9,275 research outputs found

    Electron omnidirectional intensity contours in the earth's outer radiation zone at the magnetic equator

    Get PDF
    Omnidirectional electron intensities in the outer belt at earths magnetic equato

    Adaption of evolutionary programming to the prediction of solar flares

    Get PDF
    Adapting evolutionary programming to prediction of solar flare

    Gamma-Ray Emission from CYGNUS-X-1 - Emission Mechanisms and Implications for the Standard Model

    Get PDF

    The X-ray afterglow of the Gamma-ray burst of May 8, 1997: spectral variability and possible evidence of an iron line

    Get PDF
    We report the possible detection (99.3% of statistical significance) of redshifted Fe iron line emission in the X-ray afterglow of Gamma-ray burst GRB970508 observed by BeppoSAX. Its energy is consistent with the redshift of the putative host galaxy determined from optical spectroscopy. The line disappeared about 1 day after the burst. We have also analyzed the spectral variability during the outburst event that characterizes the X-ray afterglow of this GRB. The spectrum gets harder during the flare, turning to steep when the flux decreases. The variability, intensity and width of the line indicate that the emitting region should have a mass approximately greater than 0.5 solar masses (assuming the iron abundance similar to its solar value), a size of about 3 times 10^15 cm, be distributed anisotropically, and be moving with sub-relativistic speed. In contrast to the fairly clean environment expected in the merging of two neutron stars, the observed line properties would imply that the site of the burst is embedded in a large mass of material, consistent with pre-explosion ejecta of a very massive star. This material could be related with the outburst observed in the afterglow 1 day after the GRB and with the spectral variations measured during this phase.Comment: To appear in The Astrophysical Journal Letters, AASTEX LateX, 2 PostScript figure

    Continuum: designing timelines for hierarchies, relationships and scale

    No full text
    Temporal events, while often discrete, also have interesting relationships within and across times: larger events are often collections of smaller more discrete events (battles within wars; artists' works within a form); events at one point also have correlations with events at other points (a play written in one period is related to its performance, or lack of performance, over a period of time). Most temporal visualisations, however, only represent discrete data points or single data types along a single timeline: this event started here and ended there; this work was published at this time; this tag was popular for this period. In order to represent richer, faceted attributes of temporal events, we present Continuum. Continuum enables hierarchical relationships in temporal data to be represented and explored; it enables relationships between events across periods to be expressed, and in particular it enables user-determined control over the level of detail of any facet of interest so that the person using the system can determine a focus point, no matter the level of zoom over the temporal space. We present the factors motivating our approach, our evaluation and implementation of this new visualisation which makes it easy for anyone to apply this interface to rich, large-scale datasets with temporal data

    Toward autonomous spacecraft

    Get PDF
    Ways in which autonomous behavior of spacecraft can be extended to treat situations wherein a closed loop control by a human may not be appropriate or even possible are explored. Predictive models that minimize mean least squared error and arbitrary cost functions are discussed. A methodology for extracting cyclic components for an arbitrary environment with respect to usual and arbitrary criteria is developed. An approach to prediction and control based on evolutionary programming is outlined. A computer program capable of predicting time series is presented. A design of a control system for a robotic dense with partially unknown physical properties is presented

    Suprathermal plasma observed on STS-3 Mission by plasma diagnostics package

    Get PDF
    Artificially produced electron beams were used extensively during the past decade as a means of probing the magnetosphere, and more recently as a means of actively controlling spacecraft potential. Experimentation in these areas has proven valuable, yet at times confusing, due to the interaction of the electron beam with the ambient plasma. The OSS-1/STS-3 Mission in March 1982 provided a unique opportunity to study beam-plasma interactions at an altitude of 240 km. On board for this mission was a Fast Pulse Electron Generator (FPEG). Measurements made by the Plasma Diagnostics Package (PDP) while extended on the Orbiter RMS show modifications of the ion and electron energy distributions during electron beam injection. Observations made by charged particle detectors are discussed and related to measurements of Orbiter potential. Several of the PDP instruments, the joint PDP/FPEG experiment, and observations made during electron beam injection are described
    corecore