nasA Contractor Report 165948

TOWARD AUTONOMOUS SPACECRAFT

LAWRENCE J. FOGEL, PHILIP G. CALABRESE, MICHAEL J. WALSH, AND ALVIN J. OWENS

DECISION SCIENCE, INC. SAN DIEGO, CA 92117

Contract NAS1-16621
June, 1982

Natıonal Aeronautics and
Space Administration
Lengley Rescarch Center
Hampton. Virainia 23665

nasa Contractor Report 165948

TONARD AUTONOMOUS SPACECRAFT

LAWRENCE J. FOGEL, PHILIP G. CALABRESE, MICHAEL J. WALSH, AND ALVIN J. OWENS

dECISION SCIENCE, INC. SAN DIEGO, CA 92117

Contract NAS1-16621
June, 1982

NMSA

 Sbice Actrminsitratan

CONTENTS

Page
INTRODUCTION. 1
OISCUSSION. 4
CONCLUSION 17
APPENDICES
A: DETERMINING PERIODS OF NOISY SEQUENTIAL DATA A-1
B: THE EVOLUTIONARY PROGRAM B-1
C: AUTOMATIC CONTROL OF ROBOTIC DEVICES. C-1
PRECEDING PAGE BLANK NOT FILMED

INTRODUC,ION

Modern spacecraft represent a significant investment. The return on this investment can only be realized if these craft adequately perform the assigned missions in spite of the stringent environment of outer space and unexpected circumstance. The latest advances in engineering technology are brought to bear to overcome the challenge posed by the environment, and yet the designer recognizes his inability to foresee all possible circumstance. Therefore, to compensate for the unexpected, the control of modern spacecraft remains largely in human hands.

Attempts have been made to automate those lower level routine functions that must be performed within the system. The human operator is only called upon to manage these by exception... to assume control whenever there is an indication of inadequate performance in some particular regard. He can compensate for failures by reconfiguring the mechanism, or if necessary, altering the missior. The higher levels of decision making remain solely the prerogative of the human operator. The need for close control of the developing situation dramatizes the potential value of having man aboard the spacecraft.

Yet two important missions stand in need of taking new steps toward autonomous spacecraft. The first of these concerns exploration of deep space. Here, it is clearly unsuitable to include the human operator aboard the vehicle. Further, remote control becomes inadequate in view of the significant communication delays. Such spacecraft must be intelligently capable of evaluating a variety of opportunities and coping with unexpected threats, for only then can the mission be completed with the greatest degree of success.

Sc long as the intent of the exploration is definé a strict sense of what is sought, the findinas ane unduly $\quad \cdots \cdots$ strained. The value of having a man onboard lircaly rest, apon
his ability to understand the mission in some broader sense so that he can take advantage of "targets of opportunity" and modify the mission to explore previously unforeseen avenues. By the same token, he would be in a position to more properly evaluate unanticipated dangers and, recognizing these, alter the course of the mission or take other appropriate actions. In essence, the challenge is to devise logical processes that can perform this sophisticated function. We must incorporate a decision-making mechanism that simulates some of the essential features of human intelligence, at least to the extent of referencing the brod scope of the mission intent and optimal selection of response behavior in the light of that purpose and the developing situation.

The second mission concerns the retrieval of spacecraft that require refurbishment or may have failed in orbit. The space shuttle is equipped to accomplish this for low altitude target objects. It seems reasonable to expect similar retrieval devices for synchronous orbit target objects in the near future.

Control of the retrieval mechanism requires prediction of the relative orientation and motion of the target object, thus making it possible to safely approach, contact, and bring that object aboard the shuttle. But, the target object may behave in an erratic manner. Contact with it may cause a change of its internal state and perhaps activation of its propulsion system. Further, the retrieval mechanism may behave in a complex manner when coupled with such a target object. Even if the target is passive, perfect reliability of the retrieval mechanism is never assured. It is therefore essential to design for "graceful failure" in that inappropriate retrieval might prove disasterous for the shuttle.

Both of these missions encumpass the more general prot?em wherein it's desirable to approach and investigate or evade ome particular object in space. Some target objects of intcres i might be less well-known than our own failed satellites. The
very presence of the "shuttle" may affect the behavior cf such an object . . . causing the object to adopt a collision course (through a gravitational attraction or as a result of the programmed propulsion of a space mine). Alternatively, the object might take an evasive course (in the case of a foreign satellite programmed to avoid being captured).

The situation becomes even more complex if the target object can operate at some higher level of intelligence. For example, it may be purposive within some context that includes the friendly spacecraft. Note that if there is adequate remote monitoring and close control capability, this intelligence need not be onboard the target object. In the case of space exploration, a number of friendly spacecraft may be assigned to cooperate by performing complementary furctions. Here their interactive behavior requires gaming in an effective manner so that they benefit one another and operate collectively to best support the accomplishment of the mission. Under certain circumstances a single spacecraft of the consort might be assigned a terminal mission, this in order to gain and transfer the knowledge required to increase the likelihood of success for those that remain.

The purpose of this investigation has been to explore some ways in which autonomous behavior can be extended to treat situations wherein close control by the human operator may not be appropriate or even possible.

DISCUSSION

Intelligent behavior begins with holding a concise understanding of what is to be accomplished. Ordinarily, purpose is depicted only in terms of the most desirable outcome. . . with some consideration being given to those alternative futures that are considered most undesirable. In point of fact, purpose becomes well defined if, and only if, it consists of a statement of the relative worth of each of the significantly different futures . . . this being expressed in the form of a hierarchic valuated state space and appropriate normalizing function.

Intelligent behavior also requires an adequate sensing system. There is some chance that the environment will be as desired, but it is more likely to experience the contrary. Opportunities may be some distance off-course, and there may be stumbling blocks or greater dangers directly in the way. The sensor system must allow observation in such a way as to enabie pattern recognition. . . re-cognition, knowing again what has been known before. Simply stated, pattern recognition consists of comparing the observed environment to similar templates referenced from memory. A decision is made as to which of these templates is most like the present observation. Note that this process yields only a limited understanding . . . one restricted to the vocabulary of templates; most endeavors to improve pattern recognition are concerned with selecting a most suitable nearness metric and finding convenient means for computing the error.

More sophisticated purposive behavior involves classification. . . the discovery of useful templates. Here the intent is to characterize the observed environment in terms of the existing regulations. Mathematical techniques in clusterina. factor analysis, and discriminant function analysis previce meaningful ways to group data poits within a predefined stace space. Here again, the task is define that spare in terwa \quad © axes and a distance metric.

```
OPra:m . 15
OF PGOR Cu, wity
```

Decisions are made in sequence. It is therefore essential to find temporal regularities and extend these for the sake of predicting the environment. Purposive behavior hinges on an ability to predict the environment in order to anticipate opportunities and avoid threats. Lacking an ability to predict one's environment generally precludes intelligent behavior.

Alchough the process of prediction can be identified with the scientific method, it is more convenient to briefly state that forecasting requires definition of prediction span (the time of future concern), an ability to retrieve the sensed data from memory, and a criterior that specifically indicates the relative worth of each of the possible correct and incorrect predictions. This allows developing a model of those regularities that can then be extended to yield a most.appropriate forecast on the basis of what is known and the criterion of predictive performance. Note that this process requires pattern recognition in the sense that the recorded data base must be referenced in terms of the given criterion (payoff matrix, error cost function, predictive goal). It also requires classification in the sense that the regularities already experienced must be identified before these can be considered in consort and collectively extended to yield a forecast. Indeed, the process of prediction is necessarily inductive and therefore cannot be performed with perfect certainty. Efficient structuring of a useful model is the very essence of creativity.

Although the literature is replete with numerous methods for prediction, most of these treat the process of forecasting only with respect to the least mean squared error criterion. This tradition has grown in view of analytic procedures which are made far more tractable with this criterion. For example, Regression Analysis and fourier Analysis provide methods for forecasting time series on the basis of the least mean suared error criterion. But in the real world, equally cirrect interirotarinn. are not of equal worth, and the iarious erios of forecistinc

ORiGiN: ras :
 OF POOR QUALITY

usually are attributed widely different costs. Appendix A indicates a specific method for extracting cyclic components from an arbitrary environment with respect to the usual criterion and with respect to an arbitrary criterion. Such a method is essential for treating environments wherein the best prediction is not simply the most likely future, but rather that future which reflects the underlying purpose of the prediction.

The credibility of any predictive model can only be determined by examining the validity of its forecasts over time. In general, the same model is used again and again so long as its predictions are of sufficient worth. If, on the other hand, the model proves untrue (that is, sufficiently costly), its credibility is degraded. It then becomes worthwhile to introduce other uncorrelated data for the sake of generating a new model worthy of testing. In point of fact, models (theories, conjectures, hypotheses, rules, laws, and so forth) must include information beyond that contained within the data base. Ordinarily, such additional information comes from prior experience using different types of models in similar problem domains. Without such learning, the creative process is reduced to a selection upori randomness.

The credibility of each predictive model can be estimated by comparing the forecast of that model to the most recently experienced data. It is tempting, but invalid, to extend the mathematical model into the recent past to yield postdictions to be compared point by point with respect to the error criterion, for here the same data base is being used twice. The proper procedure is to truncate the data at, say, a point in recent time comparable in span to the time interest of the forecast, then qenerate a new model based on the truncated data, then evaluate its nredictions against the recent past. Presumably, the same kind model would have a similar credibility.

Prediction is a basis for inntrol. Each prediction . based on a model that represcris the unda!?ying logic c 'me
environment. If the environment is responsive to swimi...ion, then a prediction of its response in the light of a recent sequence of stimuli is based on model of the transduction. Control theory was developed with the intent of causing a linear plant to behave in a desired manner. Some treatment was then given to certain particular nonlinearities in that all real world transduction is nonlinear. The problem of identification arises when it becomes necessary to characterize an unknown plant. More carefully stated, the task is to select from the available resources that stimulus which is most likely to cause the unknown environment to yield the desired response. And this is a simplistic view, for it is important to understand when the specific desire cannot be realized and, if it cannot be, then what stimulus is most desirable in the sense of yielding a worthwhile, if not most desirable, response. Modern control theory does not treat this problem in complete generality but rather offers particular approximations on the basis of limiting assumptions. In general, there should be no such presumption. The unknown plant may be linear or nonlinear, passive or active, possibly even intelligently cooperative, ambivalent or competitive.

Evolutionary programming provides a general approach for prediction and control in this regard. Preliminary findings on such programming have been reported in the literature. However, a new program was written wherein finite state machines are scored in their ability to predict each data point in the most recent portion of the experienced data stream, this with respect to an arbitrary criterion. An original machine is chosen at random or on the basis of assumptions concerning the underlying regularities within the environment. This parent machine is then mutated in a random manner to yield an offspring which is then similarly scored in terms of its ability to forecast each next point in the recent past. If the score for this offspring is less than that of the parent, that offspring is discarded, and a new offspring is generated. If, however, th. ifspring is superior to the parent, this offopring becuits a iew parint.

Such nonregressive evolution proceeds in fast time until a higher level criterion is reached. For example, the predictive file may reach a sufficient level, or the computational time or space may run out. The resulting machine is then exercised to yield the required forecast.

This prediction is then compared with the actual next state of the environment, and the question is raised as to the next symbol. Here the machine used for the last prediction becomes the progenitor of the next evolutionary exploration, for surely some useful regularity must have been found, even if the current prediction may be in error.

It is convenient to include a cost for complexity in the structure indicating the worth of each evaluated machine. In essence, this embodies the Maxim of Parsimony. If this factor is small, the evolving machines grow in complexity to express each regular aspect of the environment in the light of the criterion. If this factor is large, the machines are reduced to an oversimplified view of these regularities. Note that a periodic environment of arbitrary cycle can be perfectly represented by a single state machine. The program written for such evolutionary prediction and modeling permits a variable alphabet size, arbitrary predictive criteria and includes an inner loop scored in terms of its ability to forecast each next point in the recent past. If the score for this offspring is less than that of the parent, that offspring is discarded, and a new offspring is generated. If, however, the offspring is superior to the parent, this offspring becomes a new parent. Such nonregressive evolution proceeds in fast time until a higher level criterion is reached. For example, the predictive file may reach a sufficient level, or the computational time or space may run out. The resulting machine is then exercised to yield the required forecast.

This prediction is then compared with the actual next state of the environment, and the question is raised as to the next
symbol. Here the machine used for the last prediction becumes the progenitor of the next evolutionary exploration, for suraly some useful regularity must have been found, even that allows the nature of the mutation noise to be a function of the prior success of that kind of noise in the evolutionary process. This method for prediction provides a significant advantage with respect to modeling and closing the control loop for an arbitrary environment.

Each prediction is compared with the next actual output to yield a measure of the credibility of the identification process. When sufficient credibility has been reached, the model of the plant can be used as a basis for closing the loop in an appropriate manner. In essence, successful prediction confirms the model as a replica of the plant.

Here is a critical aspect of control loop design and yet a straightforward logic permits determination of each next optimal resource assignment. The logic references the control goal (a valuated state space that portrays each of the siqnificantly different futures and their relative worth), the allocable resources at that moment in time, and the finite-state machine feedback from the predictor, reference Figure 1.

Examine only the present state of that machine. Each of the transitions from that state is examined in an exhaustive manner to determine if any transition indicates the more desired output from the plan. If so, the related input is noted, and there is a test of the inventory of resources to determine if such a stimulus can be invoked to yield the desired response. If either the output symbol or the required resource is not found, reference is made to the next most desirable state in terms of the corresponding output symbol and required resolirce assignment. The process continues until a commitment is mide or tnere is a determination that no meaningful options are :pen. for examile, if the model is the machine shown in Figure 2: then ref...ence to the present state, K, indicates that an outpul of four cinnot be
obtained, regardless of the input. The desire is to have the largest output response, then obviously this is nine, provided five is an allocable resource. Note that, in general, the plant may be controllable only in certain states and even controllable to a different degree as a function of the state. Here is the essence of the control theory without the usual restricting assumptions.

