํ๋ฅผ ์๊ฐ์ ์ผ๋ก ๊ตฌ์กฐํํ์ฌ
์ฌ์ธต์ ์ผ๋ก ํ๊ตฌ๋์๋ค. ํ์น์์ ์ธ์ง ๋์ฆ ๋ํ ์คํ์ ๋ฐ์ดํฐ๋ฒ ์ด์ค๋ฅผ
์์งํ๊ธฐ ์ํด ์ด 3 ์ธํธ์ ์ ์ ํ
์คํธ์ ์ฌ์ธต ์ธํฐ๋ทฐ๊ฐ ์๋ฐ๋์๋ค. ์ ์
ํ
์คํธ๋ Wizard of Oz ๋ฐฉ๋ฒ์ ์ฌ์ฉํ์ฌ ์ค๊ณ๋์์ผ๋ฉฐ ์คํ ๊ฒฐ๊ณผ๋ ์ง์
์ฐ๊ตฌ๋ฐฉ๋ฒ๋ก ์ ๋ถ์ ๋ฐฉ๋ฒ์ ํตํด ๋ถ์๋์๋ค. ์คํ์ ํตํด ์ป์ ์ธ์ฌ์ดํธ๋ฅผ
๋ฐํ์ผ๋ก ํ์น์ ๊ด์ ์์ UI ๋์์ธ์ ์ ์ํ๊ณ ์ฌ์ฉ์ฑ ํ
์คํธ๋ฅผ ํตํด ํจ์จ์ฑ๊ณผ
์ ์ฉ์ฑ์ 5 ์ ๋ฆฌ ์ปคํธ ์ค์ผ์ผ๋ก์จ ๊ฒ์ฆํ์๋ค.
์คํ ๊ฒฐ๊ณผ์ ๋ฐ๋ฅด๋ฉด ํ์น์๊ฐ ์์ฒญํ ์ธ์ง ์ ๋ณด๋ ์๊ฐ (ํ์ฌ ์๊ฐ ๋ฐ
๊ธฐ๊ฐ)๊ณผ ๊ฒฝ๋ก (์ฐจ๋ ์์น ๋ฐ ์ฃผ๋ณ ํ๊ฒฝ)์ ์ง์ค๋ ๊ฒ์ ๊ด์ฐฐํ ์ ์์๋ค. ์ด์
๊ฐ์ ๋ฐ์ดํฐ๋ฅผ ๊ธฐ๋ฐ์ผ๋ก UI ํ๋ ์์ํฌ๋ฅผ ๊ตฌ์ฑํ์๋ค. ์ํฉ ์์ ์ฌ์ฉ๋ก๋ฅผ
์ ์ํ๊ธฐ ์ํ์ฌ๋ ๊ฐ์ง time-full ๊ณผ time-less ์ ์ฌ์ฉ ์๋๋ฆฌ์ค๋ฅผ ๊ตฌ์ถํ๊ณ ,
์ ์๋ ์๋๋ฆฌ์ค์ ๋ฐ๋ผ ์๊ฐ๊ณผ ์์น์ ๊ธฐ๋ฐํ UI ๋ฅผ ์ ์ํ์๋ค. ์ ์๋ UI ์
๋ํ ์ฌ์ฉ์ฑ ํ
์คํธ๋ฅผ ์งํํ์๊ณ , ํ์น์ ๊ด์ ์์์ ์ด์ ์ํฉ ์ธ์ง ์ํฌ
ํ๋ ์์ ์์ฑํ์๋ค. ๋ณธ ์ฐ๊ตฌ์ ๊ฐ์น๋ ๋ ๊ฐ์ง๋ก ์ ๋ฆฌ๋ ์ ์๋ค. ํ๋๋
์ด์ ์ / ํ์น์์ ๋ฐ์ดํฐ ํ๋ก์ฐ ํ๋ ์์ํฌ๋ฅผ ์ ์ํ์๋ค๋ ๊ฒ๊ณผ ๋ ๋ฒ์งธ๋
ํ์น์์ ๊ด์ ์ ์ง์งํ๋ UI ๋์์ธ ์ ์์ ์๋ค. ์ด์ ์์ ๊ด์ ์์์ ์ด์
์ํฉ์ ๋ถ์ํ์ฌ ์ฌ์ฉ์, ์ฐจ๋, ๊ทธ๋ฆฌ๊ณ ๋๋ก ์ํ ๊ฐ์ ๊ด๊ณ๋ฅผ ์๊ฐํํ์๊ณ ,
์ด๋ ํ์น์์ธ์ง ํ๋ก์ฐ ํ๋ ์์ํฌ๋ฅผ ์ ์ํ๋๋ฐ ๊ธฐ์กฐ์ ์ธ ํ๋ก์จ ์ฌ์ฉ๋์๋ค.
๋ณธ ์ฐ๊ตฌ๋ ์ด์ ํ์คํฌ๋ฅผ ์ํํ๋ ๋ฐ์ ํ์ํ๋ ์ธ์ง ๋ถ๋ด์์
๋ฒ์ด๋ฌ์ ๋์ ์ด์ ์๊ฐ ํ์๋ก ํ๋ ๋ณตํฉ์ ์ธ ๋์ฆ์ ๋ํด ๊ด์ฐฐํ๊ณ ๋ฏธ๋
๋ชจ๋น๋ฆฌํฐ ํ๊ฒฝ์ ์ ํฉํ UI ์ ๋์์ธ ์์์ ๋ํ ์ฐ๊ตฌ๋
ผ๋ฌธ์ด๋ค. ๋ฏธ๋
์์จ์ฃผํ์ฐจ๋ ์์ ์ฌ์ฉ์ ์ธํฐํ์ด์ค๊ฐ ๊ฐ์ถ์ด์ผ ํ๋ ์์๋ฅผ ์คํ์ ๋ฐ์ดํฐ์
๊ทผ๊ฑฐํ์ฌ ์ ์ํ๋ฉฐ, ์๊ฐ๊ณผ ๋ฃจํธ๋ฅผ ๊ฐ์กฐํ์ฌ ํฅ์๋ ์ํฉ ์ธ์ง๋ฅผ ์ ๊ณตํ๋
๋ฐฉ๋ฒ์ ๋ํ ์ฌ๋์๋ ๊ด์ฐฐ์ ๊ธฐ๋กํ๋ค. ๋ณธ ์ฐ๊ตฌ๋ ์ง์ ์ฐ๊ตฌ์ ๊ธฐ์ดํ ์์จ
์ฐจ๋์ ํ์น์ ๊ด์ ์ ๊ด์ฐฐํจ์ผ๋ก์จ ๊ธฐ์กด ์์จ์ฃผํ์ด ๋์์ธ ์ฐ๊ตฌ์ ๊ธฐ์ฌํ
๊ฒ์ด๋ค. ์ ์๋ UI ๋์์ธ ๋ฏธ๋ ์ด๋ ์ฑ์์์ ์์คํ
๊ณผ ํ์น์ ๊ฐ์
์ปค๋ฎค๋์ผ์ด์
๋ฐฉ๋ฒ์ ๋ํ ์ฐ๊ตฌ๋ก์จ ๊ทธ ์์๊ฐ ์๋ค.ABSTRACT ...................................................................................................................... II
CHAPTER 1. INTRODUCTION......................................................................................... ๏ผ
1.1. BACKGROUND ..............................................................................................................๏ผ
1.2. PURPOSE .....................................................................................................................๏ผ
1.3. RESEARCH QUESTION.....................................................................................................๏ผ
CHAPTER 2. LITERATURE REVIEW ..............................................................................๏ผ๏ผ
2.1. SITATION AWARENESS (SA) ........................................................................................๏ผ๏ผ
2.2. HUMAN INFORMATION PROCESSING MODEL..................................................................๏ผ๏ผ
2.3. DRIVING SITUATION AWARENESS AND PERSPECTIVE.........................................................๏ผ๏ผ
2.4. DRIVING TASK AND SENSORY INTERACTION ....................................................................๏ผ๏ผ
CHAPTER 3. COGNITIVE NEEDS IN AUTONOMOUS.....................................................๏ผ๏ผ
3.1. DRIVING BEHAVIOR TRANSFORMATION AND CLUSTER UI..................................................๏ผ๏ผ
3.2. COGNITIVE FRAMEWORK TRANSFORMATION ..................................................................๏ผ๏ผ
CHAPTER 4. USER TESTS ............................................................................................๏ผ๏ผ
4.1. WIZARD OF OZ PROTOTYPING .....................................................................................๏ผ๏ผ
4.2. PILOT TEST 1............................................................................................................๏ผ๏ผ
4.2.1. Experiment Design & Laboratory Setting.................................................๏ผ๏ผ
4.2.2. Persona Scenario & Task Design ..............................................................๏ผ๏ผ
4.2.3. Preparation of Driving situation...............................................................๏ผ๏ผ
4.2.4. Procedure.................................................................................................๏ผ๏ผ
4.2.5. Data Analysis & Insight............................................................................๏ผ๏ผ
4.3. PILOT TEST 2............................................................................................................๏ผ๏ผ
4.3.1. Amendment: Experiment Design & Laboratory Setting ...........................๏ผ๏ผ
4.3.2. Amendment: Task Scenario & Command Cue..........................................๏ผ๏ผ
4.3.3. Amendment: Perform Role and preparation of driving situation ............๏ผ๏ผ
4.3.4. Amendment: Procedure ...........................................................................๏ผ๏ผ
4.3.5. Data Analysis & Insight............................................................................๏ผ๏ผ
4.4. MAIN TEST ..............................................................................................................๏ผ๏ผ
4.4.1. Experiment Design & Laboratory setting .................................................๏ผ๏ผ
4.4.2. Task Design ..............................................................................................๏ผ๏ผ
4.4.3. Procedure.................................................................................................๏ผ๏ผ
