7 research outputs found

    与南海西边界流有关的区域海洋学进展

    Get PDF
    从动力学角度,回顾了与南海西部主流系及其涡旋研究有关的南海物理海洋学的进展.主要内容涉及南海西边界流漂流浮标观测、西边界流源区涡旋遥感观测、西边界流源区跨陆架交换、涡流相互作用、西边界流年际变化、西边界流区海气相互作用、南海贯穿流等方面的进展.西边界流是一个强流系,其与季节和年际变化相关的结构特征、变率及跟某些动力过程的关联有待研究.在西边界流变率、涡旋环流相互作用、海气过程以及南海贯穿流取得了以下成果:(1)利用漂流浮标观测样本对南海西边界环流进行分析,指出南海西边界表层环流在到达越南中部沿岸后伴随着流幅变窄的同时流速加强;探讨了南海北部环流变化机理,定量诊断南海西边界流北支冬季逆风流产生的动力机制;利用航次数据对18°n断面的经向地转流进行诊断,表明南海西边界流的经向输送年际变化明显;(2)结合航次观测数据,对2003/2004年冬季南海北部2个反气旋涡旋和2007年夏季18°n附近的3个反气旋涡旋进行研究,指出冬季2个涡旋产生后以罗斯贝(rOSSby)波速度(约0.1M/S)沿北部陆坡向西南方向传播,并初步揭示了南海西边界环流与夏季3个涡旋的相互作用;南海北部陆架区涡旋西南向传播最大(最大为0.09M/S),而越南以东海域涡动能(EkE)最大,这都说明涡旋活动与南海西边界流存在强的相互作用;(3)发现南海西边界流附近海表面温度(SST)强的季节内振荡特征,进一步研究表明此区域冬季SST季节内变化会使潜热季节内信号减弱20%;(4)探讨了南海贯穿流的长期变化特征以及与整个太平洋环流系统的相互关联.国家自然科学基金重点项目(40830851); 国家重点基础研究发展计划(2011CB403504); 中国科学院近海海洋观测研究网络——西沙南沙海洋观测研究站建设项目(KZCX2-EW-Y040)资

    南海中深层动力格局与演变机制研究进展

    Get PDF
    南海是连接印度洋-太平洋的最大边缘海,在季风、海峡水交换以及复杂地形影响下,南海环流呈现出独特的三层结构以及远强于大洋的混合特征.理论与观测表明,南海内潮、内孤立波以及强风等过程是强混合的动力来源.在南海强混合作用下,南海发育了活跃的中深层动力系统,一方面促进了南海与大洋之间的水体交换,另一方面调控上层风生环流,使得南海环流显著区别于其他热带与副热带海盆.南海活跃的中深层环流所具有的物质搬运能力又显著影响着南海的地质沉积、生物地球化学循环等过程.中国对深海研究持续投入,在南海中深层环流动力学研究方面取得了显著的成果,文章就该方面进行总结,并对南海深海环流未来研究设想进行初步探讨

    Glider-observed anticyclonic eddy in northern South China Sea

    No full text
    Using high-resolution in situ data from gliders, satellite data of sea level anomaly and geostrophic currents, we presented the detailed structure of an anticyclonic eddy during spring 2015 in the northern South China Sea. The impact depth of the anticyclonic eddy reached about 1000 m and had a maximum temperature anomaly of about 3 degrees C at similar to 120 m and maximum salinity anomaly of more than 0.3 psu in the mixed layer. The maximum geostrophic velocities perpendicular to the glider path were about 0.3 m s(-1) at 100 m. The estimated radius was about 72 km and the translation velocity was about 5.2 cm s(-1). The rotational speed of the eddy was estimated to be 0.35 m s(-1). The high temperature and large salinity of the anticyclonic eddy indicated it did not originate from the South China Sea locally. The analysis of water mass indicated the character of the eddy water was similar to Kuroshio water, and the time evolution of the sea level anomaly and surface geostrophic velocity anomaly further validated that it originated from the Kuroshio intrusion as a loop current to the southwest of Taiwan.</p

    JUNO Sensitivity on Proton Decay pνˉK+p\to \bar\nu K^+ Searches

    Get PDF
    The Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillator detector designed to explore many topics in fundamental physics. In this paper, the potential on searching for proton decay in pνˉK+p\to \bar\nu K^+ mode with JUNO is investigated.The kaon and its decay particles feature a clear three-fold coincidence signature that results in a high efficiency for identification. Moreover, the excellent energy resolution of JUNO permits to suppress the sizable background caused by other delayed signals. Based on these advantages, the detection efficiency for the proton decay via pνˉK+p\to \bar\nu K^+ is 36.9% with a background level of 0.2 events after 10 years of data taking. The estimated sensitivity based on 200 kton-years exposure is 9.6×10339.6 \times 10^{33} years, competitive with the current best limits on the proton lifetime in this channel

    JUNO sensitivity on proton decay pνK+p → νK^{+} searches

    No full text

    JUNO sensitivity on proton decay p → ν K + searches*

    No full text
    The Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillator detector designed to explore many topics in fundamental physics. In this study, the potential of searching for proton decay in the pνˉK+ p\to \bar{\nu} K^+ mode with JUNO is investigated. The kaon and its decay particles feature a clear three-fold coincidence signature that results in a high efficiency for identification. Moreover, the excellent energy resolution of JUNO permits suppression of the sizable background caused by other delayed signals. Based on these advantages, the detection efficiency for the proton decay via pνˉK+ p\to \bar{\nu} K^+ is 36.9% ± 4.9% with a background level of 0.2±0.05(syst)±0.2\pm 0.05({\rm syst})\pm 0.2(stat) 0.2({\rm stat}) events after 10 years of data collection. The estimated sensitivity based on 200 kton-years of exposure is 9.6×1033 9.6 \times 10^{33} years, which is competitive with the current best limits on the proton lifetime in this channel and complements the use of different detection technologies
    corecore