104 research outputs found

    ๊ตฌ๊ฐ• ํŽธํ‰์ƒํ”ผ์„ธํฌ์•”์ข…์—์„œ C/EBP Homologous protein์„ ํ†ตํ•œ ์ž๊ฐ€ํฌ์‹๊ณผ ์„ธํฌ์‚ฌ๋ฉธ์„ ์œ ๋„ํ•˜๋Š” ์ƒ๊ฐ•์ถ”์ถœ๋ฌผ ๋ฐ ์ƒ๋ฆฌํ™œ์„ฑ๋ฌผ์งˆ์˜ ํ•ญ์•” ํšจ๋Šฅ์— ๊ด€ํ•œ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ์น˜๊ณผ๋Œ€ํ•™ ์น˜์˜๊ณผํ•™๊ณผ, 2022. 8. ์กฐ์„ฑ๋Œ€.Background: Rhizomes of Zingiber officinale (Z. officinale) display anti-oxidant, anti-inflammatory, anti-ulcer, and anti-tumor properties. I examined the effects of an ethanol extract of Z. officinale rhizomes (ZOE) against human oral squamous cell carcinoma (OSCC) in vitro and identified the components responsible for its pharmacological activity. Methods: I performed a Cell Counting Kit-8, soft agar, and trypan blue exclusion assays to examine the growth inhibitory effect of ZOE in human OSCC cell lines. ZOE-induced apoptosis in human OSCC cell lines was determined by DAPI staining, measurement of the sub-G1 population, annexin V/PI double staining, and western blot analysis. I measured the effect of ZOE on autophagy and autophagic flux by microscopic analysis. High-performance liquid chromatography (HPLC) analysis was used to identify the active components of ZOE. Results: ZOE exhibited an anti-proliferative effect on human OSCC cells and induced apoptosis as evidenced by increased cleaved PARP levels and apoptotic cells by fluorescence staining and flow cytometric analysis. ZOE treatment also induced LC3-II conversion, increased formation of autophagosomes or autolysosomes, and accumulation of endogenous LC3 puncta. However, ZOE disrupted autophagic flux by blocking lysosomal acidification, which was similar to that of chloroquine, a late autophagy inhibitor. Furthermore, ZOE simultaneously induced autophagy initiation and apoptosis induction through the accumulation of C/EBP homologous protein (CHOP), an endoplasmic reticulum (ER) stress marker protein. An HPLC analysis of ZOE revealed that 1-dehydro-6-gingerdione and 8-shogaol were the active components, which were sufficient to induce autophagy initiation and apoptosis induction by enhancing CHOP expression. Conclusion: The results suggest that ZOE and its two active components target CHOP, initiate autophagy and apoptosis, and may be useful therapeutics against human OSCC.1. ๋ชฉ์ : ์ƒ๊ฐ•์ถ”์ถœ๋ฌผ ๋ฐ ์ฃผ์š” ์ƒ๋ฆฌํ™œ์„ฑ๋ฌผ์งˆ์€ ์—ฌ๋Ÿฌ ์•”์ข…์—์„œ ๋‹ค์–‘ํ•œ ๋งค์ปค๋‹ˆ์ฆ˜์„ ํ†ตํ•ด ํ•ญ์•” ํšจ๋Šฅ์„ ๋ณด์ด๋Š” ๊ฒƒ์œผ๋กœ ์•Œ๋ ค์ ธ ์žˆ๋‹ค. ํ•˜์ง€๋งŒ ๊ตฌ๊ฐ• ํŽธํ‰์ƒํ”ผ์„ธํฌ์•”์ข…์—์„œ ์ด๋“ค์˜ ํ•ญ์•” ํšจ๋Šฅ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋Š” ํ˜„์žฌ๊นŒ์ง€ ๋ฏธ๋ฏธํ•œ ์‹ค์ •์ด๋‹ค. ๋”ฐ๋ผ์„œ, ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ตฌ๊ฐ• ํŽธํ‰์ƒํ”ผ์„ธํฌ์•”์ข… ์„ธํฌ์ฃผ์—์„œ ์ž๊ฐ€ํฌ์‹ (autophagy) ๋ฐ ์„ธํฌ์‚ฌ๋ฉธ (apoptosis)์„ ์œ ๋„ํ•˜๋Š” ์ƒ๊ฐ•์ถ”์ถœ๋ฌผ๊ณผ ์ฃผ์š” ์ƒ๋ฆฌํ™œ์„ฑ๋ฌผ์งˆ์ธ 1-dehydro-6-gingerdione ๋ฐ 8-shogaol์˜ ํ•ญ์•” ํšจ๋Šฅ์— ๋Œ€ํ•ด ์กฐ์‚ฌํ•˜์˜€๋‹ค. 2. ์žฌ๋ฃŒ ๋ฐ ๋ฐฉ๋ฒ•: ๊ตฌ๊ฐ• ํŽธํ‰์ƒํ”ผ์„ธํฌ์•”์ข…์—์„œ ์ƒ๊ฐ•์ถ”์ถœ๋ฌผ ๋ฐ ์ƒ๋ฆฌํ™œ์„ฑ๋ฌผ์งˆ์˜ ์„ธํฌ์‚ฌ๋ฉธ์— ๋Œ€ํ•œ ํšจ๋Šฅ์€ cleaved PARP ๋‹จ๋ฐฑ์งˆ์˜ ๊ฒ€์ถœ, DAPI ์—ผ์ƒ‰, sub-G1 ๋ถ„์„ ๋˜๋Š” Annexin V/PI double staining์„ ํ†ตํ•ด ํ‰๊ฐ€๋˜์—ˆ๋‹ค. ์ƒ๊ฐ•์ถ”์ถœ๋ฌผ ๋ฐ ์ƒ๋ฆฌํ™œ์„ฑ๋ฌผ์งˆ์˜ ์ž๊ฐ€ํฌ์‹์— ๋Œ€ํ•œ ํšจ๋Šฅ์€ LC3-โ…ก ๋‹จ๋ฐฑ์งˆ์˜ ๊ฒ€์ถœ, ํˆฌ๊ณผ์ „์žํ˜„๋ฏธ๊ฒฝ ๊ด€์ฐฐ, acidic vesicular organelle ๋˜๋Š” LC3 puncta ํ˜•์„ฑ์„ ๊ด€์ฐฐํ•จ์œผ๋กœ์จ ํ‰๊ฐ€๋˜์—ˆ๋‹ค. ๋˜ํ•œ, ์ƒ๊ฐ•์ถ”์ถœ๋ฌผ์˜ ์ž๊ฐ€ํฌ์‹ ์œ ๋™ (autophagic flux)์— ๋Œ€ํ•œ ํšจ๋Šฅ์€ ์ž๊ฐ€ํฌ์‹ ์–ต์ œ์ œ์ธ ํด๋กœ๋กœํ€ธ (Chloroquine)์„ ๋ณ‘์šฉํˆฌ์—ฌ ํ•œ ํ›„, LC3-โ…ก ๋‹จ๋ฐฑ์งˆ ๊ฒ€์ถœ, LC3 puncta ํ˜•์„ฑ ๋ฐ mCherry-GFP-LC3 ํ˜•๊ด‘๋ฒกํ„ฐ๋ฅผ ์‚ฌ์šฉํ•จ์œผ๋กœ์จ ์ฆ๋ช…๋˜์—ˆ๋‹ค. ์†Œํฌ์ฒด ์ŠคํŠธ๋ ˆ์Šค (ER stress)๋Š” C/EBP Homologous protein (CHOP)์˜ ๊ฒ€์ถœ์„ ํ†ตํ•ด ํ™•์ธ๋˜์—ˆ๋‹ค. ์ƒ๊ฐ•์ถ”์ถœ๋ฌผ์˜ ์ƒ๋ฆฌํ™œ์„ฑ๋ฌผ์งˆ์€ gas chromatography/mass spectrometry (GC/MS)๋ฅผ ํ†ตํ•ด ํ™•์ธ ๋ฐ ๋ถ„๋ฆฌ๋˜์—ˆ๋‹ค. 3. ๊ฒฐ๊ณผ ๋ฐ ๊ณ ์ฐฐ: ์ƒ๊ฐ•์ถ”์ถœ๋ฌผ๊ณผ ์ฃผ์š” ์ƒ๋ฆฌํ™œ์„ฑ๋ฌผ์งˆ์ธ 1-dehydro-6-gingerdione ๋ฐ 8-shogaol์€ ๊ตฌ๊ฐ• ํŽธํ‰์ƒํ”ผ์„ธํฌ์•”์ข… ์„ธํฌ์ฃผ์—์„œ ์„ธํฌ์ฆ์‹์„ ์–ต์ œํ•˜์˜€๋‹ค. ์ƒ๊ฐ•์ถ”์ถœ๋ฌผ์€ cleaved PARP ๋‹จ๋ฐฑ์งˆ์˜ ๋ฐœํ˜„์„ ์ฆ๊ฐ€์‹œํ‚ค๊ณ , ํ•ต ์‘์ถ•๊ณผ DNA ๋ถ„์ ˆ์„ ์œ ๋„, sub-G1 population ๋ฐ Annexin V-stained population์„ ์ฆ๊ฐ€์‹œํ‚ค๋Š” ๊ฒƒ์„ ํ†ตํ•ด์„œ ์„ธํฌ์‚ฌ๋ฉธ์ด ์œ ๋„๋˜์—ˆ์Œ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋˜ํ•œ ์ƒ๊ฐ•์ถ”์ถœ๋ฌผ์€ LC3-II ๋‹จ๋ฐฑ์งˆ์˜ ๋ฐœํ˜„์„ ์ฆ๊ฐ€์‹œํ‚ฌ ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ, ์ด์ค‘ ๋ง‰ ๊ตฌ์กฐ๋ฅผ ๊ฐ€์ง„ ์ž๊ฐ€์‹ํฌ (autophagosome)์˜ ํ˜•์„ฑ, acidic vesicular organelle ๋ฐ LC3 puncta ํ˜•์„ฑ์„ ์ฆ๊ฐ€์‹œํ‚ด์œผ๋กœ์จ ์ž๊ฐ€ํฌ์‹์„ ์œ ๋„ํ•˜์˜€์œผ๋ฉฐ, ์ด๋Š” ์ž๊ฐ€ํฌ์‹ ์œ ๋™ ์–ต์ œ๊ฐ€ ๊ด€๋ จ๋˜์–ด ์žˆ์Œ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๊ตฌ๊ฐ• ํŽธํ‰์ƒํ”ผ์„ธํฌ์•”์ข…์—์„œ ์ƒ๊ฐ•์ถ”์ถœ๋ฌผ์˜ ์ž๊ฐ€ํฌ์‹ ๋ฐ ์„ธํฌ์‚ฌ๋ฉธ์— ๋Œ€ํ•œ ํšจ๋Šฅ์€ ์†Œํฌ์ฒด ์ŠคํŠธ๋ ˆ์Šค ๊ด€๋ จ ๋‹จ๋ฐฑ์งˆ์ธ CHOP์˜ ์ฆ๊ฐ€๋ฅผ ํ†ตํ•ด ์ดˆ๋ž˜๋จ์„ ํ™•์ธํ•˜์˜€๋‹ค. Gas chromatography/mass spectrometry๋ฅผ ํ†ตํ•ด ์ƒ๊ฐ•์ถ”์ถœ๋ฌผ์˜ ์ฃผ์š” ์ƒ๋ฆฌํ™œ์„ฑ๋ฌผ์งˆ์ธ 1-dehydro-6-gingerdione ๋ฐ 8-shogoal์„ ๋ถ„๋ฆฌํ•˜์˜€๊ณ , ์ด ์ฃผ์š” ์ƒ๋ฆฌํ™œ์„ฑ๋ฌผ์งˆ์ด CHOP์˜ ๋ฐœํ˜„์„ ์ฆ๊ฐ€์‹œํ‚ด์œผ๋กœ์จ ์ž๊ฐ€ํฌ์‹ ๋ฐ ์„ธํฌ์‚ฌ๋ฉธ์„ ์œ ๋„ํ•  ์ˆ˜ ์žˆ๋Š” ์ƒ๊ฐ•์ถ”์ถœ๋ฌผ์˜ ํ•ญ์•” ํšจ๋Šฅ์— ๊ธฐ์—ฌํ•˜๋Š” ์œ ํšจ ์„ฑ๋ถ„์ผ ๊ฐ€๋Šฅ์„ฑ์ด ์žˆ์Œ์„ ํ™•์ธํ•˜์˜€๋‹ค.Abstract in English 1 1. Introduction 5 2. Materials & Methods 8 3. Results & Figures 21 4. Discussion 54 5. Conclusion 58 6. References 59 Abstract in Korean 64์„