4.4.4. Result Analysis & Insight..........................................................................๏ผ๏ผ
CHAPTER 5. UI CONCEPT DEVELOPMENT...................................................................๏ผ๏ผ
5.1. UI DESIGN METHOD..................................................................................................๏ผ๏ผ
5.2. DESIGN PROPOSAL ....................................................................................................๏ผ๏ผ
5.3. USER SCENARIOS ......................................................................................................๏ผ๏ผ
5.3.1 Scenario 1. Time-less: Late for a morning meeting..................................๏ผ๏ผ
5.3.2 Scenario 2.Time-full: Leisure driving on weekends ..................................๏ผ๏ผ
CHAPTER 6. USABILITY TEST ......................................................................................๏ผ๏ผ
6.1. USABILITY TEST GUIDE ...............................................................................................๏ผ๏ผ
6.2. ASSESSMENT USABILITY TEST ..................................................................................๏ผ๏ผ๏ผ
6.2.1 Test planning........................................................................................๏ผ๏ผ๏ผ
6.2.2 Laboratory setting................................................................................๏ผ๏ผ๏ผ
6.2.3 Test conduct and debriefing.................................................................๏ผ๏ผ๏ผ
6.3. RESULT ANALYSIS ..................................................................................................๏ผ๏ผ๏ผ
CHAPTER 7. CONCLUSION......................................................................................๏ผ๏ผ๏ผ
APPENDIX 1...........................................................................................................๏ผ๏ผ๏ผ
APPENDIX 2...........................................................................................................๏ผ๏ผ๏ผ
APPENDIX 3...........................................................................................................๏ผ๏ผ๏ผ
APPENDIX 4...........................................................................................................๏ผ๏ผ๏ผ
APPENDIX 5...........................................................................................................๏ผ๏ผ๏ผ
APPENDIX 6...........................................................................................................๏ผ๏ผ๏ผ
APPENDIX 7...........................................................................................................๏ผ๏ผ๏ผ
BIBLIOGRAPHY ......................................................................................................๏ผ๏ผ๏ผ
๊ตญ๋ฌธ ์ด๋ก ............................................................................................................๏ผ๏ผ๏ผMaste
๊ณค์ถฉ๋ณ์์ฑ ๊ณฐํก์ด ์ ๋ ์ง๋ฐฉ์ง ํจ์ ์ ์ ์์ ๋ฐํ๊ณผ ํน์ฑ ๊ตฌ๋ช ์ ๋ํ ๋น๊ต ์ฐ๊ตฌ
ํ์๋
ผ๋ฌธ(์์ฌ) -- ์์ธ๋ํ๊ต๋ํ์ : ๋์
์๋ช
๊ณผํ๋ํ ์์ฉ์๋ฌผํํ๋ถ, 2022.2. ์ ์ฐํธ.Lipase (triacylglycerol acyl hydrolase, EC 3.1.1.3)์ ester๊ฒฐํฉ์ ๊ฐ์๋ถํดํ์ฌ glycerol๊ณผ fatty acid์ ์์ฑ์ ์ด์งํ๋ ํจ์๋ก์, ๋๋ฌผ๊ณผ ์๋ฌผ, ๋ฏธ์๋ฌผ ๋ฑ ์๋ฌผ๊ณ ์ ๋ฐ์ ๋๋ฆฌ ๋ถํฌ๋์ด ์๋ค. ์ฐ์
์ ์ผ๋ก ์์ฉ๋๊ณ ์๋ ๋ง์ ํจ์๋ค ๊ฐ์ด๋ฐ ์ง๋ฐฉ์ง์ ์ง๋ฐฉ์ฐ๊ณผ monoglyceride ๋ก ๋ถํด์ํค๋ lipase๊ฐ ์ฐจ์งํ๋ ์ญํ ์ ๋งค์ฐ ์ค์ํ๋ฉฐ, ๊ธ์ํ ์ฑ์ฅํ๊ณ ์๋ ์๋ฌผ ์ฐ์
์์ ์ฃผ๋ชฉ ๋ฐ๊ณ ์๋ ํจ์ ์ค ํ๋์ด๋ค. ๊ณค์ถฉ๋ณ์์ฑ ๊ณฐํก์ด์ธ ๋์ถฉํ์ด ์ ๋ lipase์์ lipase์ ๊ฐ์ฅ ํฐ ํน์ง ์ค ํ๋์ธ ์์น ํน์ด์ฑ์ด triacylglycerol์ 1(3)๋ฒ ์์น์ ํน์ด์ ์ผ๋ก ์์ฉํ๋ ๊ฒ์ผ๋ก ํ๋ช
๋๋ฉด์ ๋ง์ ์ฐ๊ตฌ๊ฐ ์๊ตฌ๋์๋ค. ๋ฐ๋ผ์ ๋ณธ ์ฐ๊ตฌ๋ฅผ ํตํ์ฌ ๊ณค์ถฉ๋ณ์์ฑ ๊ณฐํก์ด๋ก๋ถํฐ lipase๋ฅผ ๋ถ๋ฆฌํ์ฌ ๊ทธ ํน์ฑ์ ๊ท๋ช
ํ๊ณ , baculovirus expression system์ ์ด์ฉํ์ฌ ๋๋๋ฐํ ํ ์ ์๋ ์กฐ๊ฑด์ ๊ตฌ์ถํ๊ณ ์ ํ์๋ค.
๊ตญ๋ด์์ ๋ถ๋ฆฌํ ๊ณค์ถฉ ๋ณ์์ฑ ๊ณฐํก์ด ์ค lipase ํ์ฑ์ด ๊ฐ์ฅ ๋์ ๊ท ์ฃผ๋ฅผ ์ ๋ฐํ์๋ค. ์ ๋ฐํ ๊ท ์ฃผ์ lipase์ ์์นํน์ด์ฑ์ด ์๋ค๊ณ ์๋ ค์ง ๋์ถฉํ์ด ์ ๋ lipase๋ฅผ ๋ฒ ํ๋ก๋ฐ์ด๋ฌ์ค ๋ฐํ ๋ฒกํฐ๊ณ (baculovirus expression vector system)๋ฅผ ์ด์ฉํ์ฌ ์ฌ์กฐํฉ ๋ฒ ํ๋ก๋ฐ์ด๋ฌ์ค๋ฅผ ๋ง๋ค์๋ค. ๋น๋ถ๋น๋จ๋ฐฑ์ง๊ณผ ๋ถ๋น๋จ๋ฐฑ์ง๋ก ๊ฐ๊ฐ ๋ฒ ํ๋ก๋ฐ์ด๋ฌ์ค๋ฅผ ๋ฐํ์์ผฐ๋ค. lipaseํ์ฑ์ ๋น๊ตํ ๊ฒฐ๊ณผ ๋ถ๋น๋จ๋ฐฑ์ง ํํ์ผ ๋ ํ์ฑ์ด ๋ ๋์๋ค. ๊ณฐํก์ด ๋ฐฐ์์ก, ๋น๋ถ๋น๋จ๋ฐฑ์ง ๊ทธ๋ฆฌ๊ณ ๋ถ๋น๋จ๋ฐฑ์ง 3๊ฐ์ง์ ์กฐ๊ฑด์ผ๋ก lipase ํ์ฑ์ ์ธก์ ์ ํด๋ณด์๋๋ฐ ๋ชจ๋ ๊ฒฐ๊ณผ๊ฐ์์ ๋์ถฉํ์ด ์ ๋ lipase๋ณด๋ค Beauveria bassiana JEF-351 ๊ท ์ฃผ ์ ๋ lipase์ ํ์ฑ์ด ๋๊ฒ ์ธก์ ๋๋ ๊ฒ์ผ๋ก ๋ณด์ Beauveria bassiana JEF-351 ๊ท ์ฃผ ์ ๋ lipase๊ฐ ๋งค์ฐ ์ ์ฉํ๊ฒ ์ด์ฉ์ด ๋ ์ ์๋ ํจ์์ธ ๊ฒ์ผ๋ก ํ๋จ๋์๋ค.Lipase (triacylglycerol acylhydrolase; EC 3.1.1.3) is a class of enzymes that catalyze the hydrolysis of triacylglycerol and/or esterification between glycerol and fatty acid. It is widely distributed throughout the living world, including animals, plants, and microorganisms. Among many industrially applied enzymes, the role of lipase that converts fats into fatty acids and monoglycerides is very important, and it is one of the enzymes attracting attention in the rapidly growing biological industry. Lipase derived from an entomopathogenic fungi, Cordyceps militaris, was found to act specifically at position 1(3) of triacylglycerol. In this study, characteristics of lipases isolated from entomopathogenic fungi were investigated and conditions for mass expression using the baculovirus expression system were established.