The problem of control occurs in many different regimes. The task of retrieving objects from scace by means of the shuttie is difficilt for several reasons. First, the retrieval arm is not a rigid body. The equations of motion for such a flexible structure are quite complex. Nevertheless, moderi structural analysis programs on large digital computers provide a means for performing structural analysis by finite element methods, taking only the first few bending modes into account.

Second, tre shuttle does not provide a stable Dase in inertial space. Therefore, the geometric problems associated with the ret-ieval of an object from space are an order of magnitude more complicated than those faced by designers of terrestrial robots, where it is reasonable to expect an inertially fixed base for the robot.

Third, the exact size and mass of the object to be retrieved (the spacecraft) may not be known; and therefore, a prediction of the motion once the object to be retrieved has been "grabbed" by the retrieving system may not be possible with the desired degree of reliability for a successful retrieval operation.

Fourth, the initial motion, and therefore the initial movement and moment of momentum of the spacecraft, may be unknown or only approximately known. It is also not known if the spacecraft is spinning, whether it may be retrieved while in that sitte wr
 be stopped completely (at some adritional cost in si/e atimatim,

Fifth, the forces and movenonts acting on twoceraft riay not be known. Frequently, of curse, r spacecraft is a passive body, exerting no forces or movements by itself. On the other hand, it may be a satellite with an attitude control system vhich may or may not be functioning properly. One could even consider the case of a satellite whose attitude control system may have been struck, so that it might seem that the satellite is passive, but the shock of the capture might make it active once again.

These five areas of uncertainties (and there are more, such as temperature effects and others) should indicate that an offline study and simulation of a particular retrieval task will generally provide only a baseline model from which first-order approximations to guidance laws may be derived and around which certain sensitivity studies may be performed. If the total amount of the uncertainties is relatively small, and if no unforeseen effects take place during the retrieval process, such an off-line model and simulation may be adequate. If, however, many uncertainties exist, a real-time systems' identification and an adaptive control system may be required to prevent a catastrophic failure.

There exists many ways to address the problem of adaptive control and on-line system identification. In some cases, one assumes a certain structure or topology of the system (for example, a linear, second or higher order system with constant coefficients), and the on-line identification process then merely consists of estimating these coefficients such that a certain error (usually in some least mean square sense) between observed and modeled behavior of the system is minimized. In the case at hand, such a parameter might be the mass, or the moment of inertia, or the rotational frequency of the spacecraft.
raking a radically different approach, te spacecraft is not moceled as a linear system, nor as a syst em doseribed by a set of linear or nonlinear differential cquations, but : fer,

$$
\begin{aligned}
& \text { Gr.'. } \\
& \text { OF PG'.... }
\end{aligned}
$$

in terms of finite state machines. These machines may be used to perform any one of the following three functions: prediction of each next input symbol from a sequence of observed past symbols; transformation of a sequence of input symbols into a sequence of output symbols; or classification of a given sequence of symbols. All three of these functions may le used in the control of the retrieval operation. The first property may be used to predict the motion (position, attitude, and their derivatives) of the spacecraft and of the end effector. The transformation property can be used to effect the control of the actuators of the retriever. Finally, the classification prop rty may be helpful to identify certain classes of spacecraft.

Various approaches may be taken to create finite state machines capable of $p \in r$ forming these three tasks, the most general one is the method of evolutionary programming. That it is, indeed, feasible to use finite state machines for tasks of prediction and identification in control systems has previously been shown by key personnel of Decision Science, Inc.*

Using finite-state machines as a controller is, of course, not a panacea that resolves all the space shuttle's control problems. One of the difficulties when usina finite-state machines lies in the alphabet size, which is a reflection of the required resolution. In the past, evolutionary programmers have created finite-state machines within an alphabet of up to 64 symbols. This corresponds with a resolution of 6 bits. For identification and control tests, machines with a resolution of 8 to 9 bits appear to be desirable, thus, the alphabet size would be 256 or 512.

This gives an angular resolution of about one degree. The problem with such a larqe alphabet size is the long past history
*"Finite-State Machines as Elements in Control Systems" by G. Burqin and M. Walsh, 1971, IEEE Systems, Man and Cybernetics Group, Convention Record, IEEE 1971, pp. 241-246.
required to evolve finite-state machines. This means that. considerable resources are required in terms of memory and $C P U$ capability. In the past, such large alphabet sizes were uneconomical; but with the present availability of l6-bit microprocessors, and the recent introduction of INTELS iAPX 432 chips, which provide, with only four chips, a $32-b i t$ processor comparable to a medium sized $1 B M 370$ model, CPU capability should be no limitation for an on-line identification and adaptive control using evolutionary programming. There remains the question of sufficient memory. Here again, $64 k$ bit RAMs are now available, and magnetic bubble memories allow even greater densities. About a half-dozen manufacturers will have bubble memories commercially available by the end of this year.

Advantage should be taken of this : lenomenal progress in hardware, both CPU and memory, together with a drastic reduction in size and weight, to solve the space shuttle's retrieval problems. Evolutionary programming is a powerful method but was previously limited in its applicability to real-life problems because of hardware limitations. Now, it seems, the time has come to demonstrate the usefulness of this method.

Automatic control of robotic devices requires the solution of two problems. First, the godi of the robotic device must be defined, and that reguires a precise formuldion of what the robot is supposed to do. inis is a problom pertaining to the field of artificial intelligence. If the robotic device is simply a mechanical manipulator, the question reduces to: "To which point in space and along which path is the robot's end effector supposed to move, and what should its sititude be at che terminal point?"

The second problem attempts to find forces and moments acting on the manipulator such that $i \hat{i}$ wil perform the motion specified above. In other words, the question is: "How do we force the robot to do what it is supposed to do?" This is a problem of applied automatic (cutrol.

Appendix C of this report addresses this problem. First, the different control schemes, which have been proposed in the recent open literature, are reviewed. Then, a novel scheme of controlling robots of unknown physical properties is proposed wherein the control system's gains are adjusted by means of finite-state machines. To develop such a control system, a computer simulation of a manipulator is required. Appendix C offers a detailed account of such a simulation for a specific, commercially available manipulator, the PUMA 250. A control system capable of controlling this manipulator's upper and lower arm from any arbitrary point in space to any other, physically reachable point, is designed. The response of this control system is quite satisfactory for payloads ranging from zero to five times nominal payload.

Briefly stated, prediction is the basis for control. The predictive model is a first cut representation of the logic underlying the environment of interest. Predicting the environmental response to the sequence of stimuli allows the prediction process to forecast each next response, but more importantly, this yields an up-to-date representation of the transduction. In ether words, prediction of each response based on prior stimulus/response pairs can be used to resolve the identification froblem. Once this is accomplished, the remaining task is to determine how to close the loop.

The literature is replete with techniques for the control of linear and certain non-linear systems with respect to relativelv simple control goals (the criterion that specifies the worth of each correct control response and the cost of the alternative errors). The problem remains unresolved for the general situation of a non-linear, potentially active, and even intelligent plant to be controlled with respect to an arbitrary control goal. The present task is to explore a generalized technique in this regard.

Having a capability to model the environment sets the stage for self-modeling. Here the same process may be applicable. But, there must be recognition of fundamental limitations concerning self-referential systems. Self-diaynostic routines already exist. In a sense, these are self-referential but limited in scope to the designer's prior knowledge of the alternatives that might arise. More sophisticated "self-awareness" requires continual modeling of the self as exhibited under the developing situation together with an ability to reference such models for the sake of improving the likelihood of correct response in tle goal seeking interaction with the environment. To be meaningful, such "consciousness" must be sufficiently precise (that is of adequate specificity), sufficiently accurate (demonstrate a continuing correspondence with reality), adaptable (capable of updating as new aspects of the self come into view), and readily referencable (suitable for immediate data retrievable and updating in view of the required response time). Once such a capability has been realized, it is of interest to enquire as to the possibility of still higher level modeling of the self. Here the process is analogous to knowing that you exist and knowing that you know that you exist. With such an onboard capadility, spacecraft may become more adaptive, taking into account not only the changing envirnnment but their own remaining capabilities. Such artificial consciousness sets the stage for intelligent interaction among spacecraft and other autonomous inanimate entities.

The purpose of another entity can only be inferred from its behavior and the presumption of similarity between the "organisms". Such higher level modeling sets the stage for interacting with other intelligent creatures in a meaningful manner. Note that the game can be played at different levels at the same time. "What resource am I willing to expend to learn more about the other player's goal so that 1 might better direct my efforts in future moves?" A more detailed understanding of this process
should provide new insight into the nature of coalition building and generalized gaming.

Lastly, the essential concern for the very mechanism of purpose cannot be avoided. How does purpose arise? Is there a minimum complexity of logical structure required for the generation of the survival "instinct" . . . the paramount purpose of all living creatures? The approach to this problem requires a careful definition of the nature of purpose and reference to logical means for generating such representations within mechanisms. It seems reasonable to suspect that inanimate machines can be designed having sufficient complexity to generate, then seek their own purposes. The "human animal" is a demonstration of one such mechanism. The task remaining is to understand the logic that allows such mechanisms to operate. An understanding in this regard might open the door to the design of highly sophisticated spacecraft that construct and deploy "offspring". Monitoring their activity should prove to be instructive.

Oficma. Price is
 OF POOR: QUALITY

CONCLUSION

It is easy to envision the requirement for retrieval, repair, and replacement of satellites. Here prediction and control processes are required. These can be approached by classical means, but it is time to examine an alternative approach. . . one that can treat an arbitrary data stream, predicting each next data point with respect to an arbitrary payoff matrix. The criterion for linking spacecraft is more complex than least mean squared error. Final closure is at great cost if, say, the angular difference is excessive. Success is assured only if the angular difference is within the acceptable bounds. The task is to predict closure windows with just such a criterion in mind.

The problem of control can also be addressed by classical means; however, it might be more suitable to represent the alternative states of the closing vehicles and determine each next move by reference to the prospective transition among such states. We learn to ride a bicycle not by solving the equations of motion but by remembering how best to actuate the controls from the given situation to reach a more desirable state. Computation for control of the shuttle might be benefited in this same regard.

Finite-state machines provide a natural means for representing the logic which may underlie a sequence of data derived from a sensed environment or for depicting the transduction between stimulus and response of such an environment. Such representation permits expansion of the logic in terms of arbitrary input and output languages so long as these are expressed within finite alphabets. Further, the machines may be of arbitrary specificity so long as they have only a finite number of states. Thus, no unnatural constraint is imposed, as is so often the case when a sequence of data is expressed in terms of a linear difference or differential equation.

Exploratory spacecraft require onboard computation that predicts dangers and opportunities, then responds to these through appropriate control actions. Clearly, it is desirable to avoid colliding with meteors and other space debris. It is essential to avoid space mines that may seek to collide on the basis of IR, radar, or other sensed information. It is desirable to come sufficiently close and interact with various interesting objects or regions so that these can be suitably investigated. Such interaction may involve the cooperative construction of space based platforms or other facilities. It may involve close control onboard the robots with strategic control reserved to the human operator, or in the more distant future, autonomous spacecraft interacting with each other on their own behalf.

Decision Science, Inc.
San Diego, California, June 1982
ORIGINAL PAGE IS OF POOR QUALITY

Figure 1.

APPENDIX п:

Page

determining periods of noisy sequential data
Introduction A-1
The Smallest Period of a Periodic Sequence A-1
The Method A-3
Computer Program A- 5
Sampie Run of the Computer Program. A- 6
The Criteria for Optimality A-8
Listing of the Computer Program A-12
Flow-Chart of Period Analysis Program A-20

ORIGINAL PAGE IS
 OF POOR QUALITY

APPENDIX A

DETERMINING THE PERIODS OF NOISY SEQUENTIAL DATA

I INTRODUCTION

Many phenomena give rise to periodic sequences of data values. Economic indicators, celestial events, human processes, electrical circuits, tumbling spacecraft, --the list is endless. Given an arbitrary sequences of data values, the problem is to determine the smallest period. If the data is "noisy," that is, if the sequence is only approximately periodic, then the task becomes more interesting and the result more practical. The purpose here is to explicate in detail a general procedure for determining those periodic sequences which best fit an arbitrary sequence of data values. Statistical measures are developed by which to define this best periodic sequence and for determining confidence limits on the error when subsequent values in the given data sequence are estimated by the corresponding values in the periodic sequence.

II THE SMALLEST PERIOD OF A PERIODIC SEQUENCE
Suppose that $x(1), x(2), \ldots, x(n)$ is a finite sequence of n real numbers. By definition. the sequence (x) is periodic with period p, if and only if for all positive integers $k, x(k+p i-x i k)$. Equivaientiv. fut all non-negative integers i and all positive integer... * between 1 and p inclusive,

$$
x(k+p i)=x(k)
$$

In other words, if $(1 \leq k \leq p)$ then

$$
x(k)=x(k+p)=x(k+2 p)=. .
$$

If both p and q are periods of the sequence (x) then it follows that (p, q), the greatest common positive divisor of the integers p and q is also a period of (X). To show this recall that if d is the greatest common divisor of p and q, then there exist two integers, a and b, such that

$$
d=p a+q b .
$$

Therefore, for all positive integers k,

$$
x(k+d)=x(k+p a+q b) .
$$

Since d is positive, a and b cannot both be negative and so either ($k+p a$) or ($k+q b$) is positive. If $k+p a, ~ s a y, ~ i s ~ p o s i t i v e, ~ t h e n ~$

$$
x(k+p a+q b)=x(k+p a)
$$

because (X) has period q. But since p is also a period,

$$
x(k+p a)=x(k)
$$

Therefore for all positive integers k,

$$
x(k+d)=x(k)
$$

A-2

That is, (X) has period d.
This implies that there is a smallest period for a given sequence (X) and that this smallest period is a divisor of all other periods for (X). That is, all other periods are multiples of the smallest period. It suffices, therefore, to determine the smallest period of a sequence, all other periods being multiples.