    'ํƒ‘์Šน์ž'์˜ ๊ด€์ ์˜ ์‹œ๊ฐ„, ์œ„์น˜ ๊ธฐ๋ฐ˜ ์ฐจ๋Ÿ‰ ํด๋Ÿฌ์Šคํ„ฐ UI ๋””์ž์ธ ํ”„๋ ˆ์ž„ ์ œ์•ˆ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๋ฏธ์ˆ ๋Œ€ํ•™ ๋””์ž์ธํ•™๋ถ€ ๋””์ž์ธ์ „๊ณต,2019. 8. ์ •์˜์ฒ .One important design issue is the examination of how the user interface (UI) supports the new user role in future mobility. However, there are few design studies on the passengers cognitive needs and behavior in Autonomous Vehicles (AVs) based on empirical data. There is no doubt that autonomous mobility technologies are growing. The technology is already aiding the driving experience, and it will change the mobility culture and the transition of driver into passenger. This study is based on the premise that future AV is capable of performing all driving tasks. It proposes a set of passenger-centered automotive cluster UI designs for future mobility employing two factors: time and path. A set of empirical data is provided to understand the passengers perspective. In this study, a solid set of empirical data on the cognitive needs of passengers is collected. Human cognitive characteristics and driving tasks are investigated from various viewpoints to understand the passengers iii perspective. The cognitive relationship in the driving environment is analyzed through a literature review on situation awareness (SA) and structuring of the data flow framework. The framework is further explored by connecting the technological role transformation to the passenger. To construct the empirical database on the passenger, three sets of user tests and in-depth interviews were undertaken. The user tests were designed employing the Wizard of Oz method, and the results were summarized using descriptive and exploratory analysis. Based on these insights, a set of UI designs from the perspective of the passenger was proposed, and usability tests were conducted to verify its effectiveness and usability. The results of the tests demonstrate that a major percentage of the information request was related to time (current time and duration) and path (vehicle location and surroundings). Based on the data, a UI framework was built. Two usage scenarios were designed, time-full and time-less, for better in-situation comprehension. Time- and path-based UI were proposed to flow with the scenarios. A usability test was conducted, and a passengers cognitive framework was defined. There are two aspects to this study: the data flow frameworks of the driver/passenger, and the UI design proposal. Situational precision from the perspective of the driver was analyzed to understand the relationship between the user, the vehicle and the road conditions. Further, the cognitive framework of the passenger was proposed based on the data. This study provides a solid understanding of drivers emerging needs when they are relieved of the cognitive burden of driving tasks. The UI features for AV are introduced based on the empirical data and research related to the provision of better situation awareness, focusing on time and location. This study contributes to the extant literature by observing the iv perspective of passengers in Autonomous vehicles based on a qualitative study. The proposed UI design will be further explored as a communication method between the system and the passive user in future mobility.์‚ฌ์šฉ์ž ์ธํ„ฐํŽ˜์ด์Šค๊ฐ€ (UI) ๋ฏธ๋ž˜ ์ด๋™์„ฑ์—์„œ ์ƒˆ๋กœ์šด ์‚ฌ์šฉ์ž ์—ญํ• ์„ ์ง€์ง€ํ•˜๋Š” ๋””์ž์ธ ๋„์ถœ์€ ๋ฏธ๋ž˜ ์ด๋™์„ฑ ๋ถ„์•ผ์—์„œ ์ค‘์š”ํ•œ ๋””์ž์ธ ์ด์Šˆ์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์‚ฌ์šฉ์ž ์‹คํ—˜์— ๊ทผ๊ฑฐํ•˜์—ฌ ์ž์œจ์ฃผํ–‰์ฐจ๋Ÿ‰ (AV) ์˜ ํƒ‘์Šน์ž์ธ์ง€ ์š•๊ตฌ์™€ ํ–‰๋™์— ๋Œ€ํ•œ ๋””์ž์ธ ์—ฐ๊ตฌ๋Š” ๋ฏธ๋ฏธํ•˜๋‹ค. ์ž์œจ์ฃผํ–‰์ด ๊ธฐ์ˆ ์˜ ๋ฐœ์ „๊ณผ ๊ทธ ์˜์—ญ์€ ์ ์ฐจ ๋„“์–ด์ง€๊ณ  ์žˆ๋‹ค. ํ•ด๋‹น ๊ธฐ์ˆ ์€ ์ด๋ฏธ ์šด์ „ ํ™˜๊ฒฝ์— ์ ์šฉ๋˜๊ณ  ์žˆ์œผ๋ฉฐ, ์ด๋กœ ์ธํ•ด ๋ฏธ๋ž˜ ์ด๋™๋ฌธํ™”์—์„œ ์‚ฌ์šฉ์ž์˜ ์—ญํ• ์€ '์šด์ „์ž'์—์„œ 'ํƒ‘์Šน์ž'๋กœ ๋ณ€ํ™”ํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ๋ฏธ๋ž˜ ์ž์œจ์ฃผํ–‰์ฐจ๋Ÿ‰์ด ๋ชจ๋“  ์šด์ „ ์ƒํ™ฉ์— ๋Œ€์ฒ˜ํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ์ „์ œ๋กœ ํ•œ๋‹ค. ์‚ฌ์šฉ์ž ์‹คํ—˜์„ ํ†ตํ•ด ํƒ‘์Šน์ž์˜ ๊ด€์ ์— ๋Œ€ํ•œ ๋ถ„์„์„ ์ง„ํ–‰ํ•˜์˜€๊ณ , ์ด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ๋ฏธ๋ž˜ ๋ชจ๋นŒ๋ฆฌํ‹ฐ ํ™˜๊ฒฝ์— ์ ์šฉ๋  ์‚ฌ์šฉ์ž ์ธํ„ฐํŽ˜์ด์Šค๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ์ œ์•ˆ๋œ ๋””์ž์ธ์€ ์šด์ „์ž ์ค‘์‹ฌ์˜ ์ƒํ™ฉ์ธ์ง€์—์„œ ๋ฒ—์–ด๋‚˜ ํƒ‘์Šน์ž ์ค‘์‹ฌ ์ธ์ง€ ์ •๋ณด ์š”์†Œ๋ฅผ ๋ถ„์„ํ•˜์˜€๊ณ , ์‹œ๊ฐ„๊ณผ ๊ฒฝ๋กœ ๋‘ ๊ฐ€์ง€ ์š”์†Œ๋ฅผ ๊ฐ•์กฐํ•œ UI ๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ ํƒ‘์Šน์ž์˜ ์ธ์ง€ ์ •๋ณด ์š”๊ตฌ์— ๋Œ€ํ•œ ์‹คํ—˜์  ๋ฐ์ดํ„ฐ๋ฅผ ์ˆ˜์ง‘ํ•˜์˜€๋‹ค. ํƒ‘์Šน์ž์˜ ๊ด€์ ์„ ์ดํ•ดํ•˜๊ธฐ ์œ„ํ•ด ๋‹ค์–‘ํ•œ ๊ด€์ ์—์„œ ์ธ๊ฐ„์˜ ์ธ์ง€์  ํŠน์„ฑ ๋ฐ ์šด์ „ ํƒœ์Šคํฌ๋ฅผ ๊ด€์ฐฐํ•˜์˜€๊ณ , ์ƒํ™ฉ์ธ์ง€ (SA) ์— ๊ด€ํ•œ ๋ฌธํ—Œ ์—ฐ๊ตฌ์™€ ๋ฐ์ดํ„ฐ ํ”„๋ ˆ์ž„์›Œํฌ ๊ตฌ์กฐํ™”๋ฅผ ํ†ตํ•ด ์šด์ „ ํ™˜๊ฒฝ์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์ธ์ง€์  ์š”์†Œ ๊ด€๊ณ„๋ฅผ ๋ถ„์„ํ•˜์˜€๋‹ค. ์ œ์•ˆ๋œ ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ๊ธฐ์ˆ  ๋ณ€ํ™”์— ๋”ฐ๋ผ ์šด์ „์ž๊ฐ€ ํƒ‘์Šน์ž๋กœ ๋ณ€ํ™”๋˜์—ˆ์„ ๋•Œ ์šด์ „ ํ™˜๊ฒฝ์—์„œ์˜ ๋ฐ์ดํ„ฐ ๊ด€๊ณ„ ๋ณ€ํ™”๋ฅผ ์‹œ๊ฐ์ ์œผ๋กœ ๊ตฌ์กฐํ™”ํ•˜์—ฌ ์‹ฌ์ธต์ ์œผ๋กœ ํƒ๊ตฌ๋˜์—ˆ๋‹ค. ํƒ‘์Šน์ž์˜ ์ธ์ง€ ๋‹ˆ์ฆˆ ๋Œ€ํ•œ ์‹คํ—˜์  ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค๋ฅผ ์ˆ˜์ง‘ํ•˜๊ธฐ ์œ„ํ•ด ์ด 3 ์„ธํŠธ์˜ ์œ ์ € ํ…Œ์ŠคํŠธ์™€ ์‹ฌ์ธต ์ธํ„ฐ๋ทฐ๊ฐ€ ์ˆ˜๋ฐ˜๋˜์—ˆ๋‹ค. ์œ ์ € ํ…Œ์ŠคํŠธ๋Š” Wizard of Oz ๋ฐฉ๋ฒ•์„ ์‚ฌ์šฉํ•˜์—ฌ ์„ค๊ณ„๋˜์—ˆ์œผ๋ฉฐ ์‹คํ—˜ ๊ฒฐ๊ณผ๋Š” ์งˆ์  ์—ฐ๊ตฌ๋ฐฉ๋ฒ•๋ก ์˜ ๋ถ„์„ ๋ฐฉ๋ฒ•์„ ํ†ตํ•ด ๋ถ„์„๋˜์—ˆ๋‹ค. ์‹คํ—˜์„ ํ†ตํ•ด ์–ป์€ ์ธ์‚ฌ์ดํŠธ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ํƒ‘์Šน์ž ๊ด€์ ์—์„œ UI ๋””์ž์ธ์„ ์ œ์•ˆํ•˜๊ณ  ์‚ฌ์šฉ์„ฑ ํ…Œ์ŠคํŠธ๋ฅผ ํ†ตํ•ด ํšจ์œจ์„ฑ๊ณผ ์œ ์šฉ์„ฑ์„ 5 ์  ๋ฆฌ ์ปคํŠธ ์Šค์ผ€์ผ๋กœ์จ ๊ฒ€์ฆํ•˜์˜€๋‹ค. ์‹คํ—˜ ๊ฒฐ๊ณผ์— ๋”ฐ๋ฅด๋ฉด ํƒ‘์Šน์ž๊ฐ€ ์š”์ฒญํ•œ ์ธ์ง€ ์ •๋ณด๋Š” ์‹œ๊ฐ„ (ํ˜„์žฌ ์‹œ๊ฐ ๋ฐ ๊ธฐ๊ฐ„)๊ณผ ๊ฒฝ๋กœ (์ฐจ๋Ÿ‰ ์œ„์น˜ ๋ฐ ์ฃผ๋ณ€ ํ™˜๊ฒฝ)์— ์ง‘์ค‘๋œ ๊ฒƒ์„ ๊ด€์ฐฐํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์ด์™€ ๊ฐ™์€ ๋ฐ์ดํ„ฐ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ UI ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ๊ตฌ์„ฑํ•˜์˜€๋‹ค. ์ƒํ™ฉ ์†์˜ ์‚ฌ์šฉ๋ก€๋ฅผ ์ œ์‹œํ•˜๊ธฐ ์œ„ํ•˜์—ฌ๋„ ๊ฐ€์ง€ time-full ๊ณผ time-less ์˜ ์‚ฌ์šฉ ์‹œ๋‚˜๋ฆฌ์˜ค๋ฅผ ๊ตฌ์ถ•ํ•˜๊ณ , ์ œ์•ˆ๋œ ์‹œ๋‚˜๋ฆฌ์˜ค์— ๋”ฐ๋ผ ์‹œ๊ฐ„๊ณผ ์œ„์น˜์— ๊ธฐ๋ฐ˜ํ•œ UI ๋ฅผ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ œ์•ˆ๋œ UI ์— ๋Œ€ํ•œ ์‚ฌ์šฉ์„ฑ ํ…Œ์ŠคํŠธ๋ฅผ ์ง„ํ–‰ํ•˜์˜€๊ณ , ํƒ‘์Šน์ž ๊ด€์ ์—์„œ์˜ ์šด์ „์ƒํ™ฉ ์ธ์ง€ ์›Œํฌ ํ”„๋ ˆ์ž„์„ ์™„์„ฑํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์˜ ๊ฐ€์น˜๋Š” ๋‘ ๊ฐ€์ง€๋กœ ์ •๋ฆฌ๋  ์ˆ˜ ์žˆ๋‹ค. ํ•˜๋‚˜๋Š” ์šด์ „์ž / ํƒ‘์Šน์ž์˜ ๋ฐ์ดํ„ฐ ํ”Œ๋กœ์šฐ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์•ˆํ•˜์˜€๋‹ค๋Š” ๊ฒƒ๊ณผ ๋‘ ๋ฒˆ์งธ๋Š” ํƒ‘์Šน์ž์˜ ๊ด€์ ์„ ์ง€์ง€ํ•˜๋Š” UI ๋””์ž์ธ ์ œ์•ˆ์— ์žˆ๋‹ค. ์šด์ „์ž์˜ ๊ด€์ ์—์„œ์˜ ์šด์ „ ์ƒํ™ฉ์„ ๋ถ„์„ํ•˜์—ฌ ์‚ฌ์šฉ์ž, ์ฐจ๋Ÿ‰, ๊ทธ๋ฆฌ๊ณ  ๋„๋กœ ์ƒํƒœ ๊ฐ„์˜ ๊ด€๊ณ„๋ฅผ ์‹œ๊ฐํ™”ํ•˜์˜€๊ณ , ์ด๋Š” ํƒ‘์Šน์ž์ธ์ง€ ํ”Œ๋กœ์šฐ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์•ˆํ•˜๋Š”๋ฐ ๊ธฐ์กฐ์ ์ธ ํ‹€๋กœ์จ ์‚ฌ์šฉ๋˜์—ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ์šด์ „ ํƒœ์Šคํฌ๋ฅผ ์ˆ˜ํ–‰ํ•˜๋Š” ๋ฐ์— ํ•„์š”ํ–ˆ๋˜ ์ธ์ง€ ๋ถ€๋‹ด์—์„œ ๋ฒ—์–ด๋‚ฌ์„ ๋•Œ์˜ ์šด์ „์ž๊ฐ€ ํ•„์š”๋กœ ํ•˜๋Š” ๋ณตํ•ฉ์ ์ธ ๋‹ˆ์ฆˆ์— ๋Œ€ํ•ด ๊ด€์ฐฐํ•˜๊ณ  ๋ฏธ๋ž˜ ๋ชจ๋นŒ๋ฆฌํ‹ฐ ํ™˜๊ฒฝ์— ์ ํ•ฉํ•œ UI ์˜ ๋””์ž์ธ ์š”์†Œ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋…ผ๋ฌธ์ด๋‹ค. ๋ฏธ๋ž˜ ์ž์œจ์ฃผํ–‰์ฐจ๋Ÿ‰ ์•ˆ์˜ ์‚ฌ์šฉ์ž ์ธํ„ฐํŽ˜์ด์Šค๊ฐ€ ๊ฐ–์ถ”์–ด์•ผ ํ•˜๋Š” ์š”์†Œ๋ฅผ ์‹คํ—˜์  ๋ฐ์ดํ„ฐ์— ๊ทผ๊ฑฐํ•˜์—ฌ ์ œ์‹œํ•˜๋ฉฐ, ์‹œ๊ฐ„๊ณผ ๋ฃจํŠธ๋ฅผ ๊ฐ•์กฐํ•˜์—ฌ ํ–ฅ์ƒ๋œ ์ƒํ™ฉ ์ธ์ง€๋ฅผ ์ œ๊ณตํ•˜๋Š” ๋ฐฉ๋ฒ•์— ๋Œ€ํ•œ ์‹ฌ๋„์žˆ๋Š” ๊ด€์ฐฐ์„ ๊ธฐ๋กํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ์งˆ์  ์—ฐ๊ตฌ์— ๊ธฐ์ดˆํ•œ ์ž์œจ ์ฐจ๋Ÿ‰์˜ ํƒ‘์Šน์ž ๊ด€์ ์„ ๊ด€์ฐฐํ•จ์œผ๋กœ์จ ๊ธฐ์กด ์ž์œจ์ฃผํ–‰์ด ๋””์ž์ธ ์—ฐ๊ตฌ์— ๊ธฐ์—ฌํ•  ๊ฒƒ์ด๋‹ค. ์ œ์•ˆ๋œ UI ๋””์ž์ธ ๋ฏธ๋ž˜ ์ด๋™ ์„ฑ์•ˆ์—์„œ ์‹œ์Šคํ…œ๊ณผ ํƒ‘์Šน์ž ๊ฐ„์˜ ์ปค๋ฎค๋‹ˆ์ผ€์ด์…˜ ๋ฐฉ๋ฒ•์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋กœ์จ ๊ทธ ์˜์˜๊ฐ€ ์žˆ๋‹ค.ABSTRACT ...................................................................................................................... II CHAPTER 1. INTRODUCTION......................................................................................... ๏ผ‘ 1.1. BACKGROUND ..............................................................................................................๏ผ‘ 1.2. PURPOSE .....................................................................................................................๏ผ— 1.3. RESEARCH QUESTION.....................................................................................................๏ผ˜ CHAPTER 2. LITERATURE REVIEW ..............................................................................๏ผ‘๏ผ‘ 2.1. SITATION AWARENESS (SA) ........................................................................................๏ผ‘๏ผ‘ 2.2. HUMAN INFORMATION PROCESSING MODEL..................................................................๏ผ‘๏ผ• 2.3. DRIVING SITUATION AWARENESS AND PERSPECTIVE.........................................................๏ผ’๏ผ 2.4. DRIVING TASK AND SENSORY INTERACTION ....................................................................๏ผ’๏ผ’ CHAPTER 3. COGNITIVE NEEDS IN AUTONOMOUS.....................................................๏ผ’๏ผ— 3.1. DRIVING BEHAVIOR TRANSFORMATION AND CLUSTER UI..................................................๏ผ’๏ผ— 3.2. COGNITIVE FRAMEWORK TRANSFORMATION ..................................................................๏ผ“๏ผ“ CHAPTER 4. USER TESTS ............................................................................................๏ผ“๏ผ– 4.1. WIZARD OF OZ PROTOTYPING .....................................................................................๏ผ“๏ผ˜ 4.2. PILOT TEST 1............................................................................................................๏ผ”๏ผ 4.2.1. Experiment Design & Laboratory Setting.................................................๏ผ”๏ผ 4.2.2. Persona Scenario & Task Design ..............................................................๏ผ”๏ผ’ 4.2.3. Preparation of Driving situation...............................................................๏ผ”๏ผ• 4.2.4. Procedure.................................................................................................๏ผ”๏ผ— 4.2.5. Data Analysis & Insight............................................................................๏ผ”๏ผ˜ 4.3. PILOT TEST 2............................................................................................................๏ผ•๏ผ‘ 4.3.1. Amendment: Experiment Design & Laboratory Setting ...........................๏ผ•๏ผ’ 4.3.2. Amendment: Task Scenario & Command Cue..........................................๏ผ•๏ผ” 4.3.3. Amendment: Perform Role and preparation of driving situation ............๏ผ•๏ผ— 4.3.4. Amendment: Procedure ...........................................................................๏ผ•๏ผ™ 4.3.5. Data Analysis & Insight............................................................................๏ผ–๏ผ’ 4.4. MAIN TEST ..............................................................................................................๏ผ–๏ผ• 4.4.1. Experiment Design & Laboratory setting .................................................๏ผ–๏ผ– 4.4.2. Task Design ..............................................................................................๏ผ–๏ผ™ 4.4.3. Procedure.................................................................................................๏ผ—๏ผ‘ 4.4.4. Result Analysis & Insight..........................................................................๏ผ—๏ผ” CHAPTER 5. UI CONCEPT DEVELOPMENT...................................................................๏ผ˜๏ผ‘ 5.1. UI DESIGN METHOD..................................................................................................๏ผ˜๏ผ‘ 5.2. DESIGN PROPOSAL ....................................................................................................๏ผ˜๏ผ” 5.3. USER SCENARIOS ......................................................................................................๏ผ˜๏ผ– 5.3.1 Scenario 1. Time-less: Late for a morning meeting..................................๏ผ˜๏ผ– 5.3.2 Scenario 2.Time-full: Leisure driving on weekends ..................................๏ผ™๏ผ“ CHAPTER 6. USABILITY TEST ......................................................................................๏ผ™๏ผ˜ 6.1. USABILITY TEST GUIDE ...............................................................................................๏ผ™๏ผ˜ 6.2. ASSESSMENT USABILITY TEST ..................................................................................๏ผ‘๏ผ๏ผ 6.2.1 Test planning........................................................................................๏ผ‘๏ผ๏ผ 6.2.2 Laboratory setting................................................................................๏ผ‘๏ผ๏ผ’ 6.2.3 Test conduct and debriefing.................................................................๏ผ‘๏ผ๏ผ– 6.3. RESULT ANALYSIS ..................................................................................................๏ผ‘๏ผ๏ผ– CHAPTER 7. CONCLUSION......................................................................................๏ผ‘๏ผ๏ผ— APPENDIX 1...........................................................................................................๏ผ‘๏ผ‘๏ผ APPENDIX 2...........................................................................................................๏ผ‘๏ผ‘๏ผ‘ APPENDIX 3...........................................................................................................๏ผ‘๏ผ‘๏ผ“ APPENDIX 4...........................................................................................................๏ผ‘๏ผ’๏ผ‘ APPENDIX 5...........................................................................................................๏ผ‘๏ผ’๏ผ” APPENDIX 6...........................................................................................................๏ผ‘๏ผ’๏ผ˜ APPENDIX 7...........................................................................................................๏ผ‘๏ผ“๏ผ“ BIBLIOGRAPHY ......................................................................................................๏ผ‘๏ผ“๏ผ– ๊ตญ๋ฌธ ์ดˆ๋ก ............................................................................................................๏ผ‘๏ผ”๏ผ“Maste