Among the entomopathogenic fungi isolated in Korea, Beauveria bassiana JEF-351 strain, which showed the highest enzyme activity, was selected. Lipase genes of the selected strain (BBL351) and Cordyceps militaris (CML), which is known to have stereospecificity, were introduced into the genome of Autographa californica nucleopolyhedrovirus (AcMNPV), respectively, to express corresponding genes using the baculovirus expression system. Recombinant lipases were expressed as non-secreted protein and secreted protein, respectively. In both BBL351 and CML, their enzyme activity was higher when they expressed as secreted protein form, demonstrating that post-translational modification such as glycosylation is crucial for their activity. In addition, the enzyme activity of BBL351 was higher than that of the CML, suggesting that the lipase derived from the B. bassiana JEF-351 strain could be useful as biocatalyst in the biotechnological applications.ABSTRACT i
TABLE OF CONTENTS โ
ฑi
LIST OF TABLES vi
LIST OF FIGURES โ
ดโ
ฐi
INTRODUCTION 1
LITERATURE REVIEW 3
1. Lipase 3
2. Entomopathogenic fungi 4
3. Baculovirus expression vector system 5
METERIAL AND METHODS 7
1. Entomopathogenic fungi (EPF) 7
2. Preparation of lipase from EPF culture broth of entomopathogenic fungi 9
3. Bacterial strains and transformation 10
4. Insect cells and baculoviruses 10
5. RNA and reverse transcription PCR (RT-PCR) 10
6. DNA synthesis 11
7. Construction of baculovirus donor vectors 11
8. in vitro transposition 18
9. Transfection 24
10. Infection of cells with baculoviruses 24
11. Extraction of viral DNA 25
12. Purification of non-secretory recombinant protein 25
13. Precipitation of secretory recombinant protein using ammonium sulfate 25
14. Lipase activity assay 26
RESULTS 27
1. Lipase genes from entomopathogenic fungi 27
2. Cloning and sequencing of lipase genes from EPF strains 27
3. Expression of lipase genes in the baculovirus expression system 33
3.1 Construction of the recombinant bacmid bEasyBac 33
3.2 Purification of the non-secretory recombinant baculovirus 33
4. Confirmation of enzyme activity through lipase assay 45
4.1 Non-secretory protein 45
4.2 Secretory protein 45
DISCUSSION 50
LITERATURE CITED 53
ABSTRACT IN KOREAN 59
LIST OF TABLES
Table 1. List of entomopathogenic fungal strains used in this study. 8
Table 2. Primers used for construction of baculovirus donor vectors containing non-secretory lipase genes 15
Table 3. Primers used for construction of baculovirus donor vectors containing His-tagged form of lipase genes from entomopathogenic fungi 16
Table 4. Oligonucleotides used for construction of baculovirus donor vectors containing His-tagged form of lipase genes from entomopathogenic fungi 21
LIST OF FIGURES
Fig. 1. Liquid and solid culture conditions of selected entomopathogenic fungi 9
Fig. 2. Construction map of the vectors harboring BBL344 and BBL351 genes 12
Fig. 3. Construction map of the vector harboring IFL gene 13
Fig. 4. Construction map of baculovirus donor vectors expressing non-secretory form of BBL344 and BBL351 genes under the control of polyhedron promoter 14
Fig. 5. Construction map of baculovirus donor vectors expressing N-terminally His-tagged lipase genes under the control of polyhedron promoter 19
Fig. 6. Construction map of baculovirus donor vectors expressing C-terminally His-tagged lipase genes under the control of polyhedron promoter 20
Fig. 7. Construction map of baculovirus donor vectors expressing secretory form of CML and BBL351 genes with native signal peptides under the control of polyhedron promoter 22
Fig. 8. Construction map of baculovirus donor vectors expressing secretory form of CML and BBL351 genes with melittin signal peptides under the control of polyhedron promoter 23
Fig. 9. Detection of lipase derived from insect pathogenic fungi in NCBI. 28
Fig. 10. A phylogenetic tree displaying the relationship of lipase genes 29
Fig. 11. Lipase assay of EPF strains 30
Fig. 12. RT-PCR of lipase 31
Fig. 13. Confirmation of the internal structure of the transfer vector, pGEM-T BBL344 and pGEM-T BBL351 by restriction endonuclease digestion pattern 32
Fig. 14. Amino acid sequence analysis of lipases from EPF strains. 34
Fig. 15. Confirmation of EPF lipase genes into baculovirus donor vector by restriction endonuclease digestion pattern 36
Fig. 16. Sf9 cells were infected with recombinant baculovirus 38
Fig. 17. Confirmation genome structure of recombinant baculoviruses expressing lipase genes under the control of polyhedrin promoters by RT-PCR using specific primer sets 40
Fig. 18. Transcription of lipase genes from recombinant baculoviruses expressing lipase genes under the control of polyhedrin promoters by PCR using specific primer sets 42
Fig. 19. Expression of lipases protein by recombinant baculoviruses 44
Fig. 20. Gel electrophoresis of HisPurTM Ni-NTA Spin Column purification of Hislipase genes 46
Fig. 21. Expression of non-secretory protein in insect cells infected with recombinant baculoviruses 47
Fig. 22. Expression of secretory protein in insect cells infected with recombinant baculoviruses 48์
High-Fidelity Multiphase Computations Inside Cryogenic Tank With The Injection Of Pressurant And Varying Acceleration
๋ณธ ์ฐ๊ตฌ๋ ๊ต์ก๊ณผํ๊ธฐ์ ๋ถ์ ์ฐ์ฃผํต์ฌ๊ธฐ์ ๊ฐ๋ฐ์ฌ์
(NRF-2014M1A3A3A02034856)์ ์ง์์ ๋ฐ์ ์ด๋ฃจ์ด์ก์ผ๋ฉฐ ์ด์ ๊ฐ์ฌ๋๋ฆฝ๋๋ค.OAIID:RECH_ACHV_DSTSH_NO:A201616780RECH_ACHV_FG:RR00200003ADJUST_YN:EMP_ID:A001138CITE_RATE:FILENAME:๊ฐ์์ _์ฃผ์
_๋ฐ_๊ฐ์๋_๋ณํ์_๋ฐ๋ฅธ_๊ทน์ ์จ_ํฑํฌ_๋ด๋ถ_์ ๋์_๊ณ ์ ๋ฐ_ยทยท.pdfDEPT_NM:๊ธฐ๊ณํญ๊ณต๊ณตํ๋ถEMAIL:[email protected]_YN:FILEURL:https://srnd.snu.ac.kr/eXrepEIR/fws/file/29959775-cd41-4987-a546-4608ab08b5c5/linkCONFIRM:
Changes in Tinnitus After Middle Ear Implant Surgery: Comparisons With the Cochlear Implant
OBJECTIVES: Tinnitus is a very common symptom in patients with hearing loss. Several studies have confirmed that hearing restoration using hearing aids or cochlear implants (CIs) has a suppressive effect on tinnitus in users. The aim of this study was to analyze the effect of other hearing restoration devices, specifically the middle ear implant (MEI), on changes in tinnitus severity.
DESIGN: From 2012 to October 2014, 11 adults with tinnitus and hearing loss underwent MEI surgery. Pure-tone audiometry, tinnitus handicap inventory (THI), and visual analog scale scores for loudness, awareness, and annoyance and psychosocial instruments were measured before, immediately after, and 6 months after surgery. Changes in hearing thresholds and THI scores were analyzed and compared with those of 16 CI recipients.
RESULTS: In both MEI and CI groups, significant improvements in tinnitus were found after the surgery. The THI scores improved in 91% of patients in the MEI group and in 56% of those in the CI group. Visual analog scale scores and psychosocial scale scores also decreased after surgery, but there were no statistical differences between the groups.