III THE METHOD

If (X) is exactly periodic with smallest period p, then there are just p data values to the sequence, subsequent values being repetitions. These values are $X(1)$, $x(2), \ldots, x(p)$ and they constitute one cycle of the periodic sequence. If on the other hand (x) is merely approximately periodic, then, for example, the data values $x(1), x(1+p), x(1+2 p), \ldots$ vill only be approximately equal. Similarly for $(1 \leq k \leq p)$, the values $x(k)$, $x(k+p), x(k+2 p), \ldots$ will only be approximately equal. $x(1), x(1+p), x(1+2 p), \ldots$ are all the first data values of all the cycles; similarly $x(k), x(k+p)$, $x(k+2 p), \ldots$ are all the $k t h$ data values of the cycles of the sequence.

The method used here to determine a periodic sequerce
(Y) that best fits the given approximately periodic sequence (X) is to determine, for each possible period 0 . the average (arithmetic mean), $Y(k)$, of all the $k t h$ data values of the cycles of the sequence (x). That is,

$$
Y(k)=\frac{1}{T+1} \sum_{i=0}^{T} x(k+p i)
$$

where T is the number of cycles. Here, T can be expressed in closed form as

$$
T=\operatorname{Int}((n-k) / p),
$$

where $\operatorname{Int}(j)$ is the greatest integer less than or equal to j. This formula for T takes into consideration the likelihood that the finite data sequence (X) may end in a partial cycle.

In order to measure the degree of fit of the periodic sequence (Y) to the sequence (X), the sample variance, $V(k)$, for each of the p values of the cycle $(k=1,2, \ldots, p)$ is determined by

$$
V(k)=(1 / T) \sum_{i=0}^{T}[x(k+p i)-Y(k)]^{2}
$$

Assuming that T is at least 30 or that deviations of the data values $x(k+p i),(i=0,1,2, \ldots, T$ are normally distributed, it is then appropriate to calculate 95\%
confidence error bounds for $Y(k)$ when $Y(k)$ is used as an estimate of any individual value $x(k+p i), i=1,2, \ldots$, T, . . .

Depending upon the particular application, there are various criteria for determinino the bes, ii, pe iodi. sequence $Y(k)$. For many purpncis the standere an? squares criterion is appropriate and so this crite.in! 1 : A-4
developed first. But it is easy to imagine situations where, for example, the cost of error is asymmetric, thus making it optimal to fit the sequence (X) with a periodic sequence (Y) which is not optimal in the least squares sense. This more general case is considered later.

The most straightforward criterion for determining the best fit periodic sequence (Y) is the average 95\% confidence error tolerance, E, for the p values $Y(k)$, $k=1,2, \ldots, p$. E is given by

$$
E=(1 / p) \quad \sum_{k=1}^{p} E(k) \text {, }
$$

where, by well-known statistical methods,

$$
E(k)=\frac{t \sqrt{V(k)}}{\sqrt{(T+1)}},
$$

t being the appropriate t-distribution value for T degrees of freedom.

Each possible period p generates a periodic sequence (Y) and an average 95% confidence error bound E for (Y). That sequence (Y) whose average error bound E is smallest is deemed the best least squares fit periodic sequence approximating the given sequence (x).

IV COMPUTER PROGAM

The procedure oltliried in ne nrevious ;er tun worn. hardly be practical without the aid of a high speed:

ORIGANAL PAEE IS
 OF POOR QUALITY

computer. (Indeed many procedures once thought impractical can now be resurrected and applied in place of more analytic techniques.)

A computer program has been written and demonstrated that takes an arbitrary sequence of real numbers (X) and determines the ten best periods and corresonding periodic sequences (Y). Ninety-five percent confidence error bounds are given for each data value $Y(k), k=1,2, \ldots, p$. As indicated previously, the best periodic sequence (Y) is the one whose average error bound over the p values of any one cycle is minimal.

The program is interactive and allows convenient input, storage, recall, and display of all relevant parameters. (See pages A-12-19).

V SAMPLE RUN OF THE COMPUTER PROGRAM
When the program is executed, the user is asked an initial question. By entering a single letter the user may 1) input a new sequence of real numbers, or 2) recall from storage a previously input data sequence, or 3) list the data sequence, or 4) correct individual members of the data sequence, or 5) analyze the data sequence for periodicities, or 6) display this period analysis, or 7) store the data sequence for future retrieval, or 8) end the session.

If the user wishes to infut a data sequence ont ontore the appropriate letter, then values are accepted in gri..uis A- 6
of 20 or less. After data input is completed, the program returns to the initial question.

At this time individual data values may be listed and corrected by entering the appropriate letter and then entering the particular index and corresponding sequence value. Multiple corrections can be made without return to the initial question.

Return to the initial question allows the user to analyze the data sequence for periodicities. When the analysis is completed, the total number of data v :lues is given together with the period which best fits the data, the number of complete cycles and the predicted next value in the data sequence. The user is now asked whether he wishes to analyze a particular potential period, or rank the periods according to goooness of fit or end the display and return to the initial question. If the user wishes to analyze some particular period p, he enters that period and quickly sees a table containing an in-depth analysis including error estimates and statistical measures. The user may then immediately analyze any other period.

By entering a single letter the user may also display a table ranking all possible periods from 1 to 10 according to their average 95\% confidence error. This is tie average error when sequence values are estimated by the associated pericdic sequence corstructet by averaging the varinus representatives comiry from ine differont -y.les ze th: t. sequence.

After analysis and display is completed, the user may store the data sequence for future retrieval.

Three different data sequences were generated to test the program. (See the end of this appendix.) The program determined the best fit periodic sequences and successfully carried through the other steps explicated in the previous paragraphs of this section.

VI OTHER CRITERIA FOR OPTIMALITY

One of the advantages of the method outlined above is that the criterion for optimality can be easily generalized without extensive alteration of the procedure.

Suppose that instead of the least squares criterion, there is defined a cost function, C, that assigns to each ordered pair (x, y) the worth of estimating y when in fact the actual value is x. Clearly, C will have its jmallest entries on the diagonal, where the estimate is exactly correct. Off-diagonal entries may be arbitrarily assigned depending upon the context. C may be quite nonsymmetric.

In the least squares case, the average

$$
Y(k)=\frac{1}{T+1} \sum_{i=0}^{T} x(k+i p)
$$

can be easily shown to be the best estimate of the data values $x(k+i p), i=n 1, \ldots, T$. Sut for an arbitrarv cost function C, the bes: estimata + or +hace rata vel.... A- 8

ORIGINAL PAGE IS
 OF POOR QUALITY

depends upon C. Therefore it is necessary first to determine $Y(k)$ for each $k=1,2, \ldots, p$ ty finding that value $Y(k)$ for which the average cost

$$
F(k)=\frac{1}{T+1} \sum_{i=0}^{T} c(x(k+p i), y(k))
$$

attains a minimum.
If C is a continuously differentiable function defined on an open (possibly infinite) domain in the $x y$ plane, then partial differentiation of $F(k)$ with respect to $Y(k)$ and setting equal to zero yields the necessary condition

$$
\sum_{i=0}^{T} c_{2}(x(k+p i), y(k))=0,
$$

where $\quad c_{2}(x, y)=\frac{\partial}{\partial y} c(x, y)$.
For example, if $C(x, y)=(x-y)^{2}$, then the least square criterion leads to

$$
\sum_{i=0}^{T}(-2)[x(k+p i)-r(k)]=0 .
$$

That is,

$$
\sum_{i=0}^{T} x(k+n i)-(T+1 i r(b) \quad 0 .
$$

That is,

$$
Y(k)=\frac{1}{T+1} \sum_{i=0}^{T} x(k+p i) .
$$

In other words in this case, $Y(k)$ is just the average of the $(T+1)$ values $x(k+p i), i=0,1, \ldots, T$.

If C is defined discretely as a cost matrix, then the cost $F(k)$ must be minimized directly by determining for which column of the matrix the entries $C(X(k+p i), Y(k))$ have smallest sum for $i=0,1,2, \ldots, T$.

Once $Y(k)$ has been found for each k, the average cost, F, for the given period p can be determined by

$$
F=(1 / p) \quad \sum_{k=1}^{p} F(k) .
$$

Now the most straightforward criterion for determining the least cost periodic sequence (Y) is the average 95\% confidence cost error bound, E, for the p values $Y(k)$, $k=1,2, \ldots, p$. (This step is necessary; otherwise, the least cost periodic sequence will always turn out to be the whole sequence of data values. That is, $T=1$.)

The average 95\% confidence cost error bound, E, is given by

$$
E=(1 / \rho) \quad \sum_{k=1}^{p} E(k) \text {, }
$$

where,
A-10

$$
E(k)=t \sqrt{\frac{V(k)}{T+1}}+F(k)
$$

Here, t is the appropriate t-distribution value for T degrees of freedom and $V(k)$ is the sample variance in costs given by

$$
V(k)=(1 / T) \quad \sum_{i=0}^{T}[c(x(k+p i), Y(k))-F(k)]^{2}
$$

Each possible period p generates a periodic sequence (Y) and an average 95% confidence cost error bound E for (Y). That sequence (Y) whose average cost error bound E is smallest is deemed the best fit periodic sequence with respect to the cost matrix C.
listing of period analysis program
 00 FRINT:FFINT
O FFINT" IIECRETE VALUES ANE FRELIIST THE NEXT VALUE" FRINT" IISGGETE VALIIES ANE FREEIIGT THE NEXT VALIIE" OF"
FFINT"ENTEF"

$$
\begin{aligned}
& \text { (INFUT IATA VALUES) DR" } \\
& \text { (GORFEGT IIATA VALUES DIF } \\
& \text { (LIST IAATA VALUES) OR" } \\
& \text { (ANALYZE IATA VALUES) OF }
\end{aligned}
$$

FFINT" I

- リー

NEXT

2780	NEXT I
2900	IF $T=0$ THEN $V(K)=0: E 0 T E \leq 020$
2310	$V(K)=F-S * S /(T+1)$
2840	$V(K)=V(K) / T$
2870	$E(K)=T D(T) * V(K ゙)[(0.5)$
2930	$E A(P)=E A(P)+E(K)$
2950	IF (EA (F)/F)>RE(10) THEN İDTI $7 \leq 10$
2970	$V A(F)=V A(F)+V(K)$
5020	NEXT K
± 050	$V A(F)=V A(F) / F$
3075	$E A\left(F^{\prime}\right)=E A(F) / F$
3080	:IF St="A" THEN EiLTO S00 ELSE EiOTO 7700
3300	REM DISFLAY FIINITINE
3400	FFFINT:FFIINT
3420	$\mathrm{P}=\mathrm{RF}$ (1)

NMAX＝＂；NMAX
 EFIID［IS $F=0 ; P$ ），EHOHLL X $\forall W N:$ ：
IT F T EDIIAFES 5要兑 NUM三化所化汇 adad

GOTO 7620

IATA VALLIEG FIIIITITINE

I I SHANİE NIIMEEF＇，NMAX，GF［IATA VALUES）OR＂ I（NIJ CHANIGE IN NMAX）＂： S I HEN FRIINT：INFIIT＂NMAX $="$＂NMAX
THEN GIITD 4020 REM EORFEIT PRINT＂ENTEF：

$$
\$ \mathrm{~B} \quad \mathrm{I}
$$

"LIflNI
IF
FFINT
 IF I＝0 THEN GITO 200 PRINT：GOTI4100 FEM LIST［IATA VAIUUE：F RIIJTINE PRINT：FRINT
FOR I＝1 Ti
\qquad PRINT I；X（I），
\qquad REM RIOTINE＂SET TAFE \＃－1 TO FIEGIRD AND HIT ENTER＂；S\＄ $X(0)=$ NMAX
POKE 16526．79：FEIKE 16527，191 $B \%=2000: F \%=1 S R(B \%)$
FOKE 1652K，101：FOLKE 16527．191 $1 \%=$ VAFFFTR（X $(0))$
FRINT：FRINT＂LIATA ETLIRED IN TAFE \＃－1＂ FEM Finll
FFINT：INPIIT＂GET TAFE \＃－1 TD FLAY AND HIT ENTEF＂；$\subseteq \$$ FGKE 16S26，79：FOKE 16527,191
 \because
0
$6000 \mathrm{~B} \%=V A F F \cdot T F(X(\theta)): E \%=1$ EF ($\mathrm{E} \%$)

Cin：
OF POOR 8inas：
7700 FFIINT：FRINT
FFINT TAE（15），＂FEFILIL＝＂；F＂

かく

$E(F) " ;$

FOR I＝0 TG INT（（NMAX－K）／F）
FRFINT LEING＂\＃\＃\＃＂；$X(K+I * F \cdot)$ ；
NEXT I
FFINT

FFINT：FRINT＂AVEFABE VAFIIANIE VA（＂；F；＂）＝＂；VA（F）
FINT＂AVERAGE 95% gONFIDENGE EFFiOR $=" ; A^{\prime}(F)$
合
EEM［IISFLAY EEST FIT FEFIIIIG
－00 FFINT：FFINT：FFINT TAE（17）＂EEST LEAST GOUAFE FIT FEFIDLE＂
$\because 00$ FFINT TAE（15）＂（［ATA INELULES AT LEAST 2 EYELES）＂

5500 FFINT＂FANK J＂，＂FEFIGIIF＂，＂AVEFAISE EFFROF－ 95% GINFI［IENEE＂

FOR J＝1 TII 10
FFINT UEING＂\＃\＃\＃\＃＂：，i，：FFINT＂
＂；
 NEXT J

$$
\begin{aligned}
& \text { CAZ• } \because \therefore \therefore \\
& \text { or } \cdots \cdots \cdots
\end{aligned}
$$

ORE

OF POOR \mathbf{C} :.a.