    ๊ณค์ถฉ๋ณ‘์›์„ฑ ๊ณฐํŒก์ด ์œ ๋ž˜ ์ง€๋ฐฉ์งˆ ํšจ์†Œ ์œ ์ „์ž์˜ ๋ฐœํ˜„๊ณผ ํŠน์„ฑ ๊ตฌ๋ช…์— ๋Œ€ํ•œ ๋น„๊ต ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๋†์—…์ƒ๋ช…๊ณผํ•™๋Œ€ํ•™ ์‘์šฉ์ƒ๋ฌผํ™”ํ•™๋ถ€, 2022.2. ์ œ์—ฐํ˜ธ.Lipase (triacylglycerol acyl hydrolase, EC 3.1.1.3)์˜ ester๊ฒฐํ•ฉ์„ ๊ฐ€์ˆ˜๋ถ„ํ•ดํ•˜์—ฌ glycerol๊ณผ fatty acid์˜ ์ƒ์„ฑ์„ ์ด‰์ง„ํ•˜๋Š” ํšจ์†Œ๋กœ์„œ, ๋™๋ฌผ๊ณผ ์‹๋ฌผ, ๋ฏธ์ƒ๋ฌผ ๋“ฑ ์ƒ๋ฌผ๊ณ„ ์ „๋ฐ˜์— ๋„๋ฆฌ ๋ถ„ํฌ๋˜์–ด ์žˆ๋‹ค. ์‚ฐ์—…์ ์œผ๋กœ ์‘์šฉ๋˜๊ณ  ์žˆ๋Š” ๋งŽ์€ ํšจ์†Œ๋“ค ๊ฐ€์šด๋ฐ ์ง€๋ฐฉ์งˆ์„ ์ง€๋ฐฉ์‚ฐ๊ณผ monoglyceride ๋กœ ๋ถ„ํ•ด์‹œํ‚ค๋Š” lipase๊ฐ€ ์ฐจ์ง€ํ•˜๋Š” ์—ญํ• ์€ ๋งค์šฐ ์ค‘์š”ํ•˜๋ฉฐ, ๊ธ‰์†ํžˆ ์„ฑ์žฅํ•˜๊ณ  ์žˆ๋Š” ์ƒ๋ฌผ ์‚ฐ์—…์—์„œ ์ฃผ๋ชฉ ๋ฐ›๊ณ  ์žˆ๋Š” ํšจ์†Œ ์ค‘ ํ•˜๋‚˜์ด๋‹ค. ๊ณค์ถฉ๋ณ‘์›์„ฑ ๊ณฐํŒก์ด์ธ ๋™์ถฉํ•˜์ดˆ ์œ ๋ž˜ lipase์—์„œ lipase์˜ ๊ฐ€์žฅ ํฐ ํŠน์ง• ์ค‘ ํ•˜๋‚˜์ธ ์œ„์น˜ ํŠน์ด์„ฑ์ด triacylglycerol์˜ 1(3)๋ฒˆ ์œ„์น˜์— ํŠน์ด์ ์œผ๋กœ ์ž‘์šฉํ•˜๋Š” ๊ฒƒ์œผ๋กœ ํŒ๋ช…๋˜๋ฉด์„œ ๋งŽ์€ ์—ฐ๊ตฌ๊ฐ€ ์š”๊ตฌ๋˜์—ˆ๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•˜์—ฌ ๊ณค์ถฉ๋ณ‘์›์„ฑ ๊ณฐํŒก์ด๋กœ๋ถ€ํ„ฐ lipase๋ฅผ ๋ถ„๋ฆฌํ•˜์—ฌ ๊ทธ ํŠน์„ฑ์„ ๊ทœ๋ช…ํ•˜๊ณ , baculovirus expression system์„ ์ด์šฉํ•˜์—ฌ ๋Œ€๋Ÿ‰๋ฐœํ˜„ ํ•  ์ˆ˜ ์žˆ๋Š” ์กฐ๊ฑด์„ ๊ตฌ์ถ•ํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค. ๊ตญ๋‚ด์—์„œ ๋ถ„๋ฆฌํ•œ ๊ณค์ถฉ ๋ณ‘์›์„ฑ ๊ณฐํŒก์ด ์ค‘ lipase ํ™œ์„ฑ์ด ๊ฐ€์žฅ ๋†’์€ ๊ท ์ฃผ๋ฅผ ์„ ๋ฐœํ•˜์˜€๋‹ค. ์„ ๋ฐœํ•œ ๊ท ์ฃผ์˜ lipase์™€ ์œ„์น˜ํŠน์ด์„ฑ์ด ์žˆ๋‹ค๊ณ  ์•Œ๋ ค์ง„ ๋™์ถฉํ•˜์ดˆ ์œ ๋ž˜ lipase๋ฅผ ๋ฒ ํ˜๋กœ๋ฐ”์ด๋Ÿฌ์Šค ๋ฐœํ˜„ ๋ฒกํ„ฐ๊ณ„ (baculovirus expression vector system)๋ฅผ ์ด์šฉํ•˜์—ฌ ์žฌ์กฐํ•ฉ ๋ฒ ํ˜๋กœ๋ฐ”์ด๋Ÿฌ์Šค๋ฅผ ๋งŒ๋“ค์—ˆ๋‹ค. ๋น„๋ถ„๋น„๋‹จ๋ฐฑ์งˆ๊ณผ ๋ถ„๋น„๋‹จ๋ฐฑ์งˆ๋กœ ๊ฐ๊ฐ ๋ฒ ํ˜๋กœ๋ฐ”์ด๋Ÿฌ์Šค๋ฅผ ๋ฐœํ˜„์‹œ์ผฐ๋‹ค. lipaseํ™œ์„ฑ์„ ๋น„๊ตํ•œ ๊ฒฐ๊ณผ ๋ถ„๋น„๋‹จ๋ฐฑ์งˆ ํ˜•ํƒœ์ผ ๋•Œ ํ™œ์„ฑ์ด ๋” ๋†’์•˜๋‹ค. ๊ณฐํŒก์ด ๋ฐฐ์–‘์•ก, ๋น„๋ถ„๋น„๋‹จ๋ฐฑ์งˆ ๊ทธ๋ฆฌ๊ณ  ๋ถ„๋น„๋‹จ๋ฐฑ์งˆ 3๊ฐ€์ง€์˜ ์กฐ๊ฑด์œผ๋กœ lipase ํ™œ์„ฑ์„ ์ธก์ •์„ ํ•ด๋ณด์•˜๋Š”๋ฐ ๋ชจ๋“  ๊ฒฐ๊ณผ๊ฐ’์—์„œ ๋™์ถฉํ•˜์ดˆ ์œ ๋ž˜ lipase๋ณด๋‹ค Beauveria bassiana JEF-351 ๊ท ์ฃผ ์œ ๋ž˜ lipase์˜ ํ™œ์„ฑ์ด ๋†’๊ฒŒ ์ธก์ •๋˜๋Š” ๊ฒƒ์œผ๋กœ ๋ณด์•„ Beauveria bassiana JEF-351 ๊ท ์ฃผ ์œ ๋ž˜ lipase๊ฐ€ ๋งค์šฐ ์œ ์šฉํ•˜๊ฒŒ ์ด์šฉ์ด ๋  ์ˆ˜ ์žˆ๋Š” ํšจ์†Œ์ธ ๊ฒƒ์œผ๋กœ ํŒ๋‹จ๋˜์—ˆ๋‹ค.Lipase (triacylglycerol acylhydrolase; EC 3.1.1.3) is a class of enzymes that catalyze the hydrolysis of triacylglycerol and/or esterification between glycerol and fatty acid. It is widely distributed throughout the living world, including animals, plants, and microorganisms. Among many industrially applied enzymes, the role of lipase that converts fats into fatty acids and monoglycerides is very important, and it is one of the enzymes attracting attention in the rapidly growing biological industry. Lipase derived from an entomopathogenic fungi, Cordyceps militaris, was found to act specifically at position 1(3) of triacylglycerol. In this study, characteristics of lipases isolated from entomopathogenic fungi were investigated and conditions for mass expression using the baculovirus expression system were established. Among the entomopathogenic fungi isolated in Korea, Beauveria bassiana JEF-351 strain, which showed the highest enzyme activity, was selected. Lipase genes of the selected strain (BBL351) and Cordyceps militaris (CML), which is known to have stereospecificity, were introduced into the genome of Autographa californica nucleopolyhedrovirus (AcMNPV), respectively, to express corresponding genes using the baculovirus expression system. Recombinant lipases were expressed as non-secreted protein and secreted protein, respectively. In both BBL351 and CML, their enzyme activity was higher when they expressed as secreted protein form, demonstrating that post-translational modification such as glycosylation is crucial for their activity. In addition, the enzyme activity of BBL351 was higher than that of the CML, suggesting that the lipase derived from the B. bassiana JEF-351 strain could be useful as biocatalyst in the biotechnological applications.ABSTRACT i TABLE OF CONTENTS โ…ฑi LIST OF TABLES vi LIST OF FIGURES โ…ดโ…ฐi INTRODUCTION 1 LITERATURE REVIEW 3 1. Lipase 3 2. Entomopathogenic fungi 4 3. Baculovirus expression vector system 5 METERIAL AND METHODS 7 1. Entomopathogenic fungi (EPF) 7 2. Preparation of lipase from EPF culture broth of entomopathogenic fungi 9 3. Bacterial strains and transformation 10 4. Insect cells and baculoviruses 10 5. RNA and reverse transcription PCR (RT-PCR) 10 6. DNA synthesis 11 7. Construction of baculovirus donor vectors 11 8. in vitro transposition 18 9. Transfection 24 10. Infection of cells with baculoviruses 24 11. Extraction of viral DNA 25 12. Purification of non-secretory recombinant protein 25 13. Precipitation of secretory recombinant protein using ammonium sulfate 25 14. Lipase activity assay 26 RESULTS 27 1. Lipase genes from entomopathogenic fungi 27 2. Cloning and sequencing of lipase genes from EPF strains 27 3. Expression of lipase genes in the baculovirus expression system 33 3.1 Construction of the recombinant bacmid bEasyBac 33 3.2 Purification of the non-secretory recombinant baculovirus 33 4. Confirmation of enzyme activity through lipase assay 45 4.1 Non-secretory protein 45 4.2 Secretory protein 45 DISCUSSION 50 LITERATURE CITED 53 ABSTRACT IN KOREAN 59 LIST OF TABLES Table 1. List of entomopathogenic fungal strains used in this study. 8 Table 2. Primers used for construction of baculovirus donor vectors containing non-secretory lipase genes 15 Table 3. Primers used for construction of baculovirus donor vectors containing His-tagged form of lipase genes from entomopathogenic fungi 16 Table 4. Oligonucleotides used for construction of baculovirus donor vectors containing His-tagged form of lipase genes from entomopathogenic fungi 21 LIST OF FIGURES Fig. 1. Liquid and solid culture conditions of selected entomopathogenic fungi 9 Fig. 2. Construction map of the vectors harboring BBL344 and BBL351 genes 12 Fig. 3. Construction map of the vector harboring IFL gene 13 Fig. 4. Construction map of baculovirus donor vectors expressing non-secretory form of BBL344 and BBL351 genes under the control of polyhedron promoter 14 Fig. 5. Construction map of baculovirus donor vectors expressing N-terminally His-tagged lipase genes under the control of polyhedron promoter 19 Fig. 6. Construction map of baculovirus donor vectors expressing C-terminally His-tagged lipase genes under the control of polyhedron promoter 20 Fig. 7. Construction map of baculovirus donor vectors expressing secretory form of CML and BBL351 genes with native signal peptides under the control of polyhedron promoter 22 Fig. 8. Construction map of baculovirus donor vectors expressing secretory form of CML and BBL351 genes with melittin signal peptides under the control of polyhedron promoter 23 Fig. 9. Detection of lipase derived from insect pathogenic fungi in NCBI. 28 Fig. 10. A phylogenetic tree displaying the relationship of lipase genes 29 Fig. 11. Lipase assay of EPF strains 30 Fig. 12. RT-PCR of lipase 31 Fig. 13. Confirmation of the internal structure of the transfer vector, pGEM-T BBL344 and pGEM-T BBL351 by restriction endonuclease digestion pattern 32 Fig. 14. Amino acid sequence analysis of lipases from EPF strains. 34 Fig. 15. Confirmation of EPF lipase genes into baculovirus donor vector by restriction endonuclease digestion pattern 36 Fig. 16. Sf9 cells were infected with recombinant baculovirus 38 Fig. 17. Confirmation genome structure of recombinant baculoviruses expressing lipase genes under the control of polyhedrin promoters by RT-PCR using specific primer sets 40 Fig. 18. Transcription of lipase genes from recombinant baculoviruses expressing lipase genes under the control of polyhedrin promoters by PCR using specific primer sets 42 Fig. 19. Expression of lipases protein by recombinant baculoviruses 44 Fig. 20. Gel electrophoresis of HisPurTM Ni-NTA Spin Column purification of Hislipase genes 46 Fig. 21. Expression of non-secretory protein in insect cells infected with recombinant baculoviruses 47 Fig. 22. Expression of secretory protein in insect cells infected with recombinant baculoviruses 48์„