CONCLUSIONS: The results indicate that the MEI may be as beneficial as the CI in relieving tinnitus in subjects with unilateral tinnitus accompanying hearing loss. Furthermore, this improvement may manifest as hearing restoration or habituation rather than a direct electrical nerve stimulation, which was previously considered as the main mechanism underlying tinnitus suppression by auditory implants.ope
Development of Unsteady Preconditioned Multi-Phase Roem and Ausmpw+ Schemes
๋ณธ ๋
ผ๋ฌธ์ 2015๋
๋ ๋ฏธ๋์ฐฝ์กฐ๊ณผํ๋ถ์ ์ฌ์์ผ๋ก NSL์ฌ์
(NRF-2014M1A3A3A02034856)๊ณผ ๋ฏผใ๊ตฐํ๋ ฅ ๊ธฐ์ ์ฌ์
(Civil-Military Technology Cooperation Program)์ ์ง์์ ๋ฐ์ ์์ฑ๋์์ต๋๋ค.OAIID:RECH_ACHV_DSTSH_NO:420160000004648010RECH_ACHV_FG:RR00200003ADJUST_YN:EMP_ID:A001138CITE_RATE:FILENAME:๋น์ ์_์์กฐ๊ฑดํ_๊ธฐ๋ฒ์_์ ์ฉํ_๋ค์์ ๋_RoeMAUSMPW+_์์น๊ธฐ๋ฒยทยท.pdfDEPT_NM:๊ธฐ๊ณํญ๊ณต๊ณตํ๋ถEMAIL:[email protected]_YN:FILEURL:https://srnd.snu.ac.kr/eXrepEIR/fws/file/696b8222-7074-43e7-8294-9499eb9c0b74/linkCONFIRM:
Changes in Do-not-resuscitate consent and medical costs before and after Severance-hospital-case: a single center study
ํ์๋
ผ๋ฌธ (์์ฌ)-- ์์ธ๋ํ๊ต ๋ํ์ : ๋ณด๊ฑด๋ํ์ ๋ณด๊ฑดํ๊ณผ, 2018. 2. ์ดํ์ง.๋ชฉ์ : 2009๋
์์ ์ ํตํด ํ์์ ์์ง์ ๋ฐ๋ฅธ ์ฐ๋ช
์น๋ฃ์ ์ค๋จ์ด ๋ฒ์ ์ผ๋ก ํ์ฉ๋ ์ ์๋ ํ ๋๊ฐ ๋ง๋ จ๋์๊ณ , ํ์ ๋ฐ ๋ณดํธ์, ์๋ฃ์ง์ ์กด์์ฌ์ ๋ํ ์ธ์์ ๋ณํ๊ฐ ๋ฐ์ํ์ ๊ฒ์ผ๋ก ์์ํ ์ ์๋ค. ๋ณธ ์ฐ๊ตฌ์์๋ ์ฐ๋ช
์๋ฃ๊ฒฐ์ ๋ฒ ์ํ ์ , ํด๋น ๋ฒ์ด ๋์
๋ ๊ฒฐ์ ์ ์ธ ๊ณ๊ธฐ์๋ ์ ํ ์ํฅ์ ์์ฑ ๊ฑด์, ์์ ์ ๋น๊ตํ์ฌ ํด๋น ์ฌ๊ฑด์ด ํ์, ๋ณดํธ์ ๋ฐ ์๋ฃ์ง์ ์กด์์ฌ์ ๋ํ ์ธ์์ ๋ฏธ์น ์ํฅ์ ๊ฐ๋ ํ๊ณ ์ ํ๋ค. ๋ํ ์ํฅ์ ์์ฑ๊ณผ ๊ด๋ จ๋ ์์ธ์ ๋ฐํ๋ฉฐ, ์ํฅ์ ์์ฑ ์์ ์ ๋ฐ๋ฅธ ์๋ฃ๋น์ ์ฐจ์ด๋ฅผ ๋ถ์ํ๋ค. ์ด๋ฅผ ํตํด ์ด ์ํฅ์ ์์ฑ์ ๋ฏธ์น ์ํฅ ๋ฐ ๋ณด๊ฑด๊ฒฝ์ ํ์ ํจ๊ณผ๋ฅผ ํ๊ฐํ ์ ์์ผ๋ฉฐ, ๋์๊ฐ ์ฌ๋ฐ๋ฅธ ์ฐ๋ช
์๋ฃ๊ฒฐ์ ๋ฒ ์ํ์ ์ํด ์ ์ธํ๊ณ ์ ํ๋ค.
๋ฐฉ๋ฒ: ํํฅ์ ์๋ฌด๊ธฐ๋ก ์ฐ๊ตฌ๋ฅผ ํตํ์ฌ, ์ ํ 3๋
๋์(2006๋
5์ 21์ผ~2012๋
5์ 21์ผ) ์์ธ๋ํ๊ต๋ณ์ ๋ด๊ณผ ๋ณ๋์์ ์ฌ๋งํ ์
์ ํ์๋ฅผ ๋์์ผ๋ก, ์ ํ ์ํฅ์ ์์ฑ ๊ฑด์, ์์ , ์๋ฃ๋น์ ๋ณํ๋ฅผ ๋ถ์ํ์๋ค.
๊ฒฐ๊ณผ: ์ฐ๊ตฌ ๋์์๋ 4191๋ช
์ด์์ผ๋ฉฐ, ๊ทธ ์ค ์ํฅ์๋ฅผ ์์ฑํ ํ์๋ ์ด 2946๋ช
์ด์๋ค. ์ ์ ๋นํด์ ์ฌ๊ฑด ํ ์ง๋จ์์ ํต๊ณ์ ์ผ๋ก ์ ์ํ๊ฒ ์ํฅ์ ์์ฑ ๊ฑด์๊ฐ ์ฆ๊ฐํ์๊ณ (๊ต์ฐจ๋น 3.34, 95% ์ ๋ขฐ๊ตฌ๊ฐ 2.90-3.84, ์ ์ํ๋ฅ <0.001), ์ํฅ์ ์์ฑ ์์ ๊ณผ ์ด ํ๊ท ์๋ฃ๋น ๋ฐ ์ฌ๋ง ์ 2์ฃผ๊ฐ ํ๊ท ์๋ฃ๋น๋ ์ ์ํ ๋ณํ๊ฐ ์์๋ค.
๊ฒฐ๋ก : ๋ณธ ์ฐ๊ตฌ์์๋ ์ ํ ์ํฅ์ ๊ฑด์๋ ์ฆ๊ฐํ์ง๋ง, ์์ฑ ์์ ์ ๋ณํ๊ฐ ์์๊ณ , ์๋ฃ๋น๊ฐ ๊ฐ์ํ์ง ์์๋ค๋ ๊ฒ์ ๋ฐํ๋ค. ์ฐ๋ช
์๋ฃ๋ฒ ์ํ ์ดํ ์ํฅ์ ์์ฑ ๊ฑด์์ ์ฆ๊ฐ๊ฐ ์์๋๋, ๋ถํ์ํ ์ฐ๋ช
์น๋ฃ์ ์ด๋ก ์ธํ ์๋ฃ๋น ์ฆ๊ฐ๋ฅผ ๋ง๊ธฐ ์ํด์ ์๋ฃ๊ณต๊ธ์ ๋ฐ ์ผ๋ฐ ๊ตญ๋ฏผ์ ๋์์ผ๋ก ๋ฒ์ ๋ด์ฉ์ ์ ๊ทน์ ์ผ๋ก ํ๋ณดํ๊ณ , ์๋ฃ๊ณต๊ธ์, ํ์ ๋ฐ ๋ณดํธ์์ ์์ ๊ฐ์ ์ด ๋ฐ๋์ ํ์ํ๋ค.์ 1์ฅ. ์๋ก 1
์ 2์ฅ. ์ฐ๊ตฌ ๋ฐฉ๋ฒ 6
์ 3์ฅ. ๊ฒฐ๊ณผ 11
์ 4์ฅ. ๊ณ ์ฐฐ 30
์ 5์ฅ. ๊ฒฐ๋ก 38
์ฐธ๊ณ ๋ฌธํ 39
์๋ฌธ ์ด๋ก 45Maste
Effects of shoe conditions on biomechanics of recreational runners
Eliud Kipchoge, became the first athlete to run a marathon under two hours in 2019. Although the team of rotating pacemakers contributed to this achievement, the vast majority of people paid attention to Kipchogeโs shoes, the prototype of Alphafly (NIKE). These shoes were designed to enhance the performance of runners; they were equipped with air springs, midsole that maximizes energy return, and carbon plates with high bending stiffness. The Alphafly shoes have also become extremely popular among the recreational runners who are interested in the enhancement of their performance. However, there is a dearth of biomechanical studies exploring any possible effect of such performance boosting shoes on the risk of injury during running.
This study aims to quantify the effect of distinct shoe structures on biomechanics of runners, and address the probable effect of the resulting biomechanics on the incidence of representative musculoskeletal damage due to running. Five adult males in 20-30s participated in the study; they ran at 3.3m/s for 10 minutes on an instrumented treadmill, wearing three different pairs of shoes: 1) Alphyfly (AF); 2) conventional running shoes, UltraBoost20 by Adidas (CON); and 3) SORTIEMAGIC RP5 by Asics, which features minimal cushioning and lightweight (MIN). The mechanical properties of each shoe structure was quantified using standard methods. During the running experiment, metabolic variables (oxygen consumption, energy expenditure, and respiratory exchange ratio), and kinematic data (foot strike angle; angle of the ankle, knee, hip at touch down (TD) and toe off (TO); and angle range during stance phase) were collected. The recorded kinematics and the ground reaction force obtained from the instrumented treadmill were used to perform inverse analysis and estimate biomechanical variables (reaction force and moment at the ankle, knee, and hip; and muscle force output at the calf and thigh).
Metabolic variables did not show statistically significant differences depending on shoe conditions. In contrast, the significant effect of shoe conditions on the kinematic patterns was clear. Under CON condition, the runners showed the largest footstrike angle (p<0.01). The angle at TD and TO, and angle range of the ankle, knee and hip were all significantly affected by shoe conditions (p<0.05). These results indicate that a runner may almost immediately adopt different running patterns depending on the properties of the shoes regardless of his/her own running pattern.
The inverse analysis suggested that the shoe-induced change in the running kinematics, in turn, has significant effects on the mechanical load to various joints and muscles. Under MIN condition, runners adopted forefoot strike patterns, which required significantly higher reaction force at the ankle (p<0.01), significantly larger force output from the calf posterior muscles (Gastrocnemius, Soleus) (p<0.01), and significantly larger stress to achilles tendon (p<0.01). These results indicate that MIN condition tends to increase the risk of ankle sprain, achilles tendinitis, or shin splint. Under CON condition, runners adopted rearfoot strike patterns, which required significantly larger force at the knee and hip in the frontal plane (p<0.01) and significantly larger muscle force from the peroneus longus and tibialis anterior (p<0.01). These results indicate that CON condition tends to jeopardize lateral stability, and increase the risk of illiotibial band syndrome or pain of peroneals. The AF condition induced significantly higher shear force and compressive force in the knee joint on the sagittal plane (p<0.01), putting runners at higher risk of knee femur syndrome, shin splint or stress fractures.
