6 research outputs found

    The Registration Measures and Optimization Methods Related in Brain Functional Magnetic Resonance Imaging

    No full text
    随着脑功能成像技术的迅速发展,人们对fMRI时间序列图像的配准问题也越来越重视.通过配准测度的建立,图像的配准问题最终被归结为数学上的多参数优化问题.本文综述了目前较常用的配准方法,介绍了基于灰度值的图像配准的差值平方和测度与互信息测度以及求解它们的优化方法:阻尼Gauss Newton法、有记忆功能的模拟退火算法、改进的Powell算法和一类新的进化策略算法.这四种算法各有特点能有效地找到最佳配准参数,配准精度较高,且能收敛到全局最优点

    fMRI时间序列图像的配准测度及其相关优化方法

    No full text
    随着脑功能成像技术的迅速发展,人们对fMRI时间序列图像的配准问题也越来越重视.通过配准测度的建立,图像的配准问题最终被归结为数学上的多参数优化问题.本文综述了目前较常用的配准方法,介绍了基于灰度值的图像配准的差值平方和测度与互信息、测度以及求解它们的优化方法:阻尼GaussNewton法、有记忆功能的模拟退火算法、改进的Powell算法和一类新的进化策略算法.这四种算法各有特点能有效地找到最佳配准参数,配准精度较高,且能收敛到全局最优点

    JUNO Sensitivity on Proton Decay pνˉK+p\to \bar\nu K^+ Searches

    Get PDF
    The Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillator detector designed to explore many topics in fundamental physics. In this paper, the potential on searching for proton decay in pνˉK+p\to \bar\nu K^+ mode with JUNO is investigated.The kaon and its decay particles feature a clear three-fold coincidence signature that results in a high efficiency for identification. Moreover, the excellent energy resolution of JUNO permits to suppress the sizable background caused by other delayed signals. Based on these advantages, the detection efficiency for the proton decay via pνˉK+p\to \bar\nu K^+ is 36.9% with a background level of 0.2 events after 10 years of data taking. The estimated sensitivity based on 200 kton-years exposure is 9.6×10339.6 \times 10^{33} years, competitive with the current best limits on the proton lifetime in this channel

    JUNO sensitivity on proton decay pνK+p → νK^{+} searches

    No full text

    JUNO sensitivity on proton decay p → ν K + searches*

    No full text
    The Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillator detector designed to explore many topics in fundamental physics. In this study, the potential of searching for proton decay in the pνˉK+ p\to \bar{\nu} K^+ mode with JUNO is investigated. The kaon and its decay particles feature a clear three-fold coincidence signature that results in a high efficiency for identification. Moreover, the excellent energy resolution of JUNO permits suppression of the sizable background caused by other delayed signals. Based on these advantages, the detection efficiency for the proton decay via pνˉK+ p\to \bar{\nu} K^+ is 36.9% ± 4.9% with a background level of 0.2±0.05(syst)±0.2\pm 0.05({\rm syst})\pm 0.2(stat) 0.2({\rm stat}) events after 10 years of data collection. The estimated sensitivity based on 200 kton-years of exposure is 9.6×1033 9.6 \times 10^{33} years, which is competitive with the current best limits on the proton lifetime in this channel and complements the use of different detection technologies
    corecore