5 research outputs found

    国际编目原则声明

    Get PDF
    This statement replaces and broadens the scope of the Paris Principles from just textual works to all types of materials and from just the choice and form of entry to all aspects of bibliographic and authority data used in library catalogues. It includes not only principles and objectives (i.e., functions of the catalogue), but also guiding rules that should be included in cataloguing codes internationally, as well as guidance on search and retrieval capabilities

    GAN_(1-x)P_x三元合金的MOCVD生长

    No full text
    用金属有机化学气相淀积技术在蓝宝石衬底上成功外延了高P组分的GaN_(1-x)P_x 三元合金。俄歇电子能谱深度剖面结果表明在GaN_(1-x)P_x 中P的掺入量最高达到20%且分布均匀;X射线光电子能谱价态分析证实了外延层中Ga-P键的存在。对不同P组分的GaN_(1-x)P_x 样品进行了低温光致发光(PL)测试,与来自GaN衬底的带边发射相比,随三元合金中P组分的变化,GaN_(1-x)P_x 的PL峰呈现出了不同程度的红移。在GaN_(1-x)P_x 的PL谱中没有观测到有关GaP的发射峰,表明该合金材料没有发生相分离

    JUNO Sensitivity on Proton Decay pνˉK+p\to \bar\nu K^+ Searches

    Get PDF
    The Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillator detector designed to explore many topics in fundamental physics. In this paper, the potential on searching for proton decay in pνˉK+p\to \bar\nu K^+ mode with JUNO is investigated.The kaon and its decay particles feature a clear three-fold coincidence signature that results in a high efficiency for identification. Moreover, the excellent energy resolution of JUNO permits to suppress the sizable background caused by other delayed signals. Based on these advantages, the detection efficiency for the proton decay via pνˉK+p\to \bar\nu K^+ is 36.9% with a background level of 0.2 events after 10 years of data taking. The estimated sensitivity based on 200 kton-years exposure is 9.6×10339.6 \times 10^{33} years, competitive with the current best limits on the proton lifetime in this channel

    JUNO sensitivity on proton decay pνK+p → νK^{+} searches

    No full text

    JUNO sensitivity on proton decay p → ν K + searches*

    No full text
    The Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillator detector designed to explore many topics in fundamental physics. In this study, the potential of searching for proton decay in the pνˉK+ p\to \bar{\nu} K^+ mode with JUNO is investigated. The kaon and its decay particles feature a clear three-fold coincidence signature that results in a high efficiency for identification. Moreover, the excellent energy resolution of JUNO permits suppression of the sizable background caused by other delayed signals. Based on these advantages, the detection efficiency for the proton decay via pνˉK+ p\to \bar{\nu} K^+ is 36.9% ± 4.9% with a background level of 0.2±0.05(syst)±0.2\pm 0.05({\rm syst})\pm 0.2(stat) 0.2({\rm stat}) events after 10 years of data collection. The estimated sensitivity based on 200 kton-years of exposure is 9.6×1033 9.6 \times 10^{33} years, which is competitive with the current best limits on the proton lifetime in this channel and complements the use of different detection technologies
    corecore