In conclusion, shoes with distinct properties can alter runnerโs running kinematics regardless of their habitual running pattern, and each of the induced running kinematics has its own vulnerability. Therefore, recreational runners need to consider weak parts of their body and the different biomechanical effects of shoes to select proper shoes for running.์ต๊ทผ โ๋ง๋ผํค 2์๊ฐ์ ๋ฒฝ์ ๊นฌ ํต์ด๊ฒ ์ ๋ฐโ๋ก ํ์ ๊ฐ ๋์๋ ์๋ก์ด ํน์ฑ์ ๋ ์ด์ฑํ(Alphafly NIKE, ์ดํ AF)๋ ์ ์กฑ๋ถ ์์ด ์คํ๋ง, ์๋์ง ๋ฐํ์ ์ต๋ํํ ์ค์ฐฝ๊ณผ ๊ตฝํ ๊ฐ์ฑ์ด ๋์ ์นด๋ณธ ํ๋ ์ดํธ ๋ฑ ์ฒ ์ ํ ์ฃผํ ํผํฌ๋จผ์ค์ ์ด์ ์ ๋ง์ถ์ด ์ค๊ณ๋์๋ค. ์ต๊ทผ ์ผ๋ฐ์ธ๋ค๋ ์คํฌ์ธ ํผํฌ๋จผ์ค์ ๊ด์ฌ์ด ๋์์ง๋ฉด์ ํด๋น ์ ๋ฐ์ ํฌ๊ฒ ์ธ๊ธฐ๋ฅผ ๋์์ผ๋ ์์ ์ฑ ๋ณด๋ค๋ ํผํฌ๋จผ์ค์ ์ด์ ์ ๋ง์ถ ๋ ์ด์ฑํ๋ค์ด ์ด๋ค ๋ถ์ ์ํ์ฑ์ ๊ฐ์ง ์ ์๋์ง์ ๋ํ ์์ฒด์ญํ์ ์ฐ๊ตฌ๋ ๋ถ์กฑํ ์ค์ ์ด๋ค.
๋ณธ ์ฐ๊ตฌ์์๋ ๊ฐ ์ ๋ฐ ๊ตฌ์กฐ๊ฐ ์ฃผํ ์ ์์ฒด์ญํ ๋ณ์ธ๋ค์ ๋ฏธ์น๋ ์ํฅ์ ๋ถ์ํ๊ณ , ์ด๋ฌํ ์ญํ์ ๋ณ์ธ์ ๋ณํ๋ฅผ ์ฃผํ์์ ๋ฐ์ํ๋ ๋ํ์ ์ธ ๊ทผ๊ณจ๊ฒฉ๊ณ ์์๋ค์ ํน์ง๊ณผ ์ฐ๊ด์์ผ ์ ๋ฐ ๊ตฌ์กฐ์ ๋ฐ๋ฅธ ๋ถ์ ์ํ์ฑ์ ๋์ถํ๊ณ ์ ํ๋ค. ์ด๋ฅผ ์ํด 20-30 ๋ ์ฑ์ธ ๋จ์ฑ 5 ๋ช
์ ๋์์ผ๋ก AF์ ์ผ๋ฐ์ ์ธ ์ฟ ์
๋ฌ๋ํ(UltraBoost20 Adidas, ์ดํ CON), ์ต์ํ์ ์ฟ ์
๋ ๊ธฐ๋ฅ๊ณผ ๊ฒฝ๋ ์์ฌ๊ฐ ํน์ง์ธ ๋ฏธ๋๋ฉ ๋ ์ด์ฑํ(SORTIEMAGIC RP5 Asics, ์ดํ MIN)๋ฅผ ๊ฐ๊ฐ ์ ๊ณ ์ง๋ฉด ๋ฐ๋ ฅ ํธ๋ ๋๋ฐ ์์์ 3.3 m/s์ ์๋๋ก 10 ๋ถ๊ฐ ์ฃผํํ๋ ์คํ์ ์ค์ํ์๋ค. ์ฃผํ ์ ๊ฐ ์ ๋ฐ์ ๋ฐ๋ฅธ ์๋์ง ๋์ฌ ๋ณ์ธ(๋ถ๋น ์ฐ์ ์ญ์ทจ๋, ์๋์ง ์๋ชจ๋, ํธํก ๊ตํ๋ฅ ), ์ฃผํ ํจํด(์ง๋ฉด๊ณผ ๋ฐ์ ์ฐฉ์ง ๊ฐ๋์ ๋ฐ๋ชฉ, ๋ฌด๋ฆ, ์๋ฉ ๊ด์ ์ ์ฐฉ์ง, ์ด์ง ์ ๊ฐ๋์ ๋ณ์)์ ์ธก์ ํ์๊ณ ๊ทผ๊ณจ๊ฒฉ ๋ชจ๋ธ๋ง ๋ฐ ์ญ๋์ญํ ๋ถ์์ ํตํด ์ฃผํ ์คํ ์ ์ธก์ ํ ์ด๋ํ์ ๋ณ์ธ์ ์ด์ฉํ์ฌ ์์ฒด์ญํ์ ๋ณ์ธ(๋ฐ๋ชฉ, ๋ฌด๋ฆ, ์๋ฉ ๊ด์ ์ ๋ฐ๋ฐ๋ ฅ๊ณผ ๋ชจ๋ฉํธ, ํ๋ฒ
์ง์ ์ข
์๋ฆฌ ์ /ํ๋ฉด ๊ทผ์ก์ด ์ถ๋ ฅํ๋ ํ)๋ค์ ๋์ถํ์๋ค. ๋ํ ๊ฐ ์ ๋ฐ์ ๊ตฌ์กฐ์ ๋ฌผ๋ฆฌ์ ํน์ฑ์ ํ์คํ๋ ๋ฐฉ๋ฒ์ ์ด์ฉํ์ฌ ์ ๋ํํ์๋ค.
์คํ ๋ฐ ๋ถ์ ๊ฒฐ๊ณผ, ์ฅ๊ฑฐ๋ฆฌ ์ฃผํ์ ํผํฌ๋จผ์ค๋ฅผ ๋ํ๋ด๋ ์งํ์ธ ์๋์ง ๋์ฌ ๋ณ์ธ์ ๋ํด์๋ ์ ๋ฐ ์กฐ๊ฑด์ ๋ฐ๋ผ ํต๊ณ์ ์ผ๋ก ์ ์ํ ์ฐจ์ด๋ฅผ ํ์ธํ ์ ์์์ผ๋ ์ฃผํ ํจํด์์๋ ์ ๋ฐ ์กฐ๊ฑด์ ๋ฐ๋ฅธ ์ฐจ์ด๋ฅผ ํ์ธํ์๋ค. ์ฐฉ์ง๊ฐ์ CON์์ ๊ฐ์ฅ ํฌ๊ฒ ๋ํ๋ฌ๊ณ (p<0.01) ์๋ฉ, ๋ฌด๋ฆ, ๋ฐ๋ชฉ ์ธ ํ์ง ๊ด์ ์ ์ฐฉ์ง์ ์ด์ง์์ ๊ฐ๋์ ์ ์ฒด ์์ง์์์ ์ ๋ฐ ์กฐ๊ฑด์ ๋ฐ๋ผ ํต๊ณ์ ์ผ๋ก ์ ์ํ ์ฐจ์ด๊ฐ ์กด์ฌํ๋ค(p<0.05). ์ด๋ ์ฃผ์๊ฐ ๋ณธ์ธ์ ํ์ ์ฃผํ ํจํด๊ณผ ์๊ด์์ด ์ ๋ฐ์ ๋ฐ๋ผ์ ์ฆ๊ฐ์ ์ธ ์ฃผํ ํจํด์ ๋ณํ๋ฅผ ๋ณด์ผ ์ ์์์ ์๋ฏธํ๋ค.
