10 research outputs found

    先进CMOS逻辑电路74AC系列

    No full text

    HEMT结构材料中二维电子气的输运性质研究

    No full text
    该文通过变温的Hall测量系统地研究了GaAs基HEMT和PHEMT以及InP基HEMT三种结构材料的电子迁移率μ_n和二维电子浓度n_s。仔细地分析了不同HEMT结构材料的散射机制对电子迁移率的影响以及不同HEMT材料结构对电子浓度的影响。研究结果表明InP基HEMT的n_s×μ_n值比GaAs基HEMT和PHEMT的n_s×μm值都大,说明可以用n_s×μ_0值来判断HEMT结构材料的性能好坏

    界面态对AlGaAs/GaAs HEMT直流输出特性的影响

    No full text
    利用高电子迁移率晶体管(HEMT)的直流输出分析模型,首次定量地分析了界面态对AlGaAs/GaAs HEMT直流输出特性的影响。考虑界面态的作用,详细分析了不同界面态密度对HEMT的I-V特性和器件跨导的影响。研究结果表明随着界面态密度的增加,栅极电压对电流的控制能力减小,从而使器件的跨导减小

    JUNO Sensitivity on Proton Decay pνˉK+p\to \bar\nu K^+ Searches

    Get PDF
    The Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillator detector designed to explore many topics in fundamental physics. In this paper, the potential on searching for proton decay in pνˉK+p\to \bar\nu K^+ mode with JUNO is investigated.The kaon and its decay particles feature a clear three-fold coincidence signature that results in a high efficiency for identification. Moreover, the excellent energy resolution of JUNO permits to suppress the sizable background caused by other delayed signals. Based on these advantages, the detection efficiency for the proton decay via pνˉK+p\to \bar\nu K^+ is 36.9% with a background level of 0.2 events after 10 years of data taking. The estimated sensitivity based on 200 kton-years exposure is 9.6×10339.6 \times 10^{33} years, competitive with the current best limits on the proton lifetime in this channel

    JUNO sensitivity on proton decay pνK+p → νK^{+} searches

    No full text

    JUNO sensitivity on proton decay p → ν K + searches*

    No full text
    The Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillator detector designed to explore many topics in fundamental physics. In this study, the potential of searching for proton decay in the pνˉK+ p\to \bar{\nu} K^+ mode with JUNO is investigated. The kaon and its decay particles feature a clear three-fold coincidence signature that results in a high efficiency for identification. Moreover, the excellent energy resolution of JUNO permits suppression of the sizable background caused by other delayed signals. Based on these advantages, the detection efficiency for the proton decay via pνˉK+ p\to \bar{\nu} K^+ is 36.9% ± 4.9% with a background level of 0.2±0.05(syst)±0.2\pm 0.05({\rm syst})\pm 0.2(stat) 0.2({\rm stat}) events after 10 years of data collection. The estimated sensitivity based on 200 kton-years of exposure is 9.6×1033 9.6 \times 10^{33} years, which is competitive with the current best limits on the proton lifetime in this channel and complements the use of different detection technologies
    corecore