    High-Fidelity Multiphase Computations Inside Cryogenic Tank With The Injection Of Pressurant And Varying Acceleration

    Get PDF
    ๋ณธ ์—ฐ๊ตฌ๋Š” ๊ต์œก๊ณผํ•™๊ธฐ์ˆ ๋ถ€์˜ ์šฐ์ฃผํ•ต์‹ฌ๊ธฐ์ˆ ๊ฐœ๋ฐœ์‚ฌ์—… (NRF-2014M1A3A3A02034856)์˜ ์ง€์›์„ ๋ฐ›์•„ ์ด๋ฃจ์–ด์กŒ์œผ๋ฉฐ ์ด์— ๊ฐ์‚ฌ๋“œ๋ฆฝ๋‹ˆ๋‹ค.OAIID:RECH_ACHV_DSTSH_NO:A201616780RECH_ACHV_FG:RR00200003ADJUST_YN:EMP_ID:A001138CITE_RATE:FILENAME:๊ฐ€์••์ œ_์ฃผ์ž…_๋ฐ_๊ฐ€์†๋„_๋ณ€ํ™”์—_๋”ฐ๋ฅธ_๊ทน์ €์˜จ_ํƒฑํฌ_๋‚ด๋ถ€_์œ ๋™์˜_๊ณ ์ •๋ฐ€_ยทยท.pdfDEPT_NM:๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€EMAIL:[email protected]_YN:FILEURL:https://srnd.snu.ac.kr/eXrepEIR/fws/file/29959775-cd41-4987-a546-4608ab08b5c5/linkCONFIRM:

    Changes in Tinnitus After Middle Ear Implant Surgery: Comparisons With the Cochlear Implant

    Get PDF
    OBJECTIVES: Tinnitus is a very common symptom in patients with hearing loss. Several studies have confirmed that hearing restoration using hearing aids or cochlear implants (CIs) has a suppressive effect on tinnitus in users. The aim of this study was to analyze the effect of other hearing restoration devices, specifically the middle ear implant (MEI), on changes in tinnitus severity. DESIGN: From 2012 to October 2014, 11 adults with tinnitus and hearing loss underwent MEI surgery. Pure-tone audiometry, tinnitus handicap inventory (THI), and visual analog scale scores for loudness, awareness, and annoyance and psychosocial instruments were measured before, immediately after, and 6 months after surgery. Changes in hearing thresholds and THI scores were analyzed and compared with those of 16 CI recipients. RESULTS: In both MEI and CI groups, significant improvements in tinnitus were found after the surgery. The THI scores improved in 91% of patients in the MEI group and in 56% of those in the CI group. Visual analog scale scores and psychosocial scale scores also decreased after surgery, but there were no statistical differences between the groups. CONCLUSIONS: The results indicate that the MEI may be as beneficial as the CI in relieving tinnitus in subjects with unilateral tinnitus accompanying hearing loss. Furthermore, this improvement may manifest as hearing restoration or habituation rather than a direct electrical nerve stimulation, which was previously considered as the main mechanism underlying tinnitus suppression by auditory implants.ope

    Development of Unsteady Preconditioned Multi-Phase Roem and Ausmpw+ Schemes

    Get PDF
    ๋ณธ ๋…ผ๋ฌธ์€ 2015๋…„๋„ ๋ฏธ๋ž˜์ฐฝ์กฐ๊ณผํ•™๋ถ€์˜ ์žฌ์›์œผ๋กœ NSL์‚ฌ์—…(NRF-2014M1A3A3A02034856)๊ณผ ๋ฏผใ†๊ตฐํ˜‘๋ ฅ ๊ธฐ์ˆ ์‚ฌ์—…(Civil-Military Technology Cooperation Program)์˜ ์ง€์›์„ ๋ฐ›์•„ ์ž‘์„ฑ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.OAIID:RECH_ACHV_DSTSH_NO:420160000004648010RECH_ACHV_FG:RR00200003ADJUST_YN:EMP_ID:A001138CITE_RATE:FILENAME:๋น„์ •์ƒ_์˜ˆ์กฐ๊ฑดํ™”_๊ธฐ๋ฒ•์„_์ ์šฉํ•œ_๋‹ค์ƒ์œ ๋™_RoeMAUSMPW+_์ˆ˜์น˜๊ธฐ๋ฒ•ยทยท.pdfDEPT_NM:๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€EMAIL:[email protected]_YN:FILEURL:https://srnd.snu.ac.kr/eXrepEIR/fws/file/696b8222-7074-43e7-8294-9499eb9c0b74/linkCONFIRM:

    Changes in Do-not-resuscitate consent and medical costs before and after Severance-hospital-case: a single center study