์ ๋ฐ ์กฐ๊ฑด์ ๋ฐ๋ฅธ ์ด๋ฌํ ์ฃผํ ํจํด์ ๋ณํ๊ฐ ๊ฐ๊ธฐ ๋ค๋ฅธ ๊ด์ ๋ฐ ๊ทผ์ก ๋ถํ๋ฅผ ์ผ๊ธฐํจ์ ์ญ๋์ญํ ๋ถ์์ ํตํด ํ์ธํ์๋ค. ์ฐฉ์ง ์ FFS (Forefoot strike) ํจํด์ ์ผ๊ธฐํ MIN ์กฐ๊ฑด์ ๊ฒฝ์ฐ ๋ฐ๋ชฉ ๊ด์ ์ ์ ์ํ๊ฒ ํฐ ๋ฐ๋ฐ๋ ฅ์ด ๊ฐํด์ก๊ณ (p<0.01), ์ข
์๋ฆฌ ํ๋ฉด ๊ฐ์๋ฏธ๊ทผ, ๋น๋ณต๊ทผ์์ ์ ์ํ๊ฒ ํฐ ํ์ ์ถ๋ ฅ์ด ์๊ตฌ๋๋ฉฐ(p<0.01) ์ํฌ๋ ์ค๊ฑด์์ ์์ชฝ ๋ฐฉํฅ์ผ๋ก์ ๋ถํ๋ ํฌ๊ฒ ๋ฐ์ํ์๋ค(p<0.01). ์ด๋ ๋ฏธ๋๋ฉ ๋ ์ด์ฑํ ์ฐฉ์ฉ ์ฃผํ ์ ๋ฐ๋ชฉ๊ณผ ์ ๊ฐ์ด ๊ด๋ จ ๋ถ์์ ์ ์ํด์ผ ํจ์ ์๋ฏธํ๋ค. ์ฐฉ์ง ์ RFS (Rearfoot strike) ํจํด์ ๋ณด์ธ CON ์กฐ๊ฑด์์๋ ์๋์ ์ผ๋ก ๋ฌด๋ฆ ๋ฐ ์๋ฉ ๊ด์ ์์ ํฐ ๋ฐ๋ฐ๋ ฅ๊ณผ ๋ชจ๋ฉํธ ๊ฐ์ด ๋ํ๋ฌ๋ค. ํนํ ๊ด์๋ฉด์์ ํฐ ๋ถํ๊ฐ ์ผ๊ธฐ๋์๊ณ (p<0.01) ์ฅ๋น๊ณจ๊ทผ๊ณผ ์ ๊ฒฝ๊ณจ๊ทผ์์ ์ ์ํ๊ฒ ํฐ ํ์ด ์๊ตฌ๋์๋ค(p<0.01). ์ด๋ ์ฟ ์
๋ฌ๋ํ ์ฐฉ์ฉ ์ฃผํ ์ ์ธก๋ฉด ์์ ์ฑ ํ๋ณด๋ฅผ ์ํด๋ง์ ๋ถํ๋ฅผ ๋ด๋นํ๋ ์ฅ๊ฒฝ์ธ๋ ๋ฐ ์ฅ๋น๊ณจ๊ทผ ๊ด๋ จ ๋ถ์์ ์ ์ํด์ผ ํจ์ ์ ์ํ๋ค. AF ์กฐ๊ฑด์์๋ ์์๋ฉด์์ ๋ฌด๋ฆ ๊ด์ ์ ๋ฐ๋ฐ๋ ฅ, ์์ถ๋ ฅ์ด ์ ์ํ๊ฒ ์ปค์ก๋ค(p<0.01). ์ด๋ AF์ ๊ฐ์ด ์ ๋ฐฉ ์ถ์ง์ ํนํ๋ ์ ๋ฐ์ ์ ์ ๊ฒฝ์ฐ ์ฌ๊ฐ๋ํด ์ฆํ๊ตฐ๊ณผ ์ ๊ฐ์ด ํต์ฆ, ํผ๋ก ๊ณจ์ ๋ฑ์ ์ ๋
ํด์ผ ํจ์ ์๋ฏธํ๋ค.
๊ฒฐ๋ก ์ ์ผ๋ก ์ ๋ฐ์ ๋๋ ทํ ํน์ง๋ค์ ๋ฐ๋ผ ์ฃผ์์ ํ์ ์ฃผํ ํจํด๊ณผ ์๊ด์์ด ์ฃผํ ์์ ์ด๋์ญํ์ ๋ณ์ธ๋ค์ ๋ณํ์ํฌ ์ ์์ผ๋ฉฐ, ๊ฐ๊ฐ์ ์ ๋๋ ์ด๋์ญํ์ ํน์ฑ๋ค์ ์ ๋ง๋ค ๋ถ์๊ณผ ์ฐ๊ด๋ ์ ์๋ ์ทจ์ฝ์ ์ ๊ฐ์ง๊ณ ์๋ค. ๋ฐ๋ผ์ ์ฃผ์๋ค์ ๊ทธ๋ค์ ์ฝ์ ์ ํ์
ํ๊ณ , ์ฃผํ ์ ๊ฐ ์ ๋ฐ์ ์์ฒด์ญํ์ ํน์ฑ์ ๊ณ ๋ คํด์ ์ ์ ํ ์ ๋ฐ์ ์ ํํด์ผ ํ๋ค.I. ์ ๋ก 1
1. ์ฐ๊ตฌ์ ๋ฐฐ๊ฒฝ 1
2. ์ฐ๊ตฌ์ ๋ด์ฉ 5
3. ์ฐ๊ตฌ ๊ฐ์ค 5
II. ์ด๋ก ์ ๋ฐฐ๊ฒฝ 6
1. ๋ฌ๋ฆฌ๊ธฐ์ ์ญํ 6
2. ๋ถ์์ ์ญํ 8
2.1 ์์๊ธฐ์ 8
2.2 ์ธ์ฒด์ ๊ฐํด์ง๋ ๋ถํ 9
2.3 ๋ฌ๋ฆฌ๊ธฐ์ ๊ด๋ จ๋ ๋ถ์ 10
3. ์ธ์ฒด ๋ชจ๋ธ๋ง ์๋ฎฌ๋ ์ด์
13
3.1 ๋์ญํ ํด์ ๋ฐฉ๋ฒ 13
3.2 AnyBody Modeling System (AMS) 16
3.3 ๊ฒ์ฆ ์ฌ๋ก 18
4. ์ ๋ฐ์ ํด๋ถํ(ANATOMY) 19
4.1 ๊ฒ์ฐฝ(outsole) 19
4.2 ์ค์ฐฝ(midsole) 20
4.3 ์์ฐฝ(Innersole) 21
4.4 ๊ฐํผ(upper) 22
4.5 ์ ๊ณจ(Last) 22
5. ์ ๋ฐ์ ๋ฌผ์ฑ 24
5.1 ์ ๋ฐ ๋ฌด๊ฒ 24
5.2 ์ค์ฐฝ ์์ฌ 25
5.3 ๊ตฝ ๋๊ป์ ์คํ์
26
5.4 ์ธ๋ก ๊ตฝํ ๊ฐ์ฑ(Longitudinal bending stiffness, LBS)๊ณผ ์นด๋ณธ ํ๋ ์ดํธ(Carbon plate) 27
III. ์ฐ๊ตฌ๋ฐฉ๋ฒ 30
1. ์ฐ๊ตฌ ๋์ 30
2. ์คํ ๋๊ตฌ 31
2.1 ์ธก์ ์ฅ๋น 31
2.2 AnyBody Modeling System (AMS) 36
2.3 ์ฐ๊ตฌ์ ์ฌ์ฉ๋ ์ ๋ฐ๊ณผ ๊ตฌ์กฐ์ ํน์ฑ 39
3. ์คํ ์ ์ฐจ 43
4. ์๋ฃ ๋ถ์ ๋ฐฉ๋ฒ 46
4.1 ์คํ ๋ฐ์ดํฐ ์ฒ๋ฆฌ 46
4.2 ์คํธ๋ผ์ดํฌ ํจํด ์ธก์ 48
4.3 ์๋์ง ๋์ฌ ๋ณ์ธ 50
5 . ํต๊ณ ๋ถ์ 50
IV. ์ฐ๊ตฌ๊ฒฐ๊ณผ 51
1. ์๋์ง ๋์ฌ ๋ณ์ธ 51
2. ์ฃผํ ํจํด 52
3. ๊ด์ ์ ๊ฐํด์ง๋ ๋ฐ๋ฐ๋ ฅ, ๋ฐ๋ฐ๋ชจ๋ฉํธ 57
3.1 ์์๋ฉด (sagittal plane) 57
3.2 ๊ด์๋ฉด (frontal plane) 62
3.3 ์ํ๋ฉด(horizontal plane) 65
3.4 ํ์ ์ถ (rotation axis) 67
4. ๊ทผ์ก์ด ๋ด๋ ํ 71
4.1 ์ข
์๋ฆฌ ๊ทผ์ก 71
4.2 ํ๋ฒ
์ง ๊ทผ์ก 73
V. ๋
ผ์ 75
VI. ๊ฒฐ๋ก ๋ฐ ์ ์ธ 79
์ฐธ๊ณ ๋ฌธํ 81
ABSTRACT 90์
Development of skin phantom mimicking mechanical properties of the skin
ํ์๋
ผ๋ฌธ(์์ฌ) -- ์์ธ๋ํ๊ต๋ํ์ : ๊ณต๊ณผ๋ํ ๊ธฐ๊ณ๊ณตํ๋ถ, 2022. 8. ๊นํธ์.์ฌ๋์ ํผ๋ถ๋ ์์ ์ธต์ ์ํผ์ธ ํํผ, ๊ทธ ์๋์ ์งํผ, ๊ทธ๋ฆฌ๊ณ ํผํ์กฐ์ง์ผ๋ก ๊ตฌ์ฑ๋์ด ์์ผ๋ฉฐ ๊ฐ๊ฐ ๋ฌผ๋ฆฌ์ ํน์ฑ์ด ๋ค๋ฅด๋ค. ๊ทธ์ค ํผ๋ถ์ ํ๋ ฅ์ ์ฃผ๋ ์์ธ์ด ๋๋ ๊ตฌ์ฑ ์ฑ๋ถ์ ์งํผ์ ์์นํ ์ฝ๋ผ๊ฒ๊ณผ ์๋ผ์คํด์ด๋ค. ์ฝ๋ผ๊ฒ์ ์งํผ ๋ด์์ ํผ๋ถ๋ฅผ ๊ตฌ์กฐ์ ์ผ๋ก ์งํฑํด ์ฃผ๋ ์ญํ ์ ํ๋ฉฐ ์๋ผ์คํด์ ๋ณํ๋ ํผ๋ถ๊ฐ ์๋ ์ํ๋ก ๋์์ค๊ฒ ํ๋ ์ญํ ์ ํ๋ ๊ฒ์ผ๋ก ์๋ ค์ ธ ์๋ค. ํ์๋ฃจ๋ก ์ฐ์ ์งํผ ๋ด์์ ํ๋กํ
์ค๊ธ๋ฆฌ์นธ๊ณผ ๋ถ์ฐฉํ์ฌ ํ๋กํ
์ค๊ธ๋ฆฌ์นธ ์งํฉ์ฒด๋ฅผ ์ด๋ฃจ๊ณ ์์ผ๋ฉฐ, ์๋ถ ๊ฒฐํฉ ํน์ฑ์ ๊ฐ์ง๊ณ ์๊ธฐ ๋๋ฌธ์ ํผ๋ถ ๋ณด์ต ์ญํ ์ ํ๋ค. ์ฌ๋ ํผ๋ถ๋ ๋
ธํ๊ฐ ์งํ๋จ์ ๋ฐ๋ผ ์ฝ๋ผ๊ฒ๊ณผ ์๋ผ์คํด ์ฌ์ ์กฐ์ง์ด ๊ฒฝํ๋๊ณ ๋ถ์ฉ์ฑ์ด ๋๋ค. ๋ํ, ํ์๋ฃจ๋ก ์ฐ์ ์์ด ๊ฐ์ํ๊ธฐ ๋๋ฌธ์ ํผ๋ถ์ ํ๋ ฅ์ ๋
ธํ ์งํ์ ๋ฐ๋ผ ์ค์ด๋ ๋ค.