Onne:.
OF PO,., : $\because \because r$

FLOW CHART OF PERIOD ANALYSIS PROGRAM

APPENDIX B:

THE EVOLUTIONARY PROGRAM

PageListing of the Evolutionary Program B-3
Flow-Chart of the Evolutionary Program B-14

APPENDIX B

THE EVOLUTIONARY PROGRAM

An evolutionary program was written for use in this study. Input in addition to the data points of concern consists of the error matrix, the number of states in the initial finite state machine, the start state of the initial machine, the maximum number of states allowed, the number of symbols in the data alphabet, the length of the initial history to be used and the length of the window over which the machines are exercised. The window can have either a fixed length, or it car be the total history. The alphabet consists of the integers from one to the number of different symbols.

The program constructs, by random assignment of next state and output symbol, a finite-state machine with the initial number of states and the initial state. It then exercises the machine over the window; and, for those state-input pairs exercised, assigns that output which minimizes the error. The resulting machine is the initial parent machine. It is then exercised over the window, the error score is computed, and the prediction of the next data point is made.

Up to five offspring are constructed and scored over the window. If an offspring has a better score than the parent machine, it replaces the parent machine and its prediction of the next data point is the accepted prediction. If none of the five offspring have a better score, the parent machine is retained. The available history is advanced one data point and the procedure is repeated.

In forming an offspring, the program randomly chooses one of the following mutations: 1. Change up to five randomly chosen rext state transistions. 2. Add a state. 3. Delete a state, and 4. Change the start state. In each case, the mutated machine is exercised over the window and those state-input riirs
which are exercised are assigned that output which minimizes the error. The resulting machine is the offspring machine. As before, whether or not the resulting machine is retained as a new parent depends upon its score being better than that of its parent.

For debugging purposes, the program was tested over three different environments, one cyclic with a short cycle, one with a long cycle, and another which was random. In each a four symbol alphabet was used, each had 96 data points with an initial history of length 50 and a window of length 50. Each entry in the error matrix was the square of the difference between predicted value and actual value. For the short cycle, the program aftor four to six mutations achieved a perfect score and made all predictions correctly. For the long cycie case the error score improved from .796 to . 82 in one run and from .632 to .82 in another. For the random environment, the error score fluctuated between 1.06 and .449 in one run and between . 816 and .612 in another.

A listing of the program and flowcharts follows.

LISTING OF THE EVOLUTIONARY PROGRAM

?? p999
FROGRAM FSM(INPUT, OUTPUT, TAPE1. TAPE3, TAPE6)
C CHIS
THIS IS MAIN DRIVER PROGRAM
C:OMMON / IUDEF / INPF SM. INPDAT , IOUF SM
COMMON/FSMPA/IERMIX, IHS, IMCSN, ISS. LWIN, MXNS. NDP, NHS, NIN
C IIMENSION IFSM(60), MFSM(60), IHS(200), IERMTX(30)
C SET INPUT OUTPUT TAPES
INPFSM $=1$
INPDAT $=3$
IOUFSM $=6$
REWIND INPFSM
RENIND INPDAT
KELIND IOUF SM
C FEAD IN FSA INITIAL PARAMETERS, ERROR MATRIX AND UATA
C INITIALIZE FINITE STATE MACHINE (FSM)
CALL INIT (NIN.IMCSN, IFSM)
C INITIALIZED MUTATE ROUTINE
NHSS = NHS
INFL $=0$
MWSS = 1
MCSN = -
CALL MUTAT (MF SM, INFL.MWSS.MCSN)
IWSS = ISS
$N P R K=0$
$N F \cdot R D=0$
1 NFL $=1$
KPRED $=0$
C SEET OUTPUTS OPTIMALLY
100 IF (KFRED.EO.1) GO TO 105
CALL STOPT(LWIN,NHS, IWSS, NIN, IFSM, IHS, IEKMTX)
105. NMAC = 0

CALL SCOR (IFS.Y, IWSS. ©CORI, IFRED. I HERR)
PRINT*."SCORI = ", GCOKI," IPRED=" "IFRED," IPERK= ", IPERR FRRINT*,"IWSS = ". IWSS," IMCSN = ". IMCSN IF (SCORI.FU.0) GÚ 10130
C SETUP FDR OH FSPRING hatialNe
$M 2=2 *$ IHCSN $\times N I N$
[10 $112 \mathrm{~K}=1.5$
U0 $110 \mathrm{I}-1, \mathrm{Ma}^{7}$
$\operatorname{MfSm(1)}=\mathrm{If}$.if(I)
110 CONTINUE
\therefore MUTAIE FARAENI
MCSN_-IMCSN

```
            CALL MUUAT(MFSM,INFL.MWSS.MCSN)
    SET OUTPUTS OF OFFSPRING OPTIMALLY
        CALL STOPT(LWIN,NHS.MWSS.NIN.MFSM.IHS,IERMTX)
        CALL SCOR(MFSM,MHSS,SCORM, MPRED,MPERR)
        IF(SCORM.LT.SCORI) GO TO 115
    12 CONTINUE
    115 PRINT*,"SCORM= ",SCORM," MPRED= ",MPRED," MPERR= ",MPERR
        PRINT*,"MWSS = ",MWSS," MCSN = ",MCSN
    DOES OFFSPRING HAVE BETTER SCORE
        IF(SCORI.LE.SCORM) GO TO 130
    OFFSPRING HAS bETTER SCORE SO REPLACE PARENT BY IT
        IMCSN = MCSN
        IWSS = MWSS
        M2 = 2*IMCSN*NIN
        DO 120 I=1,M2
            IFSM(I) = MFSM(I)
    120 CONTINUE
    NMAC = 1
    130 CALL UPDATE(IFSM.IWSS)
    UP COUNTER ON CORRECT PREDICTIONS
        KPERR=IPERR
        KPRED = IPRED
        IF (NMAC.EQ.0) GO TO 118
        KPERR=MPERR
        KPRED=MPRED
    118 NPRR=NPRR+KPERR
        NPRD = NPRD+KPRED
        IF(NHS.LT.NDP) GO TO 100
        PRINT*,"NBR OF CORRECT PREDICTIONS = ".NPRD
        AFRR=NPRR
        APRR=APRR/(NDP-NHSS)
        PRINT*,"AVERAGE PREDICTION ERROR= ".APRR
        PRINT 900, (IFSM(I),I=1,M2)
    900 FORMAT (/,814)
        STOP
        END
        SUBROUTINE INIT(NINT,JCSN,JFSM)
    SUbROUTINE SETS UF INItIAL FINITE STATE mACHINE
        DIMENGION JFSM(60)
        DO 100 J=1.JCSN
        DO 100 I=1,NINT
: COMPUTE POSITION IN FSM TABLE
    NCS = 2*((J-1)*NINT+1)
    : randomly select next state and store in fism table
        X = RANF (N)
        FNS = JCSN*X+1.
        INS = FNS
        JFSM(NCS-1; = INS
    : RANDOMLY SELECT IUTPUT AND STORE IN FS.4 TABIE
        X = RANf (N:
        FOT = NINT"X+1.
        1OT - FOT
        JFSM(NCS) : 10T
    100 CONTINUE
        RETURN
        END
```


ORISRIR $\because=\therefore$

OF POC: ©:

SUBROUTINE INRD

```
    SUBROUTINE READS IN DATA FOR INITIAL MAC.HINE,
    ERROK MATRIX AND DATA TO BE OPERATED ON
    COMMON/IODEF/INPFSM. INPDAT, IOUFSM
    COMMON/F SMPA/ IERMTX, IHS, IMCSN, ISS,LWIN.MXNS,NDP,NHS.NIN
    DIMENSION IERMTX(30), IHS(200)
    READ DATA FOR INITIAL FS.M
    READ(INPFSM,*)IMCSN,ISS,LWIN,MXNS,NHS,NIN
    READ) IN ERROR MATRIX
    KK = NIN*NIN
    READ(INPFSM,*)(IERMTX(I), J=1,KK)
    READ IN DATA POINTS
    I = I
100 FEAD(INFDAT.*) IHS(I)
    IF(IHS(I).LT.O) GO 10 110
    I = I +1
    GO 10 100
110 NDP = I-1
    RETURN
    END
```

SUBROUTINE MUTAT(JFSM, INFLI,JWSS,JCSN)
THIS SUBROUTINE CHANGES NEXT STATE ASSIGNMENTS, ADDS STATE, AND CHANGES START STATE-ALL RANDOMLY

COMMON/FSMPA/IERMTX, IHS, IMCSN, ISS, LWIN, MXNS, NDP, NHS, ININ DIMENSION JFSM(60), IERMTX(30), IHS(200)
IF (INFIT.EO.1).GO TO 100
INITIALIZE
MUCNT $=0$
RETURN
NORMAL ENTRY
100 MUCNT = MUCNT+1
ICSN = IMCSN
CHECK IF TIME FOR FOSSBILY ADDING OR DELETING A STATE OTHERWISE GO TO CHANGE NEXT STATE ASSIGNMENT

IF (MUCNT.LT.10) GO TC 150
POSSIBLY ADD STATE
MUCNT $=0$
$\mathrm{X}=\mathrm{RANF}(\mathrm{N})$
IF (X.GT.0.5) GO TO 200
ADD STATE UNLESS MAXIMUM NER OF STATES ALREADY REACHED
IF (IMCSN.GE.MXNS) GO TO 200
ADD STATE
105 JCSN = IMCSN+1
RANDOMLY ASSIGN NEXT STATE AND OUTPUT FOR EACH SIATE/
INPUT PAIR IN NEW STATE
DO $110 \quad \mathrm{I}=1$. NIN
$X=\operatorname{RANF}(N)$
$F S N=J C S N * X+1$.
NNS = FNS
NCS $=2 *((J C S N-1) * N I N+I)$
JFSM $\operatorname{NCS}-1)=$ NNS
$X=\operatorname{RANF}(N)$
FOT $=$ NIN $* X+1$.
NOT = FOT
JFSM(NCS) $=$ NOT
110 CONTINUE
RANDOML Y CHANGE THE NEXT STATE TO NEW STATE FOR FROM I TO NIN
INPUT/STATE PRIRS FROM ORIGINAL MACHINE
$X=$ RANF (N)
$F K=N I N * X+1$.
$K K=F K$
MM $=(J C S N-1) * N I N$
DO 120 I =1, KK
$X=\operatorname{RANF}(N)$
FSI $=2 . *(M M * X+1$.
NSI $=$ FSI
JFSH NSSI-1) = JCSN
120 CONTINUE
RETURN

```
    C SELECT WHETIFER TOU CHANGE STAIE OR NEXT STATE FOR
    RANDOMLY CHOSEN SET OF STATE/INPUT PAIRS
    150 X = RANF (N)
        IF(X.GT.0.1) GO TO 170
    C RANDOMLY CHANGE START STATE
        X= RANF(N)
            FWSS = JCSN*X+1.
            JWSS = FWSS
            RETURN
C CHANGE NEXT STATE RANDGMLY fOR RANDOM SET OF STATE/INPUT FAIRS
    170 MM = JCSN*NIN
        X = RANF (N)
        FN = 5.*X+1.
        NN = FN
        DO 180 I=1,NN
            X = RANF(N)
            FNS = JC:SN*X+1.
            NNS = FNS
            X = RANF(N)
            FCS = 2.*(MM*X+1.)
            NCS = FCS
            JFSM(NCS-1) = NNS
    180 CONTINUE
        RETURN
C
    THIS SECIION DELETES STATE IF MORE IHAN ONE STATE,
    OTHERWISE GO TO ADD STATE
        200 IF(JCSN.EQ.1) GO TO 105
            THIS PORTION SELECIS DELETES A SIATE FROM THE FINIIE STAIE
            MACHINE, HOWEVER, THE START STATE IS NEVER DELETED
            JCSN - NUMBER OF STTES IN FINITE STIE MACHINE
            JFSM - TABLE CONTAINING FINITE STATE MACHINE
            NIN - NUMBER OF INPUT ALFHABET SYMBOLS
            NSTBD - STATE TO BE DELETED (DE IERMINED IN ROUTINE)
            NSTBM - NUMBER OF STATES IO BE MOVED
            NWTBM - NUMBER OF WORDS 10 BE MOVED
            IWFRM - FROM POSIIION MINUS ONE
            INTOO - TO POSITION MINIIS ONE
            JWSS - INITIAL START STAIE
        DECIDE WHICH STATE TO DELETE
    210 X = RANF (N)
            F = X*JCSN+1.0
            NSTBD = F
        START STATE IS NOT DELETED
            If(NSIBD.EO.JWSS) GO TO 210
            If (NSTED.EG.JCSN) GO TO 270
C CAI CULAIE NUMBER OF WOIKDS IO MOUNF IN IAKIE. MI SM
    NSTBM = JCSN NSTED
            NINTBM = 2*NIN*NSTEM
```

```
                                    Cram:% rase:3
                                    OF POOR QURLITY
C MOVE STATES TO CLDSE GAT BUT FIRST GET ADDRESSES
        IWTOO = 2*NIN*(NSTBD-1)
        IWFRM = IWTOO+2*NIN
        DO 260 I=1,NWTBM
        JFSM(IWTOO+I) = JFSM(IWFRM+I)
    260 CONTINUE
C DECREMENT NUMBER OF STATES
    270 JCSN = .JCSN-1
C GET SET TO TEST ALL NEXT STATE REFERENCES
            ITEST = JCSN*NIN*2
C TEST WHETHER OR NOT TO CHANGE NEXT STATE REFERENCE
            DO 290 I=1,ITEST,2
                IF(JFSM(I).LT.NSTBD) GO TO 290
                IF(JFSM(I).GT.NSTBD) GO T0 280
                X = RANF (N)
                F=X*JCSN+1.0
                    II = F
                JFSM(I) = II
                GO TO 290
    280 JFSM(I) = JFSM(I)-1
    290 CONTINUE
` CORRECT START STATE, IF NECESSARY
        IF (JWSS.LT.NSTED) GO TO 300
        JWSS = JWSS-1
    300 CONTINUE
        RE TURN
        END
```