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๋ณด๊ฑด๋Œ€ํ•™์› ๋ณด๊ฑดํ•™๊ณผ, 2018. 2. ์ดํƒœ์ง„.๋ชฉ์ : 2009๋…„ ์†Œ์œ„ ์„ ํ†ตํ•ด ํ™˜์ž์˜ ์˜์ง€์— ๋”ฐ๋ฅธ ์—ฐ๋ช… ์น˜๋ฃŒ์˜ ์ค‘๋‹จ์ด ๋ฒ•์ ์œผ๋กœ ํ—ˆ์šฉ๋  ์ˆ˜ ์žˆ๋Š” ํ† ๋Œ€๊ฐ€ ๋งˆ๋ จ๋˜์—ˆ๊ณ , ํ™˜์ž ๋ฐ ๋ณดํ˜ธ์ž, ์˜๋ฃŒ์ง„์˜ ์กด์—„์‚ฌ์— ๋Œ€ํ•œ ์ธ์‹์˜ ๋ณ€ํ™”๊ฐ€ ๋ฐœ์ƒํ–ˆ์„ ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์—ฐ๋ช…์˜๋ฃŒ๊ฒฐ์ •๋ฒ• ์‹œํ–‰ ์ „, ํ•ด๋‹น ๋ฒ•์ด ๋„์ž…๋œ ๊ฒฐ์ •์ ์ธ ๊ณ„๊ธฐ์˜€๋˜ ์ „ํ›„ ์˜ํ–ฅ์„œ ์ž‘์„ฑ ๊ฑด์ˆ˜, ์‹œ์ ์„ ๋น„๊ตํ•˜์—ฌ ํ•ด๋‹น ์‚ฌ๊ฑด์ด ํ™˜์ž, ๋ณดํ˜ธ์ž ๋ฐ ์˜๋ฃŒ์ง„์˜ ์กด์—„์‚ฌ์— ๋Œ€ํ•œ ์ธ์‹์— ๋ฏธ์นœ ์˜ํ–ฅ์„ ๊ฐ€๋Š ํ•˜๊ณ ์ž ํ•œ๋‹ค. ๋˜ํ•œ ์˜ํ–ฅ์„œ ์ž‘์„ฑ๊ณผ ๊ด€๋ จ๋œ ์š”์ธ์„ ๋ฐํžˆ๋ฉฐ, ์˜ํ–ฅ์„œ ์ž‘์„ฑ ์‹œ์ ์— ๋”ฐ๋ฅธ ์˜๋ฃŒ๋น„์˜ ์ฐจ์ด๋ฅผ ๋ถ„์„ํ•œ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ์ด ์˜ํ–ฅ์„œ ์ž‘์„ฑ์— ๋ฏธ์นœ ์˜ํ–ฅ ๋ฐ ๋ณด๊ฑด๊ฒฝ์ œํ•™์  ํšจ๊ณผ๋ฅผ ํ‰๊ฐ€ํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ๋‚˜์•„๊ฐ€ ์˜ฌ๋ฐ”๋ฅธ ์—ฐ๋ช…์˜๋ฃŒ๊ฒฐ์ •๋ฒ• ์‹œํ–‰์„ ์œ„ํ•ด ์ œ์–ธํ•˜๊ณ ์ž ํ•œ๋‹ค. ๋ฐฉ๋ฒ•: ํ›„ํ–ฅ์  ์˜๋ฌด๊ธฐ๋ก ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•˜์—ฌ, ์ „ํ›„ 3๋…„ ๋™์•ˆ(2006๋…„ 5์›” 21์ผ~2012๋…„ 5์›” 21์ผ) ์„œ์šธ๋Œ€ํ•™๊ต๋ณ‘์› ๋‚ด๊ณผ ๋ณ‘๋™์—์„œ ์‚ฌ๋งํ•œ ์ž…์› ํ™˜์ž๋ฅผ ๋Œ€์ƒ์œผ๋กœ, ์ „ํ›„ ์˜ํ–ฅ์„œ ์ž‘์„ฑ ๊ฑด์ˆ˜, ์‹œ์ , ์˜๋ฃŒ๋น„์˜ ๋ณ€ํ™”๋ฅผ ๋ถ„์„ํ•˜์˜€๋‹ค. ๊ฒฐ๊ณผ: ์—ฐ๊ตฌ ๋Œ€์ƒ์ž๋Š” 4191๋ช…์ด์—ˆ์œผ๋ฉฐ, ๊ทธ ์ค‘ ์˜ํ–ฅ์„œ๋ฅผ ์ž‘์„ฑํ•œ ํ™˜์ž๋Š” ์ด 2946๋ช…์ด์—ˆ๋‹ค. ์ „์— ๋น„ํ•ด์„œ ์‚ฌ๊ฑด ํ›„ ์ง‘๋‹จ์—์„œ ํ†ต๊ณ„์ ์œผ๋กœ ์œ ์˜ํ•˜๊ฒŒ ์˜ํ–ฅ์„œ ์ž‘์„ฑ ๊ฑด์ˆ˜๊ฐ€ ์ฆ๊ฐ€ํ•˜์˜€๊ณ (๊ต์ฐจ๋น„ 3.34, 95% ์‹ ๋ขฐ๊ตฌ๊ฐ„ 2.90-3.84, ์œ ์˜ํ™•๋ฅ  <0.001), ์˜ํ–ฅ์„œ ์ž‘์„ฑ ์‹œ์ ๊ณผ ์ด ํ‰๊ท  ์˜๋ฃŒ๋น„ ๋ฐ ์‚ฌ๋ง ์ „ 2์ฃผ๊ฐ„ ํ‰๊ท  ์˜๋ฃŒ๋น„๋Š” ์œ ์˜ํ•œ ๋ณ€ํ™”๊ฐ€ ์—†์—ˆ๋‹ค. ๊ฒฐ๋ก : ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ „ํ›„ ์˜ํ–ฅ์„œ ๊ฑด์ˆ˜๋Š” ์ฆ๊ฐ€ํ–ˆ์ง€๋งŒ, ์ž‘์„ฑ ์‹œ์ ์˜ ๋ณ€ํ™”๊ฐ€ ์—†์—ˆ๊ณ , ์˜๋ฃŒ๋น„๊ฐ€ ๊ฐ์†Œํ•˜์ง€ ์•Š์•˜๋‹ค๋Š” ๊ฒƒ์„ ๋ฐํ˜”๋‹ค. ์—ฐ๋ช…์˜๋ฃŒ๋ฒ• ์‹œํ–‰ ์ดํ›„ ์˜ํ–ฅ์„œ ์ž‘์„ฑ ๊ฑด์ˆ˜์˜ ์ฆ๊ฐ€๊ฐ€ ์˜ˆ์ƒ๋˜๋‚˜, ๋ถˆํ•„์š”ํ•œ ์—ฐ๋ช…์น˜๋ฃŒ์™€ ์ด๋กœ ์ธํ•œ ์˜๋ฃŒ๋น„ ์ฆ๊ฐ€๋ฅผ ๋ง‰๊ธฐ ์œ„ํ•ด์„œ ์˜๋ฃŒ๊ณต๊ธ‰์ž ๋ฐ ์ผ๋ฐ˜ ๊ตญ๋ฏผ์„ ๋Œ€์ƒ์œผ๋กœ ๋ฒ•์˜ ๋‚ด์šฉ์„ ์ ๊ทน์ ์œผ๋กœ ํ™๋ณดํ•˜๊ณ , ์˜๋ฃŒ๊ณต๊ธ‰์ž, ํ™˜์ž ๋ฐ ๋ณดํ˜ธ์ž์˜ ์˜์‹ ๊ฐœ์„ ์ด ๋ฐ˜๋“œ์‹œ ํ•„์š”ํ•˜๋‹ค.์ œ1์žฅ. ์„œ๋ก  1 ์ œ2์žฅ. ์—ฐ๊ตฌ ๋ฐฉ๋ฒ• 6 ์ œ3์žฅ. ๊ฒฐ๊ณผ 11 ์ œ4์žฅ. ๊ณ ์ฐฐ 30 ์ œ5์žฅ. ๊ฒฐ๋ก  38 ์ฐธ๊ณ ๋ฌธํ—Œ 39 ์˜๋ฌธ ์ดˆ๋ก 45Maste