ํผ๋ถ์ ํน์ฑ์ ๋ฐ์ํ ํผ๋ถ ํฌํ
์ ๊ฐ๋ฐํ๋ ์ฐ๊ตฌ๊ฐ ๋ค์ํ ๊ด์ ์์ ์ด๋ฃจ์ด์ง๊ณ ์๋ค. ํผ๋ถ์ ๊ดํ์ ํน์ฑ, ์ํฅํ์ ํน์ฑ, ํ๋ฉด์ ํน์ฑ, ๊ธฐ๊ณ์ ํน์ฑ ๋ฑ ์ฌ๋ฌ ํน์ฑ์ ๋ชจ์ฌํ๋ ๋ชฉ์ ์ผ๋ก ๊ฐ๋ฐ๋๋ ํผ๋ถ ํฌํ
๋ค์ด ์กด์ฌํ๋ค. ๋ณธ ์ฐ๊ตฌ์์๋ ํผ๋ถ์ ํ๋ ฅ์ ์ธก์ ํ ์ ์๋ ๊ธฐ๋ฐ์ ๋ง๋ จํ๊ธฐ ์ํด ํ๋ ฅ๊ณผ ๊ด๊ณ๋ ๊ธฐ๊ณ์ ํน์ฑ์ ๋ชจ์ฌํ๋ ํผ๋ถ ํฌํ
์ ๊ฐ๋ฐํ์๋ค. ์ ์ํ ํผ๋ถ ํฌํ
์ ๋ค์ธต ๊ตฌ์กฐ๋ก ๊ฐ ์ธต์ ๊ธฐ๊ณ์ ํน์ฑ์ ๋ฐ์ํ๊ณ ์์ผ๋ฉฐ, ์งํผ ํฌํ
์ ๋ค๊ณต์ฑ ๊ตฌ์กฐ๋ฅผ ๊ฐ์ง๊ณ ์๋ค. ๋ํ ๋ณธ ์ฐ๊ตฌ์์ ๊ฐ๋ฐํ ํผ๋ถ ํฌํ
์ ์ค์ ํผ๋ถ์ ์ ํ์ฑ ํน์ง์ ๋ชจ์ฌํ๊ณ ์๋ค.
๋ณธ ์ฐ๊ตฌ์์๋ ์ฐ์ ํผํ์ง๋ฐฉ ํฌํ
์ ์ ์ํ๊ณ , ํผ๋ถ์ ํ๋ ฅ๊ณผ ๊น์ ์ฐ๊ด์ฑ์ด ์๋ ์งํผ์ ํฌํ
์ ์ ์ํ ๋ค์, ๊ทธ ์์ ํํผ ํฌํ
์ ์ ์ํ์ฌ ๊ฒฐํฉํ๋ ๋ฐฉ๋ฒ์ผ๋ก ๋ค์ธต ๊ตฌ์กฐ์ ํผ๋ถ ํฌํ
์ ์ ์ํ์๋ค. ํผ๋ถ์ ํํผ์ ํผํ์ง๋ฐฉ์ ํ์ฑ ๋ฌผ์ง์ ํด๋นํ๋ฏ๋ก ๊ฐ ์ธต๊ณผ ๊ฐ์ ํ์ฑ ๊ณ์๋ฅผ ๊ฐ์ง๋ ์ค๋ฆฌ์ฝ์ ์ฌ์ฉํ์ฌ ํฌํ
์ ์ ์ํ์๋ค. ํํผ ํฌํ
์ ๊ฒฝ์ฐ ์ค์ ํผ๋ถ์ ํํผ๊ฐ ๋งค์ฐ ์๊ธฐ ๋๋ฌธ์ ๋๊ป๋ฅผ ์ค์ ํผ๋ถ์ ๊ฐ๊ฒ ๋ง์ถ๊ธฐ ์ํด ์คํ ์ฝํฐ๋ฅผ ์ฌ์ฉํ์ฌ ์๊ฒ ์ ์ํ์๋ค. ์ฌ๋์ ์งํผ๋ ์ ํ์ฑ ๋ฌผ์ง๋ก ์๋ ค์ ธ ์๊ธฐ ๋๋ฌธ์ ์งํผ ํฌํ
๋ํ ์ ํ์ฑ์ ๊ฐ์ง๋๋ก ์ ์ํ์๋ค. ์งํผ ๋ด ํ๋ ฅ ์ฌ์ ๊ฐ ํ๋ ์ญํ ์ ๋ชจ์ฌํ๊ธฐ ์ํด ํ์ด๋๋ก์ ค์ ๋๊ฒฐ๊ฑด์กฐํ์์ผ๋ฉฐ, ๋๊ฒฐ๊ฑด์กฐํ๋ ์กฐ๊ฑด์ ๋ฐ๊พธ์ด๊ฐ๋ฉฐ ์ค์ ํผ๋ถ์ ๊ฐ์ ๊ณต๊ทน์ ํฌ๊ธฐ๋ฅผ ๊ฐ๋๋ก ์ ์ํ์๋ค. ๋๊ฒฐ๊ฑด์กฐํ ํ์ด๋๋ก์ ค ์์ ์ก์ฒด๋ฅผ ์ฃผ์
ํ์ฌ ์์ฑ๋ ์งํผ ํฌํ
์ด ์ ํ์ฑ์ ๊ฐ๋๋ก ํ์๋ค.
์ฌ๋ ํผ๋ถ์ ํ๋ ฅ์ ์ธก์ ํ๋ ์ ์ดํ ๊ธฐ์ ๋ก๋ ๋ค์์ ๋ค ๊ฐ์ง ๋ํ์ ์ธ ๊ธฐ์ ์ด ์๋ค. ์ฒซ ๋ฒ์งธ๋ ํ์ ์ฃผ์์ ๋ ํด๋น ๋ณ์๋ฅผ ์ธก์ ํ๋ ๋ฐฉ๋ฒ์ด๊ณ ๋ ๋ฒ์งธ๋ ์ ๊ทน์ ์ฌ์ฉํ์ฌ ์ ํญ์ ์ธก์ ํ๋ ๋ฐฉ๋ฒ์ด๋ฉฐ, ์ธ ๋ฒ์งธ๋ ์์์ ์ฃผ์ด ๋ณ์๋ฅผ ์ธก์ ํ๋ ๋ฐฉ๋ฒ์ด๊ณ ๋ง์ง๋ง์ผ๋ก ์ด๋ฏธํฐ๊ฐ ๋ถ ํ๋์ ๋ฆฌ์๋ฒ๊ฐ ๋ถ์ํ๋ ๋ฐฉ๋ฒ์ด๋ค. ๊ทธ์ค ๋ณธ ์ฐ๊ตฌ์์๋ ์ฒซ ๋ฒ์งธ ๊ธฐ์ ์ ์ฌ์ฉํ์์ผ๋ฉฐ ๊ตฌํ ํ๋ก๋ธ๋ก ์๋ ฅ ์ํ ์ํ์ ์งํํ์ฌ ์ ํ์ฑ์ ๋ถ์ํ์๋ค. ํฌํ
์ผ๋ก ์คํํ๊ธฐ ์ ๋ํผ๋ก ์คํ์ ํ ๊ฒฐ๊ณผ ํผ๋ถ๋ ๋ ๊ฐ์ ์ง์์ ๊ฐ์ ํจ์์ ํฉ์ผ๋ก ๋ํ๋ผ ์ ์์ด์ผ ํจ์ ํ์ธํ์๊ณ , ์ ์ํ ํฌํ
๋ํ ๋ํผ ์ธก์ ๊ฒฐ๊ณผ์ ์ ๋ง๋ ๊ฒ์ ํ์ธํ์๋ค.