SUBROUTINE SCOR(JFSM, JWSS, SCORX, JPRED.JPERR)
THIS SUBROUTINE SCORES THE MACHINE OVER THE HISTORY IN THE WINDOW

COMMON/FSMPA/IERMTX, IHS, IMCSN, ISS. LWIN.MXNS, NDP , NHS , NIN DIMENSIDIN IHS(200), JFSM(EO), IERMTX (30)
SCORX $=0$
ISN $=$ JWSS
$K K=1$
ANP $=$ NHS-1
こ IS WINDOW TO BE HISTORY?
IF (LWIN.LT.0) GO TO 100
$=$ WINDOW IS FIXED LENGTH. IS IT LONGER THAN HISTORY?
IF (LWIN.GE.NHS) GO TO 100
: SET UP FOR FIXED LENGTH WINDOW
$K K=$ NHS-LWIN +1
ANP $=$ LWIN-1
: GCORE OUER WINDDW
100 NHS $1=$ NHS - 1
DO $120 \mathrm{I}=\mathrm{KK}$, NHS 1
IIN $=\operatorname{IHS}(\mathrm{I})$
NCS $=2 *((I S N-1) * N I N+I I N)$
INS $=\mathrm{JFSM}(N C S-1)$
$I O M=J F S M(N C S)$
IOD $=\operatorname{IHS}(I+1)$
: GET ERROR VALUE FROM ERROR MATRIX
NCS $=((10 M-1) * N I N+I O D)$
SCORX = SCORX + IERMTX (NCS)
ISN = INS
120 CONTINUE
SCORX = SCORX/ANF
: CHECK IF PREDICTION IS CORRECT
IIN $=$ IHS (NHS $)$
$N C S=2 *((I S N-1) * N I N+1 I N)$
IOM = JFSM(NCS)
IOD $=\operatorname{IHS}($ NHS +1$)$
JFRED = 0
IF (IOM.EQ.IOD) IFRED=1
NCS $=((10 M-1) * N T N+I 0[1)$
JPERR = IERMIX(NCS)
RE TURN
END

SUBROUTINE STOPT(LWINT.NHSI,IWSST,NINT, IFSMT,IHST,IERMT)
LWINT - LENGTH OF THE WINDOW
NHST - CURRENT POSITION IN THE HISTORY (IHS IN COMMON)
IWSST - WINDOW START STATE
NINT - ALPHABET SYMBOL SIZE
IFSMT - FINITE STATE MACHINE FOR SEITING OUTPUT
IERMT - ERRGR MATRIX
IHST - ADDRES OF HISTORY DATA
ISIPR(I,J) - STAIE-INPUT IABIE WHERE
I IS THE POSITION IN THE TABLE
J IS 1. 2 OR 3 WHERE
(I,1) CONTAINS THE STATE NUMBER
(I,2) CONTAINS THE INPUT NUMBER
(1,3) is TOTAL NUMBER OF OUTPUTS ASSOCIATED WIIH THIS STATE-INPUT PAIR
IACOP(I) - THE MACHINE OUTFUT-DESIRED OUTPUT TABLE WHERE I IS THE POSTION IN THE TABLE
ISIPK - THE COUNT OF UNIOUE STATE-INPUT PAIRS IN TAELE ISIPR
IAOPK - THE COUNT OF TOTAL ENTRIES IN TABLE IACOP
DIMENSION ISIPR(25.3).IACOP(50). IHST(200), IFSMT(60), IERMT(30),
1 IERR(10)
\therefore CACULATE THE FIRST INPUT FOSIIION OF THE WINDOW
NHSWP $=$ NHST-LWINT +1
SET LOOP TO LENGTH OF WINDOW MINUS TWO
ILOOP $=$ LWINT-2
ZERO STATE-INPUT PAIR COUNT
ISIPK = O
ZERO OUTPUT COUNT
IAOPK $=0$
SET ISNT TO WINDOW SIART STATE
ISNT = IWSST
NOW BUILD STATE-INPUT-OUTPUT TABIES
FIRST STATE-INPUI-OUTPUT ENTRY HANDLED AS A SPECIAL CASE
$\operatorname{ISIFR}(i, 1)=\operatorname{ISNT}$
IINT $=$ IHST(NHSWP)
$\operatorname{ISIFR}(9,2)=\operatorname{IINT}$
SET OUTPUT COUNT FOR THE STAIE-INPUT PAIR TO ONE $\operatorname{ISIPR}(1,3)=1$
CET NEXT STATE
II $=2 *((I S N T-1) * N I N T+I I N T)$
ISNT $=\operatorname{IFSMT}(I I-1)$
INCREFENT INPUT POINTER NHSNP $=$ NHSWP +1
GE NEXT INFUT IINT = IHST(NHSWP)
STORE DESIRED QUTPUT $\operatorname{IACOP}(1)=I I N T$
Set diitplit count to one IAOPK - 1
SET COUNT OF UNOIUE SFIMF--liAPUT FAIN'S IO (INE ISIPK = 1
: NOW BUILD THE BALANCE OF IHE STATE-INPUT-DUTPUT TABLES DO $500 \mathrm{~K}=1$. ILOOP
: IS THIS STATE-INPUT PAIR IN THE TABLE?
DO 100 IJK=1. ISIPK
IF (ISNT.NE. ISIPR(IJK, 1)) GO TO 100
IF (IINT.NE.ISIPR(IJK.2)) GO TO 100
: ARRIVE HERE, STATE-INPUT FAIR IS ALREADY IN THE TABLE $I J K S=I J K$
GO TO 200
100 CONTINUE
: APPEND NEW STATE-INPUT-OUTPUI TO TABLE
: INCREMENT COUNT
110 ISIPK = ISIPK+1
ISIPR (ISIPK, 1) $=15 N T$ ISIPR(ISIPK,2) = IINT ISIPR(ISIPK,3) $=1$
: GET NEXT STATE
$I I=2 *((I S N T-1) * N I N T+I I N T)$ ISNT $=\operatorname{IFSMT}(I I-1)$
: INCREMENT INPUT PCINIER NHSWP $=$ NHSWP +1
: GET NEXT INPUTT
IINT = IHST(NHSNP)

- INCREMENT OUIPUT COUNT

IAOPK $=$ IAOPK +1
: STORE DESIRED OUTPUT IACOP (IACDK) = IINT GO TO 500

- CHECK IF THE IDENIIFIED SIATE-INPUT PAIR IS LAST IN THE TRBLE COO IF (IJKS.NE. ISIPK) (:O TO 300
$\vdots \quad A R R I V E$ HERE STATE-INPUT IDENTIFIED IS LAST IN THE TABLE
\therefore GET NEXT STATE AND OUTPUT
II $=2 *((I S N T-1) * N I N T+I I N T)$
ISNT $=\operatorname{IFSMT}(I I-1)$
$\therefore \quad$ INCREMENT OUIPUT COUNT FOR THIS STATE-INPUT PAIR $\operatorname{ISIPR}(\operatorname{ISIPK}, 3)=\operatorname{ISIPR}(15 I P K .3)+1$
C ICREMENT INPUT POINIER NHSWP = NHSWP +1
C GET NEXT INPUT
IINT $=$ IHST (NHSWP)
C INCKEMENT OUTPUT COUNT IAOFK $=$ IAOPK +1
C STORE DESIRED OUIPUT
$I H C O P(I A O P K)=I I N T$
GO TO 500 CHCOARY 10 CREATE SPACE IN TABLE FOR OUTPUT
C ARRIVE HERE NFCF GSARY 10 CREATE SPACE IN TABLE
C IUETERMINE WiHLRE SHACE SHOULD BE IN TABLEE IACOF'
300 ISUM $=0$
DO 320 III = 1. IJKS
ISUM = ISUM + ISIFR(111.3)
320 CONTINUE

IMOVE $=$ IAOPK ISUM
INEW = 1AOTK+?
1OID = IAOPK+1


```
OF POON OSALBy
```

```
    DO 330 I=1, IMOVE
        IACOP(INEW-I) = IACOP(IOLD-I)
330 CONTINUE
    gET NEXI STATE
        II = 2*((ISNT-1)*NINT+IINT)
        ISNT = IFSMT(II-1)
    INCREMENT INPUT POINTER TO GET NEXI INPUT
        NHSWP = NHSWP+1
        IINT = IHST(NHSWP)
    STORE DESIRED OUTPUT
        IACOP(ISUM+1) = IINT
    INCFFMENT OUTPUT C:OUNT
        1AOPK = IAOPK+1
    INCRIMENT OUTPUT COUNT FOR THIS SIAIE-INPUT PAIR
        ISIPR(IJKS.3) = ISIPR(IJKS.3)+1
500 continue
    NOW IHAt tabIES ISIPR ANI IACOP ARE CONSIRUCTED, MACHINE
    Ouiput can RE detekminisilcally Sel lo minimize ERROR
    SEI loor 10 set Output for those sIAIE-INPUT PAIRS EXERCISED
600 D0 800 I:1.1SIPK
        If(1.NE.1) ©0 10 604
        IACKN =0
        (:0 10 608
604 IACKN=1ACKN+1SIPR(I-1,3)
608 [0 610 L=1.NINT
        IFRR(L) - 0
6 1 0 ~ C O N T I N U E ~
    GEt lloof to NumPER OF lImES this state-INPUT PAIR EXERCISED
        IIOOP = 1SIPR(1,3)
    SEl loof to try all iHE Al phabet
        DO 700 J-1.NINT
            D0 700 K 1.ILOOP
    CAI Cul AIE fositION in ERROK matrix to ObTAIN ERROR fOR
    iHis ifNIAIIve outpul and the expleitnces ouiput
                        M = (J 1)*NINT+IACOF(K+IACKN)
                        IERR(J)=1FRR(J)+1ERMT(M)
700 CONIINUE
    NOW + INO THE OHPUI PRODICING THE LLASI ERROR AND SILECI IT
        ICOMP = ILRR(1)
    &LT ISOP = I (IINIAIIVE JUIPUT)
            1SOP = 1
            D0 I!0 IJ-?.NINT
                    If(1&RK(IJ).(i).ICOMP) (;0 10 ハ.0
                    ICOMP - IIRK(IJ)
                    IS.OF = 1.1
MOO GONTINM
```



```
                If SMT(INO) 15,0P
    &on (finilinue
        RH/HEN
        fND
B-1?
```


ORTENA $\mathrm{F} \cdots$:-
 OF POOR QUAlity

```
        SUBROUTINE UPDATE(JFSM,.INSS)
C
C THIS SUEROUTINE UPDATES START STATE. CURRENT HISTORY
C LENGTH
C
        COMMON/F SMPA/IERMIX, IHS.IMCSN.ISS.LWIN,MXNS,NDF',NHS,NIN
        DIMENSION JFSM(E0), IHS(200), IERMTX(30)
C UPDATE HISTORY LENGTH
        NHS = NHS+1
C IS WINDOW EQUAL HISTORY LENGTH
        IF(LWIN.LT.0) GO TO 100
C IS WINDOW LONGER THAN HISIORY
        IF(LWIN.GE.NHS) GO TO 100
C SET UP FOR FIXED WINDOW
        KK = NHS-LWIN
        IIN = IHS(KK)
        ISN = JWGS
C UPDATE STAFT STATE
        NCS = 2*((ISN-1)*NIN+IIN)
        INS = JFSH(NCS-1)
        JWSS = INS
    100 RETURN
        FND
LND Of FILE
```


oniciva prase is of POOR Quexlity

SUBRJUTINE INRD

ORGINA: PEEZ IS OF POCS OURLTY

SUBROUTINE UPDATE

arcoung rise is OF POCN QUALITY

APPENDIX C

ON THE CONTROL OF ROBOTIC DEVICES

By
George H. Burgin
Page
SUMMARY C-1
INTRODUCTION C-3
SYMBOLS C-3
ROBOT CONTROL BACKGRGUND C-6
Equations of Motion C-6
The Different Control Schemes C-6

- The Inverse Problem Technique C-6
- The Computed Torque Method C-8
- The Model-Referenced Adaptive Control Technique C-9
- Gains Adjusted by Finite-State Machines C-10
DEVELOPMENT OF A RCBOT CONTROL SYSTEM C-10
Model Definition C-10
Derivation of the Equations of Motion for the Selected Model C-11
Design of the Basic Linear Feedback Control System C-14
- A First-Cut Design for the Lower Arm Alone C-i5
DEVELOPMENT OF A MANIPULATOR COMPUTER SIMULATION. C-18
Overview C-18
The Final Version of the Control System With
Fixed Gains C-19
- The Single Arm Control Loop C-19
- The Stability of the Single Arm Control Loop. C-20
- Time Histories of Responses To Step Inputs of Varying Magnitudes and Signs for Single Arm. C-21
Simultaneous Control of Both Arms C-21
A Control System with Gains Adjusted by a Finite State Machine C-22
- Description of the Gain Acjuster C-22
- Sample re onses C-25
CONCLUSIONS ? -26
REFERENCES. r. 27
TABIES. 「-22
FIGURES$1-31$

onimm prem fis
 OF POOR QUALITY

CONTROL OF ROBOTIC DEVICES

By George H. Burgin, Decision Science, Inc.

SUMMARY

The control of robotic devices is a challenging and important task. Two primary factors contribute to that challenge. 1. The differential equations describing the behavior of a multilink manipulator turn out to be very complex and tedious to derive. 2. The manipulator is a highly non-linear device so that conventioanl control system design techniques are applicable only to a limited extent.

The presently applied or proposed control techniques are reviewed, particularly the "inverse problem" technique, the computed torque technique and the model-referenced adaptive control technique, and a new technique, which uses finite state machine gain adjusters, is proposed.

Next, the differential equations for a representative twolink model (upper arm and a lower arm) are derived and a basic linear feedback control system, operating about some linearized position of the system is designed. The entire system is simulated on a digital computer and representative time histories of resporses to step inputs are shown, first for a control system which uses fixed gains over the entire operating envelope.