    Effects of shoe conditions on biomechanics of recreational runners

    Get PDF
    Eliud Kipchoge, became the first athlete to run a marathon under two hours in 2019. Although the team of rotating pacemakers contributed to this achievement, the vast majority of people paid attention to Kipchogeโ€™s shoes, the prototype of Alphafly (NIKE). These shoes were designed to enhance the performance of runners; they were equipped with air springs, midsole that maximizes energy return, and carbon plates with high bending stiffness. The Alphafly shoes have also become extremely popular among the recreational runners who are interested in the enhancement of their performance. However, there is a dearth of biomechanical studies exploring any possible effect of such performance boosting shoes on the risk of injury during running. This study aims to quantify the effect of distinct shoe structures on biomechanics of runners, and address the probable effect of the resulting biomechanics on the incidence of representative musculoskeletal damage due to running. Five adult males in 20-30s participated in the study; they ran at 3.3m/s for 10 minutes on an instrumented treadmill, wearing three different pairs of shoes: 1) Alphyfly (AF); 2) conventional running shoes, UltraBoost20 by Adidas (CON); and 3) SORTIEMAGIC RP5 by Asics, which features minimal cushioning and lightweight (MIN). The mechanical properties of each shoe structure was quantified using standard methods. During the running experiment, metabolic variables (oxygen consumption, energy expenditure, and respiratory exchange ratio), and kinematic data (foot strike angle; angle of the ankle, knee, hip at touch down (TD) and toe off (TO); and angle range during stance phase) were collected. The recorded kinematics and the ground reaction force obtained from the instrumented treadmill were used to perform inverse analysis and estimate biomechanical variables (reaction force and moment at the ankle, knee, and hip; and muscle force output at the calf and thigh). Metabolic variables did not show statistically significant differences depending on shoe conditions. In contrast, the significant effect of shoe conditions on the kinematic patterns was clear. Under CON condition, the runners showed the largest footstrike angle (p<0.01). The angle at TD and TO, and angle range of the ankle, knee and hip were all significantly affected by shoe conditions (p<0.05). These results indicate that a runner may almost immediately adopt different running patterns depending on the properties of the shoes regardless of his/her own running pattern. The inverse analysis suggested that the shoe-induced change in the running kinematics, in turn, has significant effects on the mechanical load to various joints and muscles. Under MIN condition, runners adopted forefoot strike patterns, which required significantly higher reaction force at the ankle (p<0.01), significantly larger force output from the calf posterior muscles (Gastrocnemius, Soleus) (p<0.01), and significantly larger stress to achilles tendon (p<0.01). These results indicate that MIN condition tends to increase the risk of ankle sprain, achilles tendinitis, or shin splint. Under CON condition, runners adopted rearfoot strike patterns, which required significantly larger force at the knee and hip in the frontal plane (p<0.01) and significantly larger muscle force from the peroneus longus and tibialis anterior (p<0.01). These results indicate that CON condition tends to jeopardize lateral stability, and increase the risk of illiotibial band syndrome or pain of peroneals. The AF condition induced significantly higher shear force and compressive force in the knee joint on the sagittal plane (p<0.01), putting runners at higher risk of knee femur syndrome, shin splint or stress fractures. In conclusion, shoes with distinct properties can alter runnerโ€™s running kinematics regardless of their habitual running pattern, and each of the induced running kinematics has its own vulnerability. Therefore, recreational runners need to consider weak parts of their body and the different biomechanical effects of shoes to select proper shoes for running.์ตœ๊ทผ โ€˜๋งˆ๋ผํ†ค 2์‹œ๊ฐ„์˜ ๋ฒฝ์„ ๊นฌ ํ‚ต์ดˆ๊ฒŒ ์‹ ๋ฐœโ€™๋กœ ํ™”์ œ๊ฐ€ ๋˜์—ˆ๋˜ ์ƒˆ๋กœ์šด ํŠน์„ฑ์˜ ๋ ˆ์ด์‹ฑํ™”(Alphafly NIKE, ์ดํ•˜ AF)๋Š” ์ „์กฑ๋ถ€ ์—์–ด ์Šคํ”„๋ง, ์—๋„ˆ์ง€ ๋ฐ˜ํ™˜์„ ์ตœ๋Œ€ํ™”ํ•œ ์ค‘์ฐฝ๊ณผ ๊ตฝํž˜ ๊ฐ•์„ฑ์ด ๋†’์€ ์นด๋ณธ ํ”Œ๋ ˆ์ดํŠธ ๋“ฑ ์ฒ ์ €ํžˆ ์ฃผํ–‰ ํผํฌ๋จผ์Šค์— ์ดˆ์ ์„ ๋งž์ถ”์–ด ์„ค๊ณ„๋˜์—ˆ๋‹ค. ์ตœ๊ทผ ์ผ๋ฐ˜์ธ๋“ค๋„ ์Šคํฌ์ธ  ํผํฌ๋จผ์Šค์— ๊ด€์‹ฌ์ด ๋†’์•„์ง€๋ฉด์„œ ํ•ด๋‹น ์‹ ๋ฐœ์€ ํฌ๊ฒŒ ์ธ๊ธฐ๋ฅผ ๋Œ์—ˆ์œผ๋‚˜ ์•ˆ์ •์„ฑ ๋ณด๋‹ค๋Š” ํผํฌ๋จผ์Šค์— ์ดˆ์ ์„ ๋งž์ถ˜ ๋ ˆ์ด์‹ฑํ™”๋“ค์ด ์–ด๋–ค ๋ถ€์ƒ ์œ„ํ—˜์„ฑ์„ ๊ฐ€์งˆ ์ˆ˜ ์žˆ๋Š”์ง€์— ๋Œ€ํ•œ ์ƒ์ฒด์—ญํ•™์  ์—ฐ๊ตฌ๋Š” ๋ถ€์กฑํ•œ ์‹ค์ •์ด๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ฐ ์‹ ๋ฐœ ๊ตฌ์กฐ๊ฐ€ ์ฃผํ–‰ ์‹œ ์ƒ์ฒด์—ญํ•™ ๋ณ€์ธ๋“ค์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ๋ถ„์„ํ•˜๊ณ , ์ด๋Ÿฌํ•œ ์—ญํ•™์  ๋ณ€์ธ์˜ ๋ณ€ํ™”๋ฅผ ์ฃผํ–‰์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๋Œ€ํ‘œ์ ์ธ ๊ทผ๊ณจ๊ฒฉ๊ณ„ ์†์ƒ๋“ค์˜ ํŠน์ง•๊ณผ ์—ฐ๊ด€์‹œ์ผœ ์‹ ๋ฐœ ๊ตฌ์กฐ์— ๋”ฐ๋ฅธ ๋ถ€์ƒ ์œ„ํ—˜์„ฑ์„ ๋„์ถœํ•˜๊ณ ์ž ํ–ˆ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด 20-30 ๋Œ€ ์„ฑ์ธ ๋‚จ์„ฑ 5 ๋ช…์„ ๋Œ€์ƒ์œผ๋กœ AF์™€ ์ผ๋ฐ˜์ ์ธ ์ฟ ์…˜ ๋Ÿฌ๋‹ํ™”(UltraBoost20 Adidas, ์ดํ•˜ CON), ์ตœ์†Œํ•œ์˜ ์ฟ ์…”๋‹ ๊ธฐ๋Šฅ๊ณผ ๊ฒฝ๋Ÿ‰ ์†Œ์žฌ๊ฐ€ ํŠน์ง•์ธ ๋ฏธ๋‹ˆ๋ฉ€ ๋ ˆ์ด์‹ฑํ™”(SORTIEMAGIC RP5 Asics, ์ดํ•˜ MIN)๋ฅผ ๊ฐ๊ฐ ์‹ ๊ณ  ์ง€๋ฉด ๋ฐ˜๋ ฅ ํŠธ๋ ˆ๋“œ๋ฐ€ ์œ„์—์„œ 3.3 m/s์˜ ์†๋„๋กœ 10 ๋ถ„๊ฐ„ ์ฃผํ–‰ํ•˜๋Š” ์‹คํ—˜์„ ์‹ค์‹œํ•˜์˜€๋‹ค. ์ฃผํ–‰ ์‹œ ๊ฐ ์‹ ๋ฐœ์— ๋”ฐ๋ฅธ ์—๋„ˆ์ง€ ๋Œ€์‚ฌ ๋ณ€์ธ(๋ถ„๋‹น ์‚ฐ์†Œ ์„ญ์ทจ๋Ÿ‰, ์—๋„ˆ์ง€ ์†Œ๋ชจ๋Ÿ‰, ํ˜ธํก ๊ตํ™˜๋ฅ ), ์ฃผํ–‰ ํŒจํ„ด(์ง€๋ฉด๊ณผ ๋ฐœ์˜ ์ฐฉ์ง€ ๊ฐ๋„์™€ ๋ฐœ๋ชฉ, ๋ฌด๋ฆŽ, ์—‰๋ฉ ๊ด€์ ˆ์˜ ์ฐฉ์ง€, ์ด์ง€ ์‹œ ๊ฐ๋„์™€ ๋ณ€์œ„)์„ ์ธก์ •ํ•˜์˜€๊ณ  ๊ทผ๊ณจ๊ฒฉ ๋ชจ๋ธ๋ง ๋ฐ ์—ญ๋™์—ญํ•™ ๋ถ„์„์„ ํ†ตํ•ด ์ฃผํ–‰ ์‹คํ—˜ ์‹œ ์ธก์ •ํ•œ ์šด๋™ํ•™์  ๋ณ€์ธ์„ ์ด์šฉํ•˜์—ฌ ์ƒ์ฒด์—ญํ•™์  ๋ณ€์ธ(๋ฐœ๋ชฉ, ๋ฌด๋ฆŽ, ์—‰๋ฉ ๊ด€์ ˆ์˜ ๋ฐ˜๋ฐœ๋ ฅ๊ณผ ๋ชจ๋ฉ˜ํŠธ, ํ—ˆ๋ฒ…์ง€์™€ ์ข…์•„๋ฆฌ ์ „/ํ›„๋ฉด ๊ทผ์œก์ด ์ถœ๋ ฅํ•˜๋Š” ํž˜)๋“ค์„ ๋„์ถœํ•˜์˜€๋‹ค. ๋˜ํ•œ ๊ฐ ์‹ ๋ฐœ์˜ ๊ตฌ์กฐ์™€ ๋ฌผ๋ฆฌ์  ํŠน์„ฑ์„ ํ‘œ์ค€ํ™”๋œ ๋ฐฉ๋ฒ•์„ ์ด์šฉํ•˜์—ฌ ์ •๋Ÿ‰ํ™”ํ•˜์˜€๋‹ค. ์‹คํ—˜ ๋ฐ ๋ถ„์„ ๊ฒฐ๊ณผ, ์žฅ๊ฑฐ๋ฆฌ ์ฃผํ–‰์˜ ํผํฌ๋จผ์Šค๋ฅผ ๋‚˜ํƒ€๋‚ด๋Š” ์ง€ํ‘œ์ธ ์—๋„ˆ์ง€ ๋Œ€์‚ฌ ๋ณ€์ธ์— ๋Œ€ํ•ด์„œ๋Š” ์‹ ๋ฐœ ์กฐ๊ฑด์— ๋”ฐ๋ผ ํ†ต๊ณ„์ ์œผ๋กœ ์œ ์˜ํ•œ ์ฐจ์ด๋ฅผ ํ™•์ธํ•  ์ˆ˜ ์—†์—ˆ์œผ๋‚˜ ์ฃผํ–‰ ํŒจํ„ด์—์„œ๋Š” ์‹ ๋ฐœ ์กฐ๊ฑด์— ๋”ฐ๋ฅธ ์ฐจ์ด๋ฅผ ํ™•์ธํ•˜์˜€๋‹ค. ์ฐฉ์ง€๊ฐ์€ CON์—์„œ ๊ฐ€์žฅ ํฌ๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๊ณ (p<0.01) ์—‰๋ฉ, ๋ฌด๋ฆŽ, ๋ฐœ๋ชฉ ์„ธ ํ•˜์ง€ ๊ด€์ ˆ์˜ ์ฐฉ์ง€์™€ ์ด์ง€์‹œ์˜ ๊ฐ๋„์™€ ์ „์ฒด ์›€์ง์ž„์—์„œ ์‹ ๋ฐœ ์กฐ๊ฑด์— ๋”ฐ๋ผ ํ†ต๊ณ„์ ์œผ๋กœ ์œ ์˜ํ•œ ์ฐจ์ด๊ฐ€ ์กด์žฌํ–ˆ๋‹ค(p<0.05). ์ด๋Š” ์ฃผ์ž๊ฐ€ ๋ณธ์ธ์˜ ํ‰์†Œ ์ฃผํ–‰ ํŒจํ„ด๊ณผ ์ƒ๊ด€์—†์ด ์‹ ๋ฐœ์— ๋”ฐ๋ผ์„œ ์ฆ‰๊ฐ์ ์ธ ์ฃผํ–‰ ํŒจํ„ด์˜ ๋ณ€ํ™”๋ฅผ ๋ณด์ผ ์ˆ˜ ์žˆ์Œ์„ ์˜๋ฏธํ•œ๋‹ค. ์‹ ๋ฐœ ์กฐ๊ฑด์— ๋”ฐ๋ฅธ ์ด๋Ÿฌํ•œ ์ฃผํ–‰ ํŒจํ„ด์˜ ๋ณ€ํ™”๊ฐ€ ๊ฐ๊ธฐ ๋‹ค๋ฅธ ๊ด€์ ˆ ๋ฐ ๊ทผ์œก ๋ถ€ํ•˜๋ฅผ ์•ผ๊ธฐํ•จ์„ ์—ญ๋™์—ญํ•™ ๋ถ„์„์„ ํ†ตํ•ด ํ™•์ธํ•˜์˜€๋‹ค. ์ฐฉ์ง€ ์‹œ FFS (Forefoot strike) ํŒจํ„ด์„ ์•ผ๊ธฐํ•œ MIN ์กฐ๊ฑด์˜ ๊ฒฝ์šฐ ๋ฐœ๋ชฉ ๊ด€์ ˆ์— ์œ ์˜ํ•˜๊ฒŒ ํฐ ๋ฐ˜๋ฐœ๋ ฅ์ด ๊ฐ€ํ•ด์กŒ๊ณ (p<0.01), ์ข…์•„๋ฆฌ ํ›„๋ฉด ๊ฐ€์ž๋ฏธ๊ทผ, ๋น„๋ณต๊ทผ์—์„œ ์œ ์˜ํ•˜๊ฒŒ ํฐ ํž˜์˜ ์ถœ๋ ฅ์ด ์š”๊ตฌ๋˜๋ฉฐ(p<0.01) ์•„ํ‚ฌ๋ ˆ์Šค๊ฑด์—์„œ ์–‘์ชฝ ๋ฐฉํ–ฅ์œผ๋กœ์˜ ๋ถ€ํ•˜๋„ ํฌ๊ฒŒ ๋ฐœ์ƒํ•˜์˜€๋‹ค(p<0.01). ์ด๋Š” ๋ฏธ๋‹ˆ๋ฉ€ ๋ ˆ์ด์‹ฑํ™” ์ฐฉ์šฉ ์ฃผํ–‰ ์‹œ ๋ฐœ๋ชฉ๊ณผ ์ •๊ฐ•์ด ๊ด€๋ จ ๋ถ€์ƒ์— ์œ ์˜ํ•ด์•ผ ํ•จ์„ ์˜๋ฏธํ•œ๋‹ค. ์ฐฉ์ง€ ์‹œ RFS (Rearfoot strike) ํŒจํ„ด์„ ๋ณด์ธ CON ์กฐ๊ฑด์—์„œ๋Š” ์ƒ๋Œ€์ ์œผ๋กœ ๋ฌด๋ฆŽ ๋ฐ ์—‰๋ฉ ๊ด€์ ˆ์—์„œ ํฐ ๋ฐ˜๋ฐœ๋ ฅ๊ณผ ๋ชจ๋ฉ˜ํŠธ ๊ฐ’์ด ๋‚˜ํƒ€๋‚ฌ๋‹ค. ํŠนํžˆ ๊ด€์ƒ๋ฉด์—์„œ ํฐ ๋ถ€ํ•˜๊ฐ€ ์•ผ๊ธฐ๋˜์—ˆ๊ณ (p<0.01) ์žฅ๋น„๊ณจ๊ทผ๊ณผ ์ „๊ฒฝ๊ณจ๊ทผ์—์„œ ์œ ์˜ํ•˜๊ฒŒ ํฐ ํž˜์ด ์š”๊ตฌ๋˜์—ˆ๋‹ค(p<0.01). ์ด๋Š” ์ฟ ์…˜ ๋Ÿฌ๋‹ํ™” ์ฐฉ์šฉ ์ฃผํ–‰ ์‹œ ์ธก๋ฉด ์•ˆ์ •์„ฑ ํ™•๋ณด๋ฅผ ์œ„ํ•ด๋งŽ์€ ๋ถ€ํ•˜๋ฅผ ๋‹ด๋‹นํ•˜๋Š” ์žฅ๊ฒฝ์ธ๋Œ€ ๋ฐ ์žฅ๋น„๊ณจ๊ทผ ๊ด€๋ จ ๋ถ€์ƒ์— ์œ ์˜ํ•ด์•ผ ํ•จ์„ ์ œ์‹œํ•œ๋‹ค. AF ์กฐ๊ฑด์—์„œ๋Š” ์‹œ์ƒ๋ฉด์—์„œ ๋ฌด๋ฆŽ ๊ด€์ ˆ์˜ ๋ฐ˜๋ฐœ๋ ฅ, ์••์ถ•๋ ฅ์ด ์œ ์˜ํ•˜๊ฒŒ ์ปค์กŒ๋‹ค(p<0.01). ์ด๋Š” AF์™€ ๊ฐ™์ด ์ „๋ฐฉ ์ถ”์ง„์— ํŠนํ™”๋œ ์‹ ๋ฐœ์„ ์‹ ์„ ๊ฒฝ์šฐ ์Šฌ๊ฐœ๋Œ€ํ‡ด ์ฆํ›„๊ตฐ๊ณผ ์ •๊ฐ•์ด ํ†ต์ฆ, ํ”ผ๋กœ ๊ณจ์ ˆ ๋“ฑ์— ์œ ๋…ํ•ด์•ผ ํ•จ์„ ์˜๋ฏธํ•œ๋‹ค. ๊ฒฐ๋ก ์ ์œผ๋กœ ์‹ ๋ฐœ์˜ ๋šœ๋ ทํ•œ ํŠน์ง•๋“ค์— ๋”ฐ๋ผ ์ฃผ์ž์˜ ํ‰์†Œ ์ฃผํ–‰ ํŒจํ„ด๊ณผ ์ƒ๊ด€์—†์ด ์ฃผํ–‰ ์‹œ์˜ ์šด๋™์—ญํ•™์  ๋ณ€์ธ๋“ค์„ ๋ณ€ํ™”์‹œํ‚ฌ ์ˆ˜ ์žˆ์œผ๋ฉฐ, ๊ฐ๊ฐ์˜ ์œ ๋„๋œ ์šด๋™์—ญํ•™์  ํŠน์„ฑ๋“ค์€ ์ €๋งˆ๋‹ค ๋ถ€์ƒ๊ณผ ์—ฐ๊ด€๋  ์ˆ˜ ์žˆ๋Š” ์ทจ์•ฝ์ ์„ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ์ฃผ์ž๋“ค์€ ๊ทธ๋“ค์˜ ์•ฝ์ ์„ ํŒŒ์•…ํ•˜๊ณ , ์ฃผํ–‰ ์‹œ ๊ฐ ์‹ ๋ฐœ์˜ ์ƒ์ฒด์—ญํ•™์  ํŠน์„ฑ์„ ๊ณ ๋ คํ•ด์„œ ์ ์ ˆํ•œ ์‹ ๋ฐœ์„ ์„ ํƒํ•ด์•ผ ํ•œ๋‹ค.I. ์„œ ๋ก  1 1. ์—ฐ๊ตฌ์˜ ๋ฐฐ๊ฒฝ 1 2. ์—ฐ๊ตฌ์˜ ๋‚ด์šฉ 5 3. ์—ฐ๊ตฌ ๊ฐ€์„ค 5 II. ์ด๋ก ์  ๋ฐฐ๊ฒฝ 6 1. ๋‹ฌ๋ฆฌ๊ธฐ์˜ ์—ญํ•™ 6 2. ๋ถ€์ƒ์˜ ์—ญํ•™ 8 2.1 ์†์ƒ๊ธฐ์ „ 8 2.2 ์ธ์ฒด์— ๊ฐ€ํ•ด์ง€๋Š” ๋ถ€ํ•˜ 9 2.3 ๋‹ฌ๋ฆฌ๊ธฐ์™€ ๊ด€๋ จ๋œ ๋ถ€์ƒ 10 3. ์ธ์ฒด ๋ชจ๋ธ๋ง ์‹œ๋ฎฌ๋ ˆ์ด์…˜ 13 3.1 ๋™์—ญํ•™ ํ•ด์„ ๋ฐฉ๋ฒ• 13 3.2 AnyBody Modeling System (AMS) 16 3.3 ๊ฒ€์ฆ ์‚ฌ๋ก€ 18 4. ์‹ ๋ฐœ์˜ ํ•ด๋ถ€ํ•™(ANATOMY) 19 4.1 ๊ฒ‰์ฐฝ(outsole) 19 4.2 ์ค‘์ฐฝ(midsole) 20 4.3 ์•ˆ์ฐฝ(Innersole) 21 4.4 ๊ฐ‘ํ”ผ(upper) 22 4.5 ์‹ ๊ณจ(Last) 22 5. ์‹ ๋ฐœ์˜ ๋ฌผ์„ฑ 24 5.1 ์‹ ๋ฐœ ๋ฌด๊ฒŒ 24 5.2 ์ค‘์ฐฝ ์†Œ์žฌ 25 5.3 ๊ตฝ ๋‘๊ป˜์™€ ์˜คํ”„์…‹ 26 5.4 ์„ธ๋กœ ๊ตฝํž˜ ๊ฐ•์„ฑ(Longitudinal bending stiffness, LBS)๊ณผ ์นด๋ณธ ํ”Œ๋ ˆ์ดํŠธ(Carbon plate) 27 III. ์—ฐ๊ตฌ๋ฐฉ๋ฒ• 30 1. ์—ฐ๊ตฌ ๋Œ€์ƒ 30 2. ์‹คํ—˜ ๋„๊ตฌ 31 2.1 ์ธก์ • ์žฅ๋น„ 31 2.2 AnyBody Modeling System (AMS) 36 2.3 ์—ฐ๊ตฌ์— ์‚ฌ์šฉ๋œ ์‹ ๋ฐœ๊ณผ ๊ตฌ์กฐ์  ํŠน์„ฑ 39 3. ์‹คํ—˜ ์ ˆ์ฐจ 43 4. ์ž๋ฃŒ ๋ถ„์„ ๋ฐฉ๋ฒ• 46 4.1 ์‹คํ—˜ ๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ 46 4.2 ์ŠคํŠธ๋ผ์ดํฌ ํŒจํ„ด ์ธก์ • 48 4.3 ์—๋„ˆ์ง€ ๋Œ€์‚ฌ ๋ณ€์ธ 50 5 . ํ†ต๊ณ„ ๋ถ„์„ 50 IV. ์—ฐ๊ตฌ๊ฒฐ๊ณผ 51 1. ์—๋„ˆ์ง€ ๋Œ€์‚ฌ ๋ณ€์ธ 51 2. ์ฃผํ–‰ ํŒจํ„ด 52 3. ๊ด€์ ˆ์— ๊ฐ€ํ•ด์ง€๋Š” ๋ฐ˜๋ฐœ๋ ฅ, ๋ฐ˜๋ฐœ๋ชจ๋ฉ˜ํŠธ 57 3.1 ์‹œ์ƒ๋ฉด (sagittal plane) 57 3.2 ๊ด€์ƒ๋ฉด (frontal plane) 62 3.3 ์ˆ˜ํ‰๋ฉด(horizontal plane) 65 3.4 ํšŒ์ „์ถ• (rotation axis) 67 4. ๊ทผ์œก์ด ๋‚ด๋Š” ํž˜ 71 4.1 ์ข…์•„๋ฆฌ ๊ทผ์œก 71 4.2 ํ—ˆ๋ฒ…์ง€ ๊ทผ์œก 73 V. ๋…ผ์˜ 75 VI. ๊ฒฐ๋ก  ๋ฐ ์ œ์–ธ 79 ์ฐธ๊ณ ๋ฌธํ—Œ 81 ABSTRACT 90์„

