9 research outputs found

    外延生长Gel-xSnx合金的研究进展

    No full text
    Ge_1-xSn_x是一种新型的Ⅳ族材料,具有广阔的应用前景,但是其生长存在许多困难,尤其是Sn易于分凝.采用离子轰击和快速变温等方法可以有效地抑制Sn的分凝,但是所生长的材料的热稳定性都比较差.采用化学气相沉积法获得了较高质量的Ge_1-xSn_x合金,但是所用的Sn气体源难以获得.综述了Ge_1-xSn_x合金外延生长的研究进

    Si(001)衬底上分子束外延生长Ge_(0.975)Sn_(0.025)合金薄膜

    No full text
    使用低、高温两步法生长的高质量Ge薄膜作为缓冲层, 在Si(001)衬底上采用分子束外延法生长出Ge_(0.975) Sn_(0.025)合金薄膜.X射线双晶衍射和卢瑟福背散射谱等测试结果表明, Ge_(0.975)Sn_(0.025)合金薄膜具有很好的晶体质量, 并且没有发生Sn表面分凝.另外, Ge_(0.975)_Sn_(0.025)合金薄膜在500℃下具有很好的热稳定性, 有望在Si基光电器件中得到应

    在Si衬底上分子束外延生长GeSn合金的方法

    No full text
    本发明提供一种在Si衬底上分子束外延生长GeSn合金的方法,包括如下步骤:步骤1:在Si衬底上生长一层第一Ge材料层;步骤2:在第一Ge材料层上生长一层第二Ge材料层;步骤3:在第二Ge材料层上生长一层第一GeSn合金层;步骤4:在第一GeSn合金层上生长一层第二GeSn合金层,完成材料的生长

    JUNO Sensitivity on Proton Decay pνˉK+p\to \bar\nu K^+ Searches

    Get PDF
    The Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillator detector designed to explore many topics in fundamental physics. In this paper, the potential on searching for proton decay in pνˉK+p\to \bar\nu K^+ mode with JUNO is investigated.The kaon and its decay particles feature a clear three-fold coincidence signature that results in a high efficiency for identification. Moreover, the excellent energy resolution of JUNO permits to suppress the sizable background caused by other delayed signals. Based on these advantages, the detection efficiency for the proton decay via pνˉK+p\to \bar\nu K^+ is 36.9% with a background level of 0.2 events after 10 years of data taking. The estimated sensitivity based on 200 kton-years exposure is 9.6×10339.6 \times 10^{33} years, competitive with the current best limits on the proton lifetime in this channel

    JUNO sensitivity on proton decay p → ν K + searches*

    No full text
    The Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillator detector designed to explore many topics in fundamental physics. In this study, the potential of searching for proton decay in the pνˉK+ p\to \bar{\nu} K^+ mode with JUNO is investigated. The kaon and its decay particles feature a clear three-fold coincidence signature that results in a high efficiency for identification. Moreover, the excellent energy resolution of JUNO permits suppression of the sizable background caused by other delayed signals. Based on these advantages, the detection efficiency for the proton decay via pνˉK+ p\to \bar{\nu} K^+ is 36.9% ± 4.9% with a background level of 0.2±0.05(syst)±0.2\pm 0.05({\rm syst})\pm 0.2(stat) 0.2({\rm stat}) events after 10 years of data collection. The estimated sensitivity based on 200 kton-years of exposure is 9.6×1033 9.6 \times 10^{33} years, which is competitive with the current best limits on the proton lifetime in this channel and complements the use of different detection technologies

    JUNO sensitivity on proton decay pνK+p → νK^{+} searches

    No full text
    corecore