ํผ๋ถ ํฌํ
์ ์ ์ ๊ณผ์ ์ ๋จ๊ณ๋ณ๋ก ์ ์ ์กฐ๊ฑด์ ๋ฐ๋ผ ์๋ ฅ ์ํ ์ํ ๊ฒฐ๊ณผ๊ฐ ๋ฌ๋ผ์ง๋ฉฐ ๋ณธ ์ฐ๊ตฌ์์ ์ด๋ฅผ ๋ถ์ํ์๋ค. ์ ค๋ผํด ๋๋๊ฐ ์ฆ๊ฐํ ์๋ก ์ผ๋ฐํ๋ ๋งฅ์ค์ฐ ๋ชจ๋ธ์์ ํ์ฑ์ ํด๋นํ๋ ๊ณ์๋ค์ด ์ฆ๊ฐํ๋ค. ํฌํ
๋ด ์ก์ฒด์ ์ ์ฑ์ด ์ฆ๊ฐํ๋ฉด ์์์๋ค์ด ์ฆ๊ฐํ๋ค. ์ด ๊ฒฐ๊ณผ๋ค์ ํ์ฉํ์ฌ ๋ณธ ์ฐ๊ตฌ์์ ๊ฐ๋ฐํ ํผ๋ถ ํฌํ
์ ์ค์ ํผ๋ถ์ ํ๋ ฅ๊ณผ ๊ด๋ จ์ด ์๋ ์์๋ค์ ๋ณํ๋ฅผ ๋ฐ์ํ ์ ์๋ค.
ํผ๋ถ ํฌํ
์ ๊ฐ๋ฐ์ ์ ๋ขฐ์ฑ ์๋ ํ๋ ฅ ์ธก์ ๊ธฐ๊ธฐ ๊ฐ๋ฐ์ ๋ฐ๋ฐํ์ด ๋๋ค. ๊ธฐ์กด์ ํ๋ ฅ ์ธก์ ๊ธฐ๊ธฐ์๋ ๋ค๋ฅด๊ฒ ์ฝ๋ผ๊ฒ, ์๋ผ์คํด ๋ฑ ํผ๋ถ์ ํ๋ ฅ์ ์ํฅ์ ์ฃผ๋ ์์๋ค์ ๊ตฌ๋ถํ์ฌ ์ธก์ ํ ์ ์๋ค๋ฉด ์ด๋ ํผ๋ถ์ ํ๋ ฅ์ ์ธก์ ํ๋ ๋ฐฉ๋ฒ์ ์๋กญ๊ฒ ํ์คํํ ์ ์๋ ๊ธฐํ์ด ๋ ๊ฒ์ด๋ค. ํฅํ์๋ ์ด๋ฅผ ๊ธฐ๋ฐ์ผ๋ก ๊ณ ๊ฐ์๊ฒ ํผ๋ถ ๋ถ์ ๊ฒฐ๊ณผ๋ฅผ ๋ฐํ์ผ๋ก ํผ๋ถ ๊ณ ๋ฏผ์ ๋ํ ๋ง์ถค ํด๊ฒฐ ๋ฐฉ์์ ์ ์ํ ์ ์์ ๊ฒ์ด๋ค.The skin consists of three layers: epidermis, dermis, and subcutaneous fat, each with different physical properties. Research about the skin phantom that reflects these skin characteristics is being conducted from various perspectives. There are skin various phantoms each stimulating properties such as acoustic properties, surface properties, optical properties, and mechanical properties of the skin. In this study, among those properties, skin phantom that mimic mechanical properties of each layer of the skin is developed. Skin phantom developed in this study has a multi-layered structure, and the dermis phantom has porous structure. In addition, it stimulates the viscoelastic properties of real skin. The development of skin phantom will become the basis for the development skin elasticity measurement device in the future. Unlike conventional elasticity measuring devices, factors that affect skin elasticity, such as collagen and elastin, can be measured separately, and this would lead a new way to measure the elasticity of the skin. In the future, this result and development of skin phantom will provide customized solutions to skin problems to customers based on skin analysis.์ 1 ์ฅ ์ ๋ก 1
์ 1 ์ ํผ๋ถ์ ๊ตฌ์กฐ 1
์ 2 ์ ํผ๋ถ์ ๋
ธํ 2
์ 2 ์ฅ ํผ๋ถ ํฌํ
์ ์ ์ 3
์ 1 ์ ํํผ์ ํผํ์ง๋ฐฉ ํฌํ
์ ์ ์ 3
์ 2 ์ ์งํผ ํฌํ
์ ์ ์ 9
์ 3 ์ ํผ๋ถ ํฌํ
์ ์ ์ 14
์ 3 ์ฅ ํผ๋ถ์ ๊ธฐ๊ณ์ ํน์ฑ์ ์ธก์ 16
์ 1 ์ ํผ๋ถ์ ํ๋ ฅ ์ธก์ 16
์ 2 ์ ์ํ ์ํ 18
์ 3 ์ ์๋ ฅ ์ํ ์ํ 20
์ 4 ์ ํผ๋ถ ํฌํ
์ ๊ธฐ๊ณ์ ํน์ฑ 26
์ 4 ์ฅ ํผ๋ถ์ ํ๋ ฅ ์์ ๋ถ์ 28
์ 1 ์ ์งํผ ํฌํ
๊ตฌ์ฑ ๋ฌผ์ง ํจ๋์ ๋ฐ๋ฅธ ํ๋ ฅ ๋ถ์ 28
์ 2 ์ ์งํผ ํฌํ
๋ด๋ถ ์ก์ฒด์ ๋ฐ๋ฅธ ํ๋ ฅ ๋ถ์ 30
์ 5 ์ฅ ๊ฒฐ ๋ก 32
์ฐธ๊ณ ๋ฌธํ 33
Abstract 35
ํ ๋ชฉ์ฐจ
[ํ 1] ํฌ์์ ๋ฅผ ์ฒจ๊ฐํ ํด๋ฆฌ๋จธ์ ์ฒจ๊ฐํ์ง ์์ ํด๋ฆฌ๋จธ์ ์๋ฅ 6
๊ทธ๋ฆผ ๋ชฉ์ฐจ
[๊ทธ๋ฆผ 1] ํด๋ฆฌ๋จธ ์ข
๋ฅ๋ณ ์ธ์ฅ ์ํ ๊ฒฐ๊ณผ 5
[๊ทธ๋ฆผ 2] ํํผ ํฌํ
ํด๋ฆฌ๋จธ์ ์ธ์ฅ ์ํ ๊ฒฐ๊ณผ 7
[๊ทธ๋ฆผ 3] ์คํ ์ฝํ
์๊ฐ์ ๋ฐ๋ฅธ ํํผ ํฌํ
ํด๋ฆฌ๋จธ์ ๋๊ป 8
[๊ทธ๋ฆผ 4] ๋๊ฒฐ๊ฑด์กฐ ํ ์งํผ ํฌํ
์ ํ๋ฏธ๊ฒฝ ์ฌ์ง 11
[๊ทธ๋ฆผ 5] (a) -10oC์์ ๋๊ฒฐ (b) -40oC์์ ๋๊ฒฐํ ์ ค๋ผํด ํ์ด๋๋ก์ ค์ SEM ์ฌ์ง 12
[๊ทธ๋ฆผ 6] ์งํผ ํฌํ
์ ์ ๊ณผ์ 13
[๊ทธ๋ฆผ 7] ํผ๋ถ ํฌํ
๊ฒฐํฉ ๊ณผ์ ๋ฐ ์ ์ํ ํผ๋ถ ํฌํ
15
[๊ทธ๋ฆผ 8] ํ๋ก๋ธ ๋ชจ์ ๋ณ PDMS ์ํ ์คํ ๊ฒฐ๊ณผ์ Hertz ์ ์ด ์ด๋ก ๊ณผ์ ๋น๊ต 19
[๊ทธ๋ฆผ 9] ๋ํผ์ ์๋ ฅ ์ํ ์ํ ๊ฒฐ๊ณผ 22
[๊ทธ๋ฆผ 10] Generalized Maxwell ๋ชจ๋ธ 23
[๊ทธ๋ฆผ 11] ๋ํผ์ ์๋ ฅ ์ํ ์ํ ๊ฒฐ๊ณผ 24
[๊ทธ๋ฆผ 12] ๋ํผ ์๋ ฅ ์ํ ์ํ ๊ฒฐ๊ณผ์ ํผํ
๊ฒฐ๊ณผ 25
[๊ทธ๋ฆผ 13] ํผ๋ถ ํฌํ
์๋ ฅ ์ํ ์ํ ๊ฒฐ๊ณผ์ ํผํ
๊ฒฐ๊ณผ 27
[๊ทธ๋ฆผ 14] ์ ค๋ผํด ๋๋์ ๋ฐ๋ฅธ ํ๋ ฅ ๊ด๋ จ ๋ณ์๋ค 29
[๊ทธ๋ฆผ 15] ์ฒจ๊ฐ ์ก์ฒด์ ์ ์ฑ์ ๋ฐ๋ฅธ ์์์ ๋ณํ 31์
- โฆ