    Development of skin phantom mimicking mechanical properties of the skin

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ๊ธฐ๊ณ„๊ณตํ•™๋ถ€, 2022. 8. ๊น€ํ˜ธ์˜.์‚ฌ๋žŒ์˜ ํ”ผ๋ถ€๋Š” ์–•์€ ์ธต์˜ ์ƒํ”ผ์ธ ํ‘œํ”ผ, ๊ทธ ์•„๋ž˜์˜ ์ง„ํ”ผ, ๊ทธ๋ฆฌ๊ณ  ํ”ผํ•˜์กฐ์ง์œผ๋กœ ๊ตฌ์„ฑ๋˜์–ด ์žˆ์œผ๋ฉฐ ๊ฐ๊ฐ ๋ฌผ๋ฆฌ์  ํŠน์„ฑ์ด ๋‹ค๋ฅด๋‹ค. ๊ทธ์ค‘ ํ”ผ๋ถ€์˜ ํƒ„๋ ฅ์— ์ฃผ๋œ ์š”์ธ์ด ๋˜๋Š” ๊ตฌ์„ฑ ์„ฑ๋ถ„์€ ์ง„ํ”ผ์— ์œ„์น˜ํ•œ ์ฝœ๋ผ๊ฒ๊ณผ ์—˜๋ผ์Šคํ‹ด์ด๋‹ค. ์ฝœ๋ผ๊ฒ์€ ์ง„ํ”ผ ๋‚ด์—์„œ ํ”ผ๋ถ€๋ฅผ ๊ตฌ์กฐ์ ์œผ๋กœ ์ง€ํƒฑํ•ด ์ฃผ๋Š” ์—ญํ• ์„ ํ•˜๋ฉฐ ์—˜๋ผ์Šคํ‹ด์€ ๋ณ€ํ˜•๋œ ํ”ผ๋ถ€๊ฐ€ ์›๋ž˜ ์ƒํƒœ๋กœ ๋Œ์•„์˜ค๊ฒŒ ํ•˜๋Š” ์—ญํ• ์„ ํ•˜๋Š” ๊ฒƒ์œผ๋กœ ์•Œ๋ ค์ ธ ์žˆ๋‹ค. ํžˆ์•Œ๋ฃจ๋ก ์‚ฐ์€ ์ง„ํ”ผ ๋‚ด์—์„œ ํ”„๋กœํ…Œ์˜ค๊ธ€๋ฆฌ์นธ๊ณผ ๋ถ€์ฐฉํ•˜์—ฌ ํ”„๋กœํ…Œ์˜ค๊ธ€๋ฆฌ์นธ ์ง‘ํ•ฉ์ฒด๋ฅผ ์ด๋ฃจ๊ณ  ์žˆ์œผ๋ฉฐ, ์ˆ˜๋ถ„ ๊ฒฐํ•ฉ ํŠน์„ฑ์„ ๊ฐ€์ง€๊ณ  ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ํ”ผ๋ถ€ ๋ณด์Šต ์—ญํ• ์„ ํ•œ๋‹ค. ์‚ฌ๋žŒ ํ”ผ๋ถ€๋Š” ๋…ธํ™”๊ฐ€ ์ง„ํ–‰๋จ์— ๋”ฐ๋ผ ์ฝœ๋ผ๊ฒ๊ณผ ์—˜๋ผ์Šคํ‹ด ์„ฌ์œ ์กฐ์ง์ด ๊ฒฝํ™”๋˜๊ณ  ๋ถˆ์šฉ์„ฑ์ด ๋œ๋‹ค. ๋˜ํ•œ, ํžˆ์•Œ๋ฃจ๋ก ์‚ฐ์˜ ์–‘์ด ๊ฐ์†Œํ•˜๊ธฐ ๋•Œ๋ฌธ์— ํ”ผ๋ถ€์˜ ํƒ„๋ ฅ์€ ๋…ธํ™” ์ง„ํ–‰์— ๋”ฐ๋ผ ์ค„์–ด๋“ ๋‹ค. ํ”ผ๋ถ€์˜ ํŠน์„ฑ์„ ๋ฐ˜์˜ํ•œ ํ”ผ๋ถ€ ํŒฌํ…€์„ ๊ฐœ๋ฐœํ•˜๋Š” ์—ฐ๊ตฌ๊ฐ€ ๋‹ค์–‘ํ•œ ๊ด€์ ์—์„œ ์ด๋ฃจ์–ด์ง€๊ณ  ์žˆ๋‹ค. ํ”ผ๋ถ€์˜ ๊ด‘ํ•™์  ํŠน์„ฑ, ์Œํ–ฅํ•™์  ํŠน์„ฑ, ํ‘œ๋ฉด์  ํŠน์„ฑ, ๊ธฐ๊ณ„์  ํŠน์„ฑ ๋“ฑ ์—ฌ๋Ÿฌ ํŠน์„ฑ์„ ๋ชจ์‚ฌํ•˜๋Š” ๋ชฉ์ ์œผ๋กœ ๊ฐœ๋ฐœ๋˜๋Š” ํ”ผ๋ถ€ ํŒฌํ…€๋“ค์ด ์กด์žฌํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ํ”ผ๋ถ€์˜ ํƒ„๋ ฅ์„ ์ธก์ •ํ•  ์ˆ˜ ์žˆ๋Š” ๊ธฐ๋ฐ˜์„ ๋งˆ๋ จํ•˜๊ธฐ ์œ„ํ•ด ํƒ„๋ ฅ๊ณผ ๊ด€๊ณ„๋œ ๊ธฐ๊ณ„์  ํŠน์„ฑ์„ ๋ชจ์‚ฌํ•˜๋Š” ํ”ผ๋ถ€ ํŒฌํ…€์„ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ์ œ์ž‘ํ•œ ํ”ผ๋ถ€ ํŒฌํ…€์€ ๋‹ค์ธต ๊ตฌ์กฐ๋กœ ๊ฐ ์ธต์˜ ๊ธฐ๊ณ„์  ํŠน์„ฑ์„ ๋ฐ˜์˜ํ•˜๊ณ  ์žˆ์œผ๋ฉฐ, ์ง„ํ”ผ ํŒฌํ…€์€ ๋‹ค๊ณต์„ฑ ๊ตฌ์กฐ๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค. ๋˜ํ•œ ๋ณธ ์—ฐ๊ตฌ์—์„œ ๊ฐœ๋ฐœํ•œ ํ”ผ๋ถ€ ํŒฌํ…€์€ ์‹ค์ œ ํ”ผ๋ถ€์˜ ์ ํƒ„์„ฑ ํŠน์ง•์„ ๋ชจ์‚ฌํ•˜๊ณ  ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์šฐ์„  ํ”ผํ•˜์ง€๋ฐฉ ํŒฌํ…€์„ ์ œ์ž‘ํ•˜๊ณ , ํ”ผ๋ถ€์˜ ํƒ„๋ ฅ๊ณผ ๊นŠ์€ ์—ฐ๊ด€์„ฑ์ด ์žˆ๋Š” ์ง„ํ”ผ์˜ ํŒฌํ…€์„ ์ œ์ž‘ํ•œ ๋‹ค์Œ, ๊ทธ ์œ„์— ํ‘œํ”ผ ํŒฌํ…€์„ ์ œ์ž‘ํ•˜์—ฌ ๊ฒฐํ•ฉํ•˜๋Š” ๋ฐฉ๋ฒ•์œผ๋กœ ๋‹ค์ธต ๊ตฌ์กฐ์˜ ํ”ผ๋ถ€ ํŒฌํ…€์„ ์ œ์ž‘ํ•˜์˜€๋‹ค. ํ”ผ๋ถ€์˜ ํ‘œํ”ผ์™€ ํ”ผํ•˜์ง€๋ฐฉ์€ ํƒ„์„ฑ ๋ฌผ์งˆ์— ํ•ด๋‹นํ•˜๋ฏ€๋กœ ๊ฐ ์ธต๊ณผ ๊ฐ™์€ ํƒ„์„ฑ ๊ณ„์ˆ˜๋ฅผ ๊ฐ€์ง€๋Š” ์‹ค๋ฆฌ์ฝ˜์„ ์‚ฌ์šฉํ•˜์—ฌ ํŒฌํ…€์„ ์ œ์ž‘ํ•˜์˜€๋‹ค. ํ‘œํ”ผ ํŒฌํ…€์˜ ๊ฒฝ์šฐ ์‹ค์ œ ํ”ผ๋ถ€์˜ ํ‘œํ”ผ๊ฐ€ ๋งค์šฐ ์–‡๊ธฐ ๋•Œ๋ฌธ์— ๋‘๊ป˜๋ฅผ ์‹ค์ œ ํ”ผ๋ถ€์™€ ๊ฐ™๊ฒŒ ๋งž์ถ”๊ธฐ ์œ„ํ•ด ์Šคํ•€ ์ฝ”ํ„ฐ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์–‡๊ฒŒ ์ œ์ž‘ํ•˜์˜€๋‹ค. ์‚ฌ๋žŒ์˜ ์ง„ํ”ผ๋Š” ์ ํƒ„์„ฑ ๋ฌผ์งˆ๋กœ ์•Œ๋ ค์ ธ ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ์ง„ํ”ผ ํŒฌํ…€ ๋˜ํ•œ ์ ํƒ„์„ฑ์„ ๊ฐ€์ง€๋„๋ก ์ œ์ž‘ํ•˜์˜€๋‹ค. ์ง„ํ”ผ ๋‚ด ํƒ„๋ ฅ ์„ฌ์œ ๊ฐ€ ํ•˜๋Š” ์—ญํ• ์„ ๋ชจ์‚ฌํ•˜๊ธฐ ์œ„ํ•ด ํ•˜์ด๋“œ๋กœ์ ค์„ ๋™๊ฒฐ๊ฑด์กฐํ•˜์˜€์œผ๋ฉฐ, ๋™๊ฒฐ๊ฑด์กฐํ•˜๋Š” ์กฐ๊ฑด์„ ๋ฐ”๊พธ์–ด๊ฐ€๋ฉฐ ์‹ค์ œ ํ”ผ๋ถ€์™€ ๊ฐ™์€ ๊ณต๊ทน์˜ ํฌ๊ธฐ๋ฅผ ๊ฐ–๋„๋ก ์ œ์ž‘ํ•˜์˜€๋‹ค. ๋™๊ฒฐ๊ฑด์กฐํ•œ ํ•˜์ด๋“œ๋กœ์ ค ์•ˆ์— ์•ก์ฒด๋ฅผ ์ฃผ์ž…ํ•˜์—ฌ ์™„์„ฑ๋œ ์ง„ํ”ผ ํŒฌํ…€์ด ์ ํƒ„์„ฑ์„ ๊ฐ–๋„๋ก ํ•˜์˜€๋‹ค. ์‚ฌ๋žŒ ํ”ผ๋ถ€์˜ ํƒ„๋ ฅ์„ ์ธก์ •ํ•˜๋Š” ์ ‘์ด‰ํ˜• ๊ธฐ์ˆ ๋กœ๋Š” ๋‹ค์Œ์˜ ๋„ค ๊ฐ€์ง€ ๋Œ€ํ‘œ์ ์ธ ๊ธฐ์ˆ ์ด ์žˆ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋Š” ํž˜์„ ์ฃผ์—ˆ์„ ๋•Œ ํ•ด๋‹น ๋ณ€์œ„๋ฅผ ์ธก์ •ํ•˜๋Š” ๋ฐฉ๋ฒ•์ด๊ณ  ๋‘ ๋ฒˆ์งธ๋Š” ์ „๊ทน์„ ์‚ฌ์šฉํ•˜์—ฌ ์ €ํ•ญ์„ ์ธก์ •ํ•˜๋Š” ๋ฐฉ๋ฒ•์ด๋ฉฐ, ์„ธ ๋ฒˆ์งธ๋Š” ์Œ์••์„ ์ฃผ์–ด ๋ณ€์œ„๋ฅผ ์ธก์ •ํ•˜๋Š” ๋ฐฉ๋ฒ•์ด๊ณ  ๋งˆ์ง€๋ง‰์œผ๋กœ ์ด๋ฏธํ„ฐ๊ฐ€ ๋ถ„ ํŒŒ๋™์„ ๋ฆฌ์‹œ๋ฒ„๊ฐ€ ๋ถ„์„ํ•˜๋Š” ๋ฐฉ๋ฒ•์ด๋‹ค. ๊ทธ์ค‘ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ฒซ ๋ฒˆ์งธ ๊ธฐ์ˆ ์„ ์‚ฌ์šฉํ•˜์˜€์œผ๋ฉฐ ๊ตฌํ˜• ํ”„๋กœ๋ธŒ๋กœ ์‘๋ ฅ ์™„ํ™” ์‹œํ—˜์„ ์ง„ํ–‰ํ•˜์—ฌ ์ ํƒ„์„ฑ์„ ๋ถ„์„ํ•˜์˜€๋‹ค. ํŒฌํ…€์œผ๋กœ ์‹คํ—˜ํ•˜๊ธฐ ์ „ ๋ˆํ”ผ๋กœ ์‹คํ—˜์„ ํ•œ ๊ฒฐ๊ณผ ํ”ผ๋ถ€๋Š” ๋‘ ๊ฐœ์˜ ์ง€์ˆ˜์  ๊ฐ์‡  ํ•จ์ˆ˜์˜ ํ•ฉ์œผ๋กœ ๋‚˜ํƒ€๋‚ผ ์ˆ˜ ์žˆ์–ด์•ผ ํ•จ์„ ํ™•์ธํ•˜์˜€๊ณ , ์ œ์ž‘ํ•œ ํŒฌํ…€ ๋˜ํ•œ ๋ˆํ”ผ ์ธก์ • ๊ฒฐ๊ณผ์™€ ์ž˜ ๋งž๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. ํ”ผ๋ถ€ ํŒฌํ…€์˜ ์ œ์ž‘ ๊ณผ์ •์˜ ๋‹จ๊ณ„๋ณ„๋กœ ์ œ์ž‘ ์กฐ๊ฑด์— ๋”ฐ๋ผ ์‘๋ ฅ ์™„ํ™” ์‹œํ—˜ ๊ฒฐ๊ณผ๊ฐ€ ๋‹ฌ๋ผ์ง€๋ฉฐ ๋ณธ ์—ฐ๊ตฌ์—์„œ ์ด๋ฅผ ๋ถ„์„ํ•˜์˜€๋‹ค. ์ ค๋ผํ‹ด ๋†๋„๊ฐ€ ์ฆ๊ฐ€ํ• ์ˆ˜๋ก ์ผ๋ฐ˜ํ™”๋œ ๋งฅ์Šค์›ฐ ๋ชจ๋ธ์—์„œ ํƒ„์„ฑ์— ํ•ด๋‹นํ•˜๋Š” ๊ณ„์ˆ˜๋“ค์ด ์ฆ๊ฐ€ํ•œ๋‹ค. ํŒฌํ…€ ๋‚ด ์•ก์ฒด์˜ ์ ์„ฑ์ด ์ฆ๊ฐ€ํ•˜๋ฉด ์‹œ์ƒ์ˆ˜๋“ค์ด ์ฆ๊ฐ€ํ•œ๋‹ค. ์ด ๊ฒฐ๊ณผ๋“ค์„ ํ™œ์šฉํ•˜์—ฌ ๋ณธ ์—ฐ๊ตฌ์—์„œ ๊ฐœ๋ฐœํ•œ ํ”ผ๋ถ€ ํŒฌํ…€์€ ์‹ค์ œ ํ”ผ๋ถ€์˜ ํƒ„๋ ฅ๊ณผ ๊ด€๋ จ์ด ์žˆ๋Š” ์š”์†Œ๋“ค์˜ ๋ณ€ํ™”๋ฅผ ๋ฐ˜์˜ํ•  ์ˆ˜ ์žˆ๋‹ค. ํ”ผ๋ถ€ ํŒฌํ…€์˜ ๊ฐœ๋ฐœ์€ ์‹ ๋ขฐ์„ฑ ์žˆ๋Š” ํƒ„๋ ฅ ์ธก์ • ๊ธฐ๊ธฐ ๊ฐœ๋ฐœ์˜ ๋ฐ‘๋ฐ”ํƒ•์ด ๋œ๋‹ค. ๊ธฐ์กด์˜ ํƒ„๋ ฅ ์ธก์ • ๊ธฐ๊ธฐ์™€๋Š” ๋‹ค๋ฅด๊ฒŒ ์ฝœ๋ผ๊ฒ, ์—˜๋ผ์Šคํ‹ด ๋“ฑ ํ”ผ๋ถ€์˜ ํƒ„๋ ฅ์— ์˜ํ–ฅ์„ ์ฃผ๋Š” ์š”์†Œ๋“ค์„ ๊ตฌ๋ถ„ํ•˜์—ฌ ์ธก์ •ํ•  ์ˆ˜ ์žˆ๋‹ค๋ฉด ์ด๋Š” ํ”ผ๋ถ€์˜ ํƒ„๋ ฅ์„ ์ธก์ •ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ƒˆ๋กญ๊ฒŒ ํ‘œ์ค€ํ™”ํ•  ์ˆ˜ ์žˆ๋Š” ๊ธฐํ‹€์ด ๋  ๊ฒƒ์ด๋‹ค. ํ–ฅํ›„์—๋Š” ์ด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ๊ณ ๊ฐ์—๊ฒŒ ํ”ผ๋ถ€ ๋ถ„์„ ๊ฒฐ๊ณผ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ํ”ผ๋ถ€ ๊ณ ๋ฏผ์— ๋Œ€ํ•œ ๋งž์ถค ํ•ด๊ฒฐ ๋ฐฉ์•ˆ์„ ์ œ์‹œํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์ด๋‹ค.The skin consists of three layers: epidermis, dermis, and subcutaneous fat, each with different physical properties. Research about the skin phantom that reflects these skin characteristics is being conducted from various perspectives. There are skin various phantoms each stimulating properties such as acoustic properties, surface properties, optical properties, and mechanical properties of the skin. In this study, among those properties, skin phantom that mimic mechanical properties of each layer of the skin is developed. Skin phantom developed in this study has a multi-layered structure, and the dermis phantom has porous structure. In addition, it stimulates the viscoelastic properties of real skin. The development of skin phantom will become the basis for the development skin elasticity measurement device in the future. Unlike conventional elasticity measuring devices, factors that affect skin elasticity, such as collagen and elastin, can be measured separately, and this would lead a new way to measure the elasticity of the skin. In the future, this result and development of skin phantom will provide customized solutions to skin problems to customers based on skin analysis.์ œ 1 ์žฅ ์„œ ๋ก  1 ์ œ 1 ์ ˆ ํ”ผ๋ถ€์˜ ๊ตฌ์กฐ 1 ์ œ 2 ์ ˆ ํ”ผ๋ถ€์˜ ๋…ธํ™” 2 ์ œ 2 ์žฅ ํ”ผ๋ถ€ ํŒฌํ…€์˜ ์ œ์ž‘ 3 ์ œ 1 ์ ˆ ํ‘œํ”ผ์™€ ํ”ผํ•˜์ง€๋ฐฉ ํŒฌํ…€์˜ ์ œ์ž‘ 3 ์ œ 2 ์ ˆ ์ง„ํ”ผ ํŒฌํ…€์˜ ์ œ์ž‘ 9 ์ œ 3 ์ ˆ ํ”ผ๋ถ€ ํŒฌํ…€์˜ ์ œ์ž‘ 14 ์ œ 3 ์žฅ ํ”ผ๋ถ€์˜ ๊ธฐ๊ณ„์  ํŠน์„ฑ์˜ ์ธก์ • 16 ์ œ 1 ์ ˆ ํ”ผ๋ถ€์˜ ํƒ„๋ ฅ ์ธก์ • 16 ์ œ 2 ์ ˆ ์••ํ” ์‹œํ—˜ 18 ์ œ 3 ์ ˆ ์‘๋ ฅ ์™„ํ™” ์‹œํ—˜ 20 ์ œ 4 ์ ˆ ํ”ผ๋ถ€ ํŒฌํ…€์˜ ๊ธฐ๊ณ„์  ํŠน์„ฑ 26 ์ œ 4 ์žฅ ํ”ผ๋ถ€์˜ ํƒ„๋ ฅ ์š”์†Œ ๋ถ„์„ 28 ์ œ 1 ์ ˆ ์ง„ํ”ผ ํŒฌํ…€ ๊ตฌ์„ฑ ๋ฌผ์งˆ ํ•จ๋Ÿ‰์— ๋”ฐ๋ฅธ ํƒ„๋ ฅ ๋ถ„์„ 28 ์ œ 2 ์ ˆ ์ง„ํ”ผ ํŒฌํ…€ ๋‚ด๋ถ€ ์•ก์ฒด์— ๋”ฐ๋ฅธ ํƒ„๋ ฅ ๋ถ„์„ 30 ์ œ 5 ์žฅ ๊ฒฐ ๋ก  32 ์ฐธ๊ณ ๋ฌธํ—Œ 33 Abstract 35 ํ‘œ ๋ชฉ์ฐจ [ํ‘œ 1] ํฌ์„์ œ๋ฅผ ์ฒจ๊ฐ€ํ•œ ํด๋ฆฌ๋จธ์™€ ์ฒจ๊ฐ€ํ•˜์ง€ ์•Š์€ ํด๋ฆฌ๋จธ์˜ ์˜๋ฅ  6 ๊ทธ๋ฆผ ๋ชฉ์ฐจ [๊ทธ๋ฆผ 1] ํด๋ฆฌ๋จธ ์ข…๋ฅ˜๋ณ„ ์ธ์žฅ ์‹œํ—˜ ๊ฒฐ๊ณผ 5 [๊ทธ๋ฆผ 2] ํ‘œํ”ผ ํŒฌํ…€ ํด๋ฆฌ๋จธ์˜ ์ธ์žฅ ์‹œํ—˜ ๊ฒฐ๊ณผ 7 [๊ทธ๋ฆผ 3] ์Šคํ•€ ์ฝ”ํŒ… ์‹œ๊ฐ„์— ๋”ฐ๋ฅธ ํ‘œํ”ผ ํŒฌํ…€ ํด๋ฆฌ๋จธ์˜ ๋‘๊ป˜ 8 [๊ทธ๋ฆผ 4] ๋™๊ฒฐ๊ฑด์กฐ ํ›„ ์ง„ํ”ผ ํŒฌํ…€์˜ ํ˜„๋ฏธ๊ฒฝ ์‚ฌ์ง„ 11 [๊ทธ๋ฆผ 5] (a) -10oC์—์„œ ๋™๊ฒฐ (b) -40oC์—์„œ ๋™๊ฒฐํ•œ ์ ค๋ผํ‹ด ํ•˜์ด๋“œ๋กœ์ ค์˜ SEM ์‚ฌ์ง„ 12 [๊ทธ๋ฆผ 6] ์ง„ํ”ผ ํŒฌํ…€ ์ œ์ž‘ ๊ณผ์ • 13 [๊ทธ๋ฆผ 7] ํ”ผ๋ถ€ ํŒฌํ…€ ๊ฒฐํ•ฉ ๊ณผ์ • ๋ฐ ์ œ์ž‘ํ•œ ํ”ผ๋ถ€ ํŒฌํ…€ 15 [๊ทธ๋ฆผ 8] ํ”„๋กœ๋ธŒ ๋ชจ์–‘ ๋ณ„ PDMS ์••ํ” ์‹คํ—˜ ๊ฒฐ๊ณผ์™€ Hertz ์ ‘์ด‰ ์ด๋ก ๊ณผ์˜ ๋น„๊ต 19 [๊ทธ๋ฆผ 9] ๋ˆํ”ผ์˜ ์‘๋ ฅ ์™„ํ™” ์‹œํ—˜ ๊ฒฐ๊ณผ 22 [๊ทธ๋ฆผ 10] Generalized Maxwell ๋ชจ๋ธ 23 [๊ทธ๋ฆผ 11] ๋ˆํ”ผ์˜ ์‘๋ ฅ ์™„ํ™” ์‹œํ—˜ ๊ฒฐ๊ณผ 24 [๊ทธ๋ฆผ 12] ๋ˆํ”ผ ์‘๋ ฅ ์™„ํ™” ์‹œํ—˜ ๊ฒฐ๊ณผ์™€ ํ”ผํŒ… ๊ฒฐ๊ณผ 25 [๊ทธ๋ฆผ 13] ํ”ผ๋ถ€ ํŒฌํ…€ ์‘๋ ฅ ์™„ํ™” ์‹œํ—˜ ๊ฒฐ๊ณผ์™€ ํ”ผํŒ… ๊ฒฐ๊ณผ 27 [๊ทธ๋ฆผ 14] ์ ค๋ผํ‹ด ๋†๋„์— ๋”ฐ๋ฅธ ํƒ„๋ ฅ ๊ด€๋ จ ๋ณ€์ˆ˜๋“ค 29 [๊ทธ๋ฆผ 15] ์ฒจ๊ฐ€ ์•ก์ฒด์˜ ์ ์„ฑ์— ๋”ฐ๋ฅธ ์‹œ์ƒ์ˆ˜ ๋ณ€ํ™” 31์„