Next, a finite state machine (FSM) gain adjuster for the shoulder joint is designed. It receives an 8-symbol iriput alphabet, which encodes information about error and error rate. The outputs of the finite-state machine are the gains for the proportional and rate feedback signals.

OF:

of for.

A few representative sample reponses show the superiority of this control system over the one with fixed gains.

It is recommended to implement such a control system on the actual Puma hardwave and to compare its performance with the one predicted in this report.

INTRODUCTION

For this discussion, we will limit ourselves to mechanical manipulators which represent a subset of robotic devices. We exclude, therefore, such devices which might be used to explore-remotely controlled or autonomously-- such things as surfaces of planets.

Mechanical manipulators are chains of linkages connected by joints. Joints may be rotational ur translational. Without loss of generality, we will assume that each joint has one degree of freedom; multiple rotational degrees of freedom can be represented by links of zero masses and length, each one with one single degree of freedom.

A typical industrial manipulator has six joints, seven links and a gripper (also called endeffectors). Figure 1 shows a commercially available manipulator, the PUMA 250 , manufactured by Unimation, Inc. Two such manipulators are in operation for research purposes at the NASA Langley Research Center. Table I summarizes some of the key specifications of this manipulator.

Mechanical manipulators of this type have become increasingly important in recent years, and a great deal of effort has been spent for research in the area of simulation and control of industrial manipulators. During the 1981 joint automatic control conference in Charlottsville, not less than eighteen papers were presented on this subject! (1)

SYMBOLS

```
A,B,C,D geometrical constants of system
g acceleration due to earth aravity (9.81 m/sec }\mp@subsup{}{}{2}\mathrm{ ;
I_ moment of inertia of upper arm about its center of mace
J inertia matrix
```

$\mathrm{K}_{\text {I }}$	gain of integral feedback path
K_{F}	gain in forward loop
K_{p}	gain of proportional feedback path
K_{r}	gain of rate-feedback rate
ℓ_{1}	distance between shoulder joint and elbow joint
m_{p}	mass of payload
${ }^{m} 1$	mass of upper arm
m_{2}	mass of lower arm
q_{i}	i-th generalized coordinate
Q_{i}	i-th generalized force (moment)
r_{1}	distance from shoulder joint to center of mass of upper arm
r_{2}	distance between elbow joint and center of mass of lower arm
RS	magnitude of step-input at elbow joint
RS_{1}	magnitude of step-input at shoulder joint
s	Laplace operator
T	kinetic energy
v	potential energy
$\alpha, \beta, \gamma, \delta, \varepsilon$	system variables which are functions of $\left(\phi_{1}, \phi_{2}\right.$ and $\left.A, B, C, D\right)$
5	damping factor
${ }_{1}{ }_{c}$	commanded angle Φ_{1}
${ }^{+}{ }_{c}$	commanded angle ϕ_{2}
T	vector of generalized input forces (moments)
ω_{n}	natural frequency

```
\(\Delta \phi_{1 / h}=\) Threshold value for absolute value in error of \(\phi_{1}\)
    for encoding for input symbol to FSM
    = Threshold value for error rate for encoding for
    input symbol to \(3 M\).
```


Equations of Motion

Mechanical manipulators are highly nonlinear devices. The primary cause for the nonlinear nature of manipulators is the changing moments of inertia of the various links. In the expressions for the moments of inertia, trigonometric functions of the generalized coordinates appear. Since the generalized coordinates vary over a wide range (sometimes over a full 360°), linearization of the trigonometric functions cannot be performed over the full operating range of the manipulator. Other important nonlinear terms are products of derivatives of generalized coordinates with trigonometric functions of generalized coordinates. In addition to these nonlinear effects, which are due to the changing physical configuration of the manipulator as it moves through space, there are the usual nonlinearities associated with any device with moving parts linked by joints: nonlinear friction effects, hysteresis, and so forth.

Much of the literature on robotic manipulators is concerned with the formulation of the equations of motion. This problem is by no means trivial. Walker and Orin (2) point out that for mechanisms with only two or three degrees-of-freedom, these equations can usually be derived manually but that for mechanisms with more than three degrees-of-freedom, a separate computer program is required to symbolically derive the equations of motion.

The Different Control Schemes
In the available literature, a number of schemes to conirol mechanical manipulators have been proposed.
The lnverse problem Technique: Here, ihe reajired irput torque for each joint is computed as a function of tive desired joint acceleration, \ddot{q}_{d}, the joint velocity \dot{q}_{d} and the joint position G_{d}
and the actual \ddot{q}, \dot{q} and q. To explain this method, consider the general form of the equations of motion for a six joint manipulator to be:
where

$$
\begin{equation*}
\underline{\underline{J}}(q) \ddot{q}+\underline{v} \dot{q}+\underline{f}(\dot{q}, q)+\underline{g}(q)=\underline{q} \tag{1}
\end{equation*}
$$

$$
\begin{aligned}
& \begin{array}{r}
J(q)
\end{array} \quad \text { is a } 6 \text { by } 6 \text { inertia matrix } \\
& \underline{V} \text { is a } 6 \text { by } 6 \text { viscous friction matrix } \\
& \underline{f(\underline{q}, \underline{q})} \text { is a } 6 \text { by } 1 \text { vector defining Coriolis and } \\
& \text { centrifugal force terms } \\
& \underline{g(q)} \text { is a } 6 \text { by } 1 \text { vector defining the gravity forces } \\
& \underline{\tau} \text { is a } 6 \text { by } 1 \text { vector of the generalized input forces } \\
& \text { (moments) }
\end{aligned}
$$

Then, the desired input torque vector is computed as:

$$
\begin{align*}
\underline{\tau}=\underline{\underline{J}}_{c}(\underline{q}) & \left\{\underline{\underline{q}}_{d}+k_{1}\left(\underline{q}_{d}-\dot{q}\right)+k_{2}\left(\underline{q}_{d}-\underline{q}\right)\right\} \\
& +\underline{v}_{c} \underline{q}+\underline{f}_{c}(\dot{q}, q)+\underline{g}_{c}(\underline{q}) \tag{2}
\end{align*}
$$

where K_{1} and K_{2} are some gains. (Huh, et al in (3) assume K_{1} and K_{2} as being scalar gain constants. One of the purposes of this invesligation is to determine whether the manipulator performance could be substantially improved by replacing these scalar gain constants by automatically adjusted [by finite state machines]) gain vectors.

Ideally, we would like to have \underline{q} approaching \underline{q}_{d}, then we would have

$$
\begin{aligned}
\underline{J}_{c}(\underline{q}) & =\underline{\underline{J}(\underline{q})} \\
\underline{\underline{v}} & =\underline{\underline{v}} \\
\underline{f}_{c}(\underline{q}, \underline{q}) & =\underline{f}(\underline{q}, \underline{q}) \\
\underline{g}_{c}(\underline{q}) & =\underline{g}(\underline{q})
\end{aligned}
$$

[^0] program.

If these four conditions were satisfied, the equation could be written as

$$
\begin{equation*}
\tau=J(q)\left\{\ddot{q}_{d}+K_{1}\left(\dot{q}_{d}-\dot{q}\right)+K_{2}\left(q_{d}-q\right)\right\}+\dot{V} \dot{q}+f(\dot{q}, q)+g(q) \tag{3}
\end{equation*}
$$

Now, we can equate (1) and (3) and we obtain

$$
J(q)\left\{\ddot{q_{d}}-\ddot{q}+k_{1}\left(\dot{q}_{d}-\dot{q}\right)+k_{2}\left(q_{d}-q\right)\right\}=0
$$

If we call $q-q_{d}$ the position error e_{q}, and keep in mind that the intertia matrix $J(q)$ is nonsingular, we obtain

$$
\ddot{\mathrm{e}}_{\mathrm{q}}+\mathrm{k}_{1} \dot{\mathrm{e}}_{\mathrm{q}}+\mathrm{k}_{2} \mathrm{e}_{\mathrm{q}}=0
$$

This then leads to control system of the form as shown in figure 2.
This method appears to be restricted to those applications where the trajectory of the hand is preplanned, which makes it possible to .. know exactly, all the way along the manipulator's path, q, \dot{q}. and \ddot{q}.. (In other words, these quantities become q_{d}, q_{d} and q_{d} in the above equations.)
Reference (3) mentions that "proper choice of values for K_{1} and K_{2} guarantees the convergency of errors. It does not coordinate the speed of convergence for all six joints. Thus, some joint may converge faster than the others." Reference (3) is very vague on the proper choice of K_{1} and K_{2}, which seems to be a key problem.

The Computed Torque Method: Earlier work performed in the field of manipulator control system design compared the computed torque method with conventional position servo control (4). This is a Jet Propulsion Laboratory internal report and could not be made available in time for the preparation of this report. Important for the computed torque method (and any other method which requires the realtime calculation of the generalized moments and forces) is the efficiency by which these torques may be computed. This efficiency, in turn, depends on how the equations of motion, forming the basis for these torque calculations, are formulated. Much of the modern literature on robet control is devoted to this problem, reference (2) presents a good summary of this subject. At the present time, the consensus among researchers in this field seems t. $\mathrm{U}_{\mathrm{c}} \mathrm{th} \mathrm{i}$: i...
formulation by the Newton-Euler wi:hod yields :omputationally : efficient equations than the formulation by Lagrange's method. It is usually claimed that in the Newton-Euler approach, the computation time grows linearly with the number of links, whereas in the Lagrange approach, it grows with the fourth power of the number of links. Therefore, any method relying on calculating the torques on-line in real-time, almost has to use Newton-Euler for deriving the equations unless the number of links is very small.

Very recently, however, Silver (5) in a benchmark paper has shown that it is possible to overcome some of the difficultios generally attributed to the Lagrangian method. He uses a recursive Lagrangian formulation such that there is no longer a fundamental difference in the computational efficiency between Lagrangian and Newton-Euler formulations.

The Model-Referenced Adaptive Control Technique: - This technique was primarily developed by Professor Dubowsky at UCLA and was first described for the continuous system in (6), and was recently expanded to the Discrete-Time case as described in (7). The requirement for robots which deliver uniformly high performances over a wide range of systems operating conditions precludes the exclusive use of classical linear control systems. Adaptive model-referenced control system can "learn" to compensate for nonlinearities arising from the various geometrical configurations of the manipulator, and they may also be designed to adapt for changing payload characteristics. This is especially important for manipulators employed to retrieve satellites or parts of satellites of unknown mass.

Figure 3 , reproduced from (7), shows the block diagram of a continuous model referenced adaptive control system. It uses a linear, second order reference model and the adadation occurs on the gains $K_{p}(i)$ (positional feedback gain for all joints, that is, $i=1 . .6$ for a 6 joint manipulator), and the rate feedback gains $K_{v}(i)$. An interesting finding of this paper was that for parameters of common industrial manipulators, K_{v} and K_{p} do not need to be varied independently.

Gains Adjusted by Finite-State Machines: This study proposes a new approach to solve the robot control problem. Rather than employing an algorithm which adjusts the gains $K_{p}(i)$ and $K_{v}(i)$ based on the observed difference between the robot's response to a command input and the reference model's response to the command input, the gains will be adjusted based on the output of a finitestate machine which receives as input the robot's response. A similar approach was used previously to adjust the gains of an aircraft stability augmentation control system (8). To derive the algorithm for gain adjustment, a specific manipulator was selected.

DEVELOPMENT OF A ROBOT CONTROL SYSTEM

Model Definition

The Puma 250 manipulator was chosen as a device to be controlled for two reasons: First, it is a manipulator typically representing today's commercially available manipulator, and second, two puma's 250 are presently in use at the NASA Langley Research Center. This made it possible to obtain physical data about the manipulator which are, in general, not available from a manipulator's manufacturer.

It has been shown, for example in (7), that for most applications, the motion of the wrist joints have little effect on the dynamic performance of the lower joints. It is, therefore, justified to assume the wrist joints (endeffector joints) of the Puma to be locked with respect to the lower arm.

Another simplifying assumption was made for this study. It is issumed that the waist rotation is decoupled from the shoulder and elbow rotation. This is the case if the manipulator does not move simultaneously around the waist joint, shoulder joint and elbow joint, but keeps the shoulder and elbow joint in a locixed position while it is moving around the waist joint. The study, therefore, concentrates on andyzing simultaneous motions about shouider , na elbow joint. The manipulator model, therefore, is a tar !int: a.: : two joints system as shown in figure 4.
$\mathrm{C}-\mathrm{i} 0$

Derivation of the Equations of Mution for the Selected Model
In the previous section, Newton-Euler and Lagrange were compared primarily with respect to the comoutational efficiency of the resulting equations of motion. It is important to realize that in the proposed control system, there is no solution (and not even a formulation) of the manipulator's equations of motion required. The only reason why we need to know the equations of motion and why we have to solve them by some numerical method is for the purpose of simulating the closed-loop system of manipulator and control system. There exists no requirement to perform this simulation in real time. Computational efficiency is, therefore, of no practical importance. This is quite.in contrast to the "inverse piant" and the "computed torque" technique, where torques have to be computed online and in real time. We can, therefore, compare the two techniques to obtain the equations of motion simply based on their relative merits of simplicity of the derivation.

Newton's-Euler's Method: Applying this method to the system shown in figure 4 results in two translational and one rotational equation for each one of the linis, resulting in 6 second order differential equations. But, obviously, the system has only two degrees of freedom; therefcre, we have to formulate kinetic constraint equations; for example, the coordinates of the elbow joint in inertial space must be the same for the upper arm as for the lower arm. It is our experience that considerable skill is required to formulate exactly the right number of constraint equations, certainly a drawback of the Newton-Euler Method. On the other hand, proper formulation in the Newton-Fuler method will provide internal reaction forces and moments, presenting an important advantage in robot design.