    All-speed Two-phase Computations for General Equation of State with Preconditioning Techniques and Scaling of Numerical Dissipations

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€, 2015. 2. ๊น€์ข…์•”.The present research focuses on the system preconditioning and the scaling of numerical dissipations of RoeM and AUSMPW+ methods to enable more efficient and accurate computations of all-speed two-phase flows. Previous all-speed two-phase RoeM and AUSMPW+ methods have applied only steady system preconditioning technique while unsteady system preconditioning is essential for the convergence acceleration of unsteady low Mach number flows. In this study, unsteady system preconditioning is achieved by the consideration of Strouhal number in preconditioning parameter. Unlike existing preconditioning techniques, scaling factors in numerical dissipations are treated separately with preconditioning parameter in system so that the numerical instability and the accuracy degradation issues in low Mach number regions are resolved regardless of the convergence. The extension of two-phase RoeM and AUSMPW+ methods to general equation of state (EOS) is completed through the modification of shock discontinuity sensing term (SDST) to be independent on EOS. The performance of the modified SDST is confirmed to be as stable as the previous SDST which works well, but is compatible only with specific forms of EOS.1.Introduction 1 1.1 Computation of All-speed Two-phase Flows 1 1.2 Thesis Objectives 3 2 Governing Equations 5 2.1 Homogeneous Mixture Equations 5 2.1.1 Two-phase Navier-Stokes Equations 5 2.1.2 Determination of Mixture Properties 7 2.2 Preconditioning Techniques 7 3 Numerical Methods 11 3.1 Extension of Two-phase RoeM and AUSMPW+ to General EOS 11 3.1.1 Original Two-phase All-speed RoeM 12 3.1.2 Original Two-phase All-speed AUSMPW+ 13 3.1.3 Generalization of SDST 15 3.2 System Preconditioning for Unsteady Flows 20 3.3 Scaling of Numerical Dissipations 22 3.3.1 Properly Scaled Two-phase All-speed RoeM 26 3.3.2 Properly Scaled Two-phase All-speed AUSMPW+ 28 4 Numerical Results 30 4.1 Single-phase Flow Computation 31 4.1.1 Steady Inviscid Flow over a NACA0012 Airfoil 31 4.1.2 Steady Viscous Flow over a RAE2822 Airfoil 31 4.1.3 Steady Inviscid Flow around a Cylinder 34 4.1.4 Unsteady Inviscid Vortex Propagation 38 4.2 Two-phase Flow Computation 42 4.2.1 Two-phase Shocktube 42 4.2.2 Shock/Water-Column Interaction 45 4.2.3 Cryogenic cavitation 48 5 Conclusions 50Maste
    • โ€ฆ
    corecore