Lagrangian Method - Once appropriate generalized coordinates have been defined, the Lagrange's method is relatively straight forward: Express the system's kinetic energy in terms of the generalized coordinates and their derivatives, et the kinotic nnergy be T . Express the potential enerav (incluaing all conservative forces) as V, then Lagrange's equation states:

ORICNAL PETE G
 OF POOR QUALITY

$$
\frac{d}{d t}\left(\frac{\partial T}{\partial \dot{q}_{\mathbf{i}}}\right)-\frac{\partial T}{\partial \dot{q}_{\mathbf{i}}}+\frac{\partial \mathbf{V}}{\partial \mathbf{q}_{\mathbf{i}}}=\mathbf{Q}_{\mathbf{i}}
$$

$n=$ number of degrees
of freedom
Thus, a system of n second order differential equations will result. Note that Q_{i} is the generalized force (or moment) for the $i-t h$ equation, all nonconservative forces and moments must be included in Q_{i}, specifically, the externally applied moments at the individual joints. Table II summarizes some of the advantages and disadvantages of the two methods.

Lagrange's Method for Two-Link System: - A natural choice for the two generalized coordinates in the two-link system are the two angles ϕ_{1} and ϕ_{2} as shown in Figure 4.

$$
\begin{aligned}
T & =1 / 2 \dot{\phi}_{1}^{2}\left\{I_{1}+m_{1} r_{1}^{2}+m_{2}^{\ell} 1_{1}^{2}+m_{p}^{\ell}{ }_{1}^{2}\right\} \\
& +\frac{1}{2}\left(\dot{\phi}_{1}+\dot{\phi}_{2}\right)\left\{I_{2}+m_{2} r_{2}^{2}+m_{p}^{\ell} 2^{2}\right\} \\
& +\dot{\phi}_{1}\left(\dot{\phi}_{1}+\dot{\phi}_{2}\right)\left(m_{2} r_{2}+m_{p}^{\ell} 2\right) \ell_{1} \cos \phi_{2} \\
V & =\left\{m_{1} r_{1}+\left(m_{2}+m_{p}\right) \ell_{1}\right\} g \sin \phi_{1} \\
& +\left(m_{2} r_{2}+m_{p} l_{2}\right) g \sin \left(\phi_{1}+\phi_{2}\right)
\end{aligned}
$$

Letting

$$
\begin{aligned}
& A=I_{1}+m_{1} r_{1}^{2}+m_{2}^{\ell}{ }_{1}^{2}+m_{p} \ell_{1}^{2} \\
& B=\left(m_{2} r_{2}+m_{p} \ell_{2}\right) \ell_{1} \\
& C=I_{2}+m_{2} r_{2}^{2}+m_{p} \ell_{2}^{2} \\
& D=m_{1} r_{1}+\left(m_{2}+m_{p}\right) l_{1}
\end{aligned}
$$

and then formulating Lagrange's equations and collecting terlis y : is:

$$
\begin{aligned}
& \ddot{\phi}_{1}\left(A+C+2 B \cos \phi_{2}\right)+\ddot{\phi}_{2}\left(C+B \cos \phi_{2}\right)= \\
& =\dot{\phi}_{2}\left(2 \dot{\phi}_{1}+\dot{\phi}_{2}\right) B \sin \phi_{2}-D g \cos \phi_{1}-\frac{B g}{\ell_{1}} \cos \left(\phi_{1}+\phi_{2}\right)+Q_{1} \\
& \quad \ddot{\phi}_{1}\left(C+B \cos \phi_{2}\right)+\ddot{\phi}_{2} C= \\
& = \\
& -\dot{\phi}_{1}^{2} B \sin \phi_{2}-\frac{B g}{\ell_{1}} \cos \left(\phi_{1}+\phi_{2}\right)+Q_{2}
\end{aligned}
$$

It is easy to show that Q_{1} is the applied (control) moment in the shoulder joint, which we will call M_{1}, while Q_{2} is the applied (control) moment in the elbow joint, let it be M_{2}. To be able to solve the above system of two second order differential equations by standard numerical methods, we have to solve them for ϕ_{1}, and ϕ_{2}. Before doing this, we introduce the following:

$$
\begin{aligned}
\alpha & =A+C+2 B \cos \phi_{2} \\
B & =C+B \cos \phi_{2} \\
\delta & =C \\
\gamma & =\dot{\phi}_{2}\left(2 \dot{\phi}_{1}+\dot{\phi}\right) B \sin \phi_{2}-D g \cos \phi_{1}-B g / \ell_{1} \cos \left(\phi_{1}+\phi_{2}\right) \\
\varepsilon & =-B \sin \phi_{2}-\frac{B g}{\ell_{1}} \cos \left(\phi_{1}+\phi_{2}\right)
\end{aligned}
$$

so that

$$
\begin{aligned}
\ddot{\phi}_{1}+\ddot{\phi}_{2} & =v+M_{1} \\
\ddot{\phi}_{1}+\delta \ddot{\phi}_{2} & =\varepsilon+M_{2}
\end{aligned}
$$

or

$$
\text { [A] } \overrightarrow{\ddot{\phi}}=\vec{b}
$$

and

$$
[A]^{-1}=\frac{1}{\delta a-s^{2}}\left[\begin{array}{rr}
-\pi & n
\end{array}\right]=\frac{1}{n}\left[\begin{array}{rr}
\delta & -3 \\
-3 & t
\end{array}\right]
$$

and, solved for $\ddot{\phi}_{1}$ and $\ddot{\phi}_{2}$

$$
\begin{aligned}
& \ddot{\phi}_{1}=\frac{1}{\Delta}\left\{\delta\left(\gamma+M_{1}\right)-\beta\left(\varepsilon+M_{2}\right)\right\} \\
& \ddot{\phi}_{2}=\frac{1}{\Delta}\left\{-\beta\left(\gamma+M_{1}\right)+\alpha\left(\varepsilon+M_{2}\right)\right\}
\end{aligned}
$$

This concludes the derivation of the equations of motion. It is obvious that any increase in the number of links soon increases the complexity of the equations of motion beyond what one can derive manually.

Design of the Basic Linear Feedback Control System

For a preliminary design of the control system, certain estimates about the geometrical dimensions, the masses and the moments of inertia of the Puma manipulator had to be made. Figure 5 illustrates our assumption about the shape of the lower arm. The distance between elbow joint and the waist joint was taken from Unimation's drawing of the Puma, as shown in figure 1 , all other geometrical dimensions in figure 5 are estimated values. Note that for a first design, we assumed the arm to be homogeneous; this assumption is quite inaccurate since in reality, the mass of the arm is concenttrated around the two joints (where the $D C$ servomotors are placed) and little mass is around the center of the arm.

If we designate with A the area of the arm, and with V its volume, it follows from figure 5:

$$
\begin{aligned}
& A=\frac{.15+0.1}{2} * 0.575 \mathrm{~m}^{2}=0.071875 \mathrm{~m}^{2} \\
& V=0.071875 * 0.03 \mathrm{~m}^{3}=2.1562510^{-3} \mathrm{~m}^{3}
\end{aligned}
$$

Assuming a homogeneous mass distribution of $786 \mathrm{~J} \mathrm{~kg} / \mathrm{m}^{3}$, the arms total mass will be 16.95 kg .

Under the same assumptions, we may calculate the area's moline of inertia (z_{z}) about its center of mass, which is approximately

$$
I_{2 ?} \cong 0.5 \mathrm{~kg} \mathrm{~m}^{2}
$$

For simplicity, we assume the same geometry for the upper arm as we have shown in figure 5 for the lower arm. We can, therefore, summarize the constants appearing in the equations of motion as follows:

$$
\begin{aligned}
\ell_{1} & =\ell_{2}=0.42 \mathrm{~m} \\
r_{1} & =r_{2}=0.17 \mathrm{~m} \\
m_{1} & =m_{2}=16.95 \mathrm{~kg} \\
I_{1_{z z}} & =I_{2}=0.5 \mathrm{~kg} \mathrm{~m} \\
g & =9.81 \mathrm{~m} \mathrm{sec}^{2} \\
m_{p} & =2.5 \mathrm{~kg}^{-2}
\end{aligned}
$$

A First-Cut Design for the Lower Arm Alone: To get a reasonable structure of the control system and approximate values of gains such that the response of the arm to a commanded step input in angular displacement follows a desired second order response type such that the physically available control torques of the Puma's DC servo motors are not exceeded, we will now proceed to determine values for the two gains K_{p} (gain of the proportional feedback) and K_{R} (gain of the rate feedback, called K_{V} in Dubowsky's paper (7).

Figure 6 shows a control system with proportional and rate feedback for the lower arm, in which $M\left(m_{p}\right)$ indicates the moment about the elbow joint due to the payload. intariziny the system. about $i_{2}=0$ yields the following equations:

$$
\begin{aligned}
E(s) & =R(s)-K_{R} s \phi_{2}(s)-K_{p} \Phi_{2}(s) \\
I(s) & =K_{F} E(s)+M\left(m_{p}\right) \\
s^{2} \Phi_{2}(s) & =\frac{1}{I_{2}} \cdot I(s)
\end{aligned}
$$

which results in the following transfer function for ϕ_{2}.

$$
\phi_{2}(s)=\frac{\frac{1}{I_{2}}{ }^{\text {elbow }}}{s^{2}+\frac{K_{F} K_{R}}{I_{2} R(s)} s+M\left(m_{p}\right)}
$$

To obtain reasonable values for K_{F}, K_{P} and K_{R}, we can first negiect the gravity term $M\left(m_{p}\right)$ and, without loss of generality, we can set $K_{p}=1$ so that we can write the transfer function in the standard form for linear second order systems.
which we may compare with the normal form:

$$
\frac{C(s)}{R(s)}=\frac{\omega_{n}{ }^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}
$$

such that

$$
\begin{aligned}
& K_{F} \\
& I_{2} \text { elbow } \omega_{n}^{2}
\end{aligned}
$$

and

$$
\begin{aligned}
& K_{F} \cdot K_{R}=2 r, n_{n} . \\
& I_{2} \text { elbow }
\end{aligned}
$$

We will determine K_{F} and K_{R} so that, for a step input of R, the integral of time multiplied by the absolute value of the error (IATE) will be minimized; in other words:

$$
\text { IATE }=\int_{0}^{\infty}|E(t)| \cdot t d t \Rightarrow \text { minimum }
$$

It is well known that for a linear second order system IATE is minimized if

$$
\zeta=\frac{\sqrt{2}}{2}
$$

(See for example Reference 10, page 93).
We may specify a second condition which we want to satisfy, for example the time to the first peak, which is (reference 9, page 30).

$$
t_{p}=-\Pi
$$

$$
\begin{aligned}
& \text { Substituting } \frac{\sqrt{2}}{2} \text { for } \zeta \text {, we obtain } \\
& \qquad \omega_{n}=\frac{I I}{t_{p}} \sqrt{2}
\end{aligned}
$$

For the Puma manipulator, a time of 0.5 seconds to the first peak appears to be a reasonable, physically relizable choice; thus,

$$
\omega_{n}=\frac{-1!}{0.5} \sqrt{2}=8.88 \mathrm{sec}^{-1}
$$

The moment about the elbow is equal to:

$$
I_{2 \text { elbow }}=I_{2_{z z}}+r_{2} m_{2}=3.38 \mathrm{~kg} \mathrm{~m}^{2}
$$

Thus, for the linearized system:

$$
K_{F}=I_{2_{\text {elbow }}} * \omega_{n}^{2}=266 \mathrm{~m}^{2} \mathrm{~kg} \mathrm{sec}^{-2}
$$

and

$$
K_{R}=\frac{2 \zeta \omega_{n} I_{2} \text { elbow }}{K_{F}}=0.1593 \mathrm{sec}
$$

At this point, it seems highly desirable to simulate the actual, nonlinear manipulator system, using the feedback system as developed above but dropping the assumption of small angular displacemients about $\phi_{2}=0$. By doing so, we will gain insight into how far the results developed for the linearized system are valid for the actual, nonlinear system. We interrupt, therefore, the development of the control system at this point and describe the digital computer simulation of the manipulator.

DEVELOPMENT OF A MANIPULATOR COMPUTER SIMULATION

Overview

The goal of the computer simulation of the manipulator is to have a tocl available which is flexible enough to allow the analyst to investigate many different control system designs. It is, therefore, required that tre simulation be modular and well structured. One of the difficulties in any digital simulation of continuous system is the proper choice of the integration step size; this is particularly important in the simulation of a manipulator receiving step inputs for angular positions. It is, therefore, required that an integration method which allows an easy automatic step size adjustment, based both on absolute and relative error criterid, be used. Remember, we are not simulating a linear second order (or higher order) system, but a highly nonlineir sistom ahmen thin int zero location contiruously chance, as the marifulater l, wa, i..... relative to each other. A Rung.. . Ata type integ. : .on: : !
most appropriate in a situation line this. Felilbery (12) develn ! a highly accurate fifth order Range- Gutta method. In one of the must recent simulation packages, developed by Pritsker, this method is used (13). It seemed appropriate, therefore, to use SLAM as simulation language for the control system development.

The Final Version of the Control System With fixed Gains The Single Arm Control Loop: - Figure 7 shows the final version of the control device, using fixed gains. As can be seen by comparing Figure 7 with Figure 6, a term proportional to the error integral has been added to the control system, so that we have more or less a conventional PID regulator. The error -integral term will force, for a step input of $R(s)$, the angular displacement of the arm to assume, at steady state, the desired angular displacement.

It is easy to show that the transfer function for figure 7 can be expressed as:

The steady state behavior for a step input $R(s)=\frac{R}{s}$ is:

$$
\lim _{t \rightarrow \infty} \phi(t)=\lim _{s \rightarrow 0} p(s)=\frac{R}{K_{p}}
$$

Since $K_{p}=1, \quad \lim _{t \rightarrow \infty} \phi(t)=R$
which is the desired steady state response.
The Stability of the Single Arm Control Loop: - Due to the changes in the moments of inertia for large angular deflections, it is difficult to determine stability boundaries. However, one gets a good "feel" for the stability of the system by performing a root locus analysis for the above defined transfer function. This requires the solution of the cubic equation.

$$
s^{3}+s^{2} \frac{k_{F} K_{R}}{I_{Z Z}}+s\left(\frac{k_{1} K_{R}+k_{P} k_{F}}{I_{Z Z}}\right)+\frac{k_{P} K_{1}}{I_{Z Z}}=0
$$

or

$$
s^{3}+a_{1} s^{2}+a_{2} s+a_{3}=0
$$

which can be shown to be equivalent to finding the eigenvalues of the matrix A where

$$
A=\left(\begin{array}{cll}
-\mathrm{a}_{1} & -\mathrm{a}_{2} & -\mathrm{a}_{3} \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

(See for example ref. 14, page 233)
A computer program to find eigenvalues was available (EIGEN, California State University, CTS). Figure 8 shows a typical root locus plot for the above transfer function for variable payload masses. It shows the roots to lie in the desirable region for payloads from 1 kg to 5 kg and chill be acceptable for zama payload.

Time Histories of Responses to Step Inputs of Varying

Magnitudes and Signs for Single Arm: - Remember that the analyses performed so far were for a system linearized about $\phi_{2}=0$. It is therefore necessary to investigate the dynamics for large step inputs, because the moment of inertia depends on the angle ϕ_{2}. The response of the system will also be asymmetrical for a commanded step input of the same magnitude but in opposite directions. This is illustrated in Figure 9. The system was initially at rest with the upper arm fixed at $\phi_{1}=0$ and the lower arm supported with $\Phi_{2}=0$. At time $t=0^{+}$, the support was removed and simultaneously the step input command was applied. Control system gains were as indicated on Figure 8 which guaranteed that control torques did not exceed those physicaly attainable on the PUMA (see Table 1). Commanded step inputs were $\phi_{2 c}=0$ degrees, $\Phi_{2 \mathrm{c}}= \pm 45$ degrees, and $\Phi_{2 \mathrm{c}}= \pm i 35$ degrees. The difference in response to a +135 degree and a -135 degree commanded angle is interesting and can easily be explained by noting that in the first case, the moment generated by the payload first opposes the motion, but after the initial overshoot, supports the desired motion; while in the second case, the gravity first acts in the direction of ine desired motion, but after the angular displacement exceeds - 90 degrees, gravity of the payload opposes the motion. Notice, for example, that in the first case after . 2 seconds, the arm reaches an angle of +35 degrees while in the second case, the angle is -57 degrees.

Simultaneous Control of Both Arms: - The extension of the control system from a single arm to both arms simultaneously is straightforward. The same type of control system is applied to both joints, the only difference being the maçitudes of the gains. Figure lo slows the block diagram for the two-link system in a form suitable for direct translation inte the subroutine SIATE as required by SLAM. (ivie that this would also be suitable for being programmed on an analog computer.) The quantitics Φ_{1}, and ${ }^{\phi}{ }_{2}$ c represent the cominanded angies. Th. other quantiti..
correspond to the symbols as used in the section "Lagrange's Method for Two-Link System." Figures 11 through 14 show time history responses of the two controlled angles for various combinations of step inputs.

Note that Figure 13 and Figure 14 illustrate the motion of the robot moving the payload from the same initial position

$$
\left(x=\ell_{1}+\ell_{2} ; \quad y=0\right)
$$

to the same position

$$
\left(x=\frac{\ell_{1}+\ell_{2}}{\sqrt{2}} ; \quad y=0\right)
$$

in Figure 13 such that at the terminal position $\phi_{1}=+45^{\circ}$; $\phi_{2}=-90^{\circ}$; while in Figure 14, the terminal position is $\phi_{1}=-45^{\circ}$, ${ }_{2}{ }_{2}=+90^{\circ}$. Note the strongly asymmetrical motion, particularly of the angle ϕ_{1}.

Figure 14 shows the motion of the payload in the $x-y$ plane as function of time for the conditions shown in Figure 13.

A Control System with Gains Adjusted by A Finite-State Machine

Description of the Gain Adjuster: - As it was stated in the section "The Different Control Schemes," we proposed a new approach to solve the robot control problem by modifying some of the feedback gains based on the state of a finite-state machine rather than based on the observed difference btween the robots actual response and the response of the reference model.

We will first demonstrate the need for gain adjustment. Consider the case where Φ_{1} a... '? a.w ilitialiv iel...... want tc move the payload from ${ }^{-}$

C-2. 2
C \therefore
OF FCind Qualiís


```
Of FON: C!A:T
```

both arms are extended to some oiner poini on the x-axis, weineu either by:

$$
\phi_{1}=+45^{\circ} \quad=-90^{\circ} \quad(\text { case } 1)
$$

or

$$
\phi_{1}=-45^{\circ} \quad=+90^{\circ} \quad(\text { case } 2)
$$

(Compare with Figure 14, showing the motion for the first case).
Figure 15 shows the response (ϕ_{1} only) for fixed gains. The difference in the response between the two cases is due to the asymmetry of the moments due to gravity and therefore becomes more pronounced the heavier the payload is.

Only very limited time remained under this contract to develop the finite-state machine gain adjuster. It was therefore decided to adjust only the gains for the controller of the upper arm (ϕ_{1}). This is the angle which is more difficult to control because the moment of inertia about the shoulder joint depends on the elbow angle. In the following examples, the gains for the controller of ϕ_{2} will remain constant.

A state-output finite-state machine was devised to set the gairs. The machine consists of eight states, associated with each state are two gain values, one for $K_{F_{1}}$ and one for $K_{R_{1}}$ according to the following table:

State Number	$K_{F_{1}}$	$K_{R_{1}}$
1	600	0.3
2	600	0.2
3	800	0.15
4	800	0.1
5	300	0.4
6	300	0.2
7	500	0.3
8	$50 C$	0.2

Onic:mer is
 OF POÓN QUASti

The input alphabet to the finite-state machine consists of eight symbols, the integers 1 through 8 . Th input symbol to the FSM is determined as follows:
$\begin{aligned} \text { Let IN3 } & =1 \quad \text { if } \operatorname{sign}\left(\phi_{1_{d}}-\phi_{1}\right) \quad \text { is positive }\end{aligned}$

Let IN2 $\begin{aligned} & =1 \quad \text { if }\left|\phi_{1}-\phi_{1}\right| \geqslant \Delta \phi_{1} \\ & =0 \text { otherwise }\end{aligned}$

Let IN1 $\begin{aligned} & =1 \quad \text { if }\left|\dot{\phi}_{1}\right| \geqslant \dot{\phi}_{1} \\ & =0 \text { otherwise }\end{aligned}$

Then, the input symbol to the FSM is defined as

INSYMB $=8-(4 * \operatorname{IN3}+2 * \operatorname{IN2}+$ IN1)
The state transition logic is such that no matter in which state the $F S M$ is at the time of receipt of an input symbol, the FSM will transit into the state with the same number as the input symbol.

We realize, of course, that the logic of such a finite-state machine gain adjuster is very simple (it amounts to a table lookup). Two remarks, however, are appropriate. First, the few examples of responses shown in the next section show that the system works significantly better than the one previously described with fixed gains.

Second, the intent was to have a more sophisticated FSM to adjust the gains. A first improvement would expand the input alphabet such that it contains information about the angle ϕ_{2} and maybe the angular rate $\dot{\phi}_{2}$. Since the moment of inertia about the shoulder joint increases with decreasing angle ${ }_{2}$, it seems desirable to increase k_{p} with decreasing anale i_{2}.

It is clear that the design of the finite-state machine gain adjuster, as the input alphabet size increases, beconcs : : $:=$. r C. 24
more difficult and can no inger be achiaved by mere intuitiun of the designer. When the point of complexity which exceeds the intuitive method of designing a FSM gain adjuster is reached, it would be beneficial to incorporate evolutionary programming into the control system design. The evolutionary program could be started with the final "best" machine found by intuition and analysis. This machine would serve as the parent machine for the evolutionary process.

The evolution of the FSM gain adjuster could now be performed on-line, in real-time. Thus, the FSM gain adjuster would not only take care of the time varying dynamic properties (such as changing moments of inertia) of the manipulator, but it would also compersate for unknown physical parameters of the manipulator. With today's available computer resources, such an evolutionary control system design appears to be technically feasible. It might well provide a solution to the problem of designing truly adaptive, multipurpose robots operating in an unknown environment.

Sample Responses: - In Figures 13 and 14 the system responses were shown for the twn cases:

$$
\begin{array}{ll}
\text { 1. } \phi_{1 C}=+45^{\circ} & \phi_{2 C}=-90^{\circ} \\
\text { 2. } \phi_{1 C}=-45^{\circ} & \phi_{2 C}=+90^{\circ}
\end{array}
$$

Figures 16 and 17 show the system response for the same two cases, but having the gains adjusted with the FSM gain adjuster. Not only is the response smoother and faster: but much more symmetrical when using the $F S M$ gain adjuster. These two examples clearly show the superiority of the system with adjusted gains over a system with constant gains.

A last example (Figure 18) shows the system response for a ranp input. Even though the system was designed with step inputs in mind, the responic io 1 amp inputs is quite satisfaciory.

A complete listing of the simulatior source program is presented in Figure 19.

CONCLUSIONS

Robots, whose angles between individual links are controlled by servo motors, can be controlled to yield fast response and remain stable over the entire operating envelope. This may be achieved by control system employing proportional, integral and rate feedback, in which some or all of the gains are adjusted by finite-state machines. These FSM's are "driven" by the systems past response to commanded inputs.

Such control systems might offer advantages over adaptive model-referencing systems because in a digitally controlled robot, finite-state machines are easily integrated with the remainder of the control system.

It would seem worthwhile to implement the control system, as described in this report, in actual hardware and to compare its performance with the one of the simulation.

cranion one is
 of POM QUALity

REFERENCES

1. Proceedings of the 1981 Joint Automatic Control Conference, June 17-19, 1981, Charlottsville, Virginia.
2. Walker, M.W.; and Orin, D.E.: Efficient Dynamic Computer Simulation of Robotic Mechanisms. Proceedings of the 1981 Joint Automatic Control Conference, June 17-19, 1981, Charlottsville, Virginia.
3. Luh, J.Y.S.; Walker, M.W.; and Paul, R.P.C.: Resolved-Acceleration Control of Mechanical Manipulators, IEEE Transactions on Automatic Control, Vol. 25, No. 3, June 30, 1980, pp. 468-474.
4. Markiewicz, B.R.; Analysis of Computed Torque Drive Method and Comparison with Conventional Position Servo for a Computer Controlled Manipulator. Technizal Memorandum 33-501, Jet Propulsion Laboratory, March, 1973.
5. Silver, W.M.; On the Equivalence of Lagrangian and NewtonEuler Dynamics for Manipulators. Proceedings of the 1981 Joint Automatic Control Conference, June 17-19, 1981, Charlottsville, Virginia.
6. Dubowsky, S.; and Des Forges, D.T.: The Apflication of Model Referenced Adaptive Control to Robotic Manipulators. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, Vol. 101, No. 3, pp. 193-200, September, 1979.
7. Dubowsky, S.; On the Adaptive Control of Robotic Manipulator: The Discrete-Time Case. Proceedings of the 1981 Joint Automatic Control Conference, June 1719, 1981, Charlottsville, Virginia.

8. Burgin, G.H.; and Walsh, M.J.: Finite-State Machines As Elements in Control Systems. Annual Symposium Record of the $i 971$ IEEE Systems, Man and Cybernetic Group, pp. 241-246.
9. Thaler, G.J.; Design of Feedback Systems. Dowden, Hutchinson \& Ross, Inc., Strandsburg, Virginia, 1973.
10. Santee, D.P.; Automatic Control System Technology. Prentice Hall, Englewood Cliffs, New Jersey, 1980.
11. Thinners, S.M.; Control System Design. John Wiley, New York, 1964.
12. Fehlberg, E.; Low-Order Classical Runge-Kutta Formulas with Step-Size Control and Their Application to Some Heat Transfer Problems. NASA Report TR R-315, Huntsville, Alabama, April, 1979.
13. Pritsker, A.; and Fegden, C.: Introduction to Simulation and SLAM. Johr Wiley, New York, 1979.
14. Ralston, A.; and Wile, H.: Mathematical Methods for Digital Computers. John Wiley, New York, 1960.

ORIGINAL PAGE IS OF POOR QUALITY.

TABLE I

SELECTED PUMA SPECIFICATIONS

Data Provided by Unimation, Inc. Degrees of Freedom: 5 rotational no translational

Rotatonal Limits
(1) Waist: $\quad \pm 160^{\circ}$
(2) Shouder: $\pm 165^{\circ}$
(3) Elbow: $\pm 135^{\circ}$
(4) Wrist: $\pm 105^{\circ}$
(5) Joint 5: $\pm 180^{\circ}$

Maximum Static Force at the "hand": $\quad 58 \mathrm{~N}$ (13 ib.)

Maximum Payload: 223 N (5 1b.)

Maximum Hand Acceleration: 1 g

Maximum Hand Velocity:
$1.0 \mathrm{~m} / \mathrm{s}$ (3.3 feet/s)

Control:
Electric DC
Servomotors

Data Obtained from Measurements at LRC

Maximum torque in elbow joint
(averaged between up and down motion) $\mathrm{H}_{2_{\text {max }}}=163 \mathrm{Nm}$
Maximum torque in shoulder joint
(averaged between up and down motion) $M_{1_{1 r}}=244 \mathrm{Nm}$

$$
1 ;-i
$$

ORGUNDE PAEE IS OF POOR QUALITY

TABLE 2

Comparison between Newton/Euler and Lagrange Method.

OR!GINAL PAGE IS
OF POCR QUALITY
WAIST ROTATION 320°

Figure 1: PUMA Manipulator

of PuC: QUñilty

Figure 4: The Two-Link Systern
Mass $=7.86 \star 2.156 \mathrm{~kg}$.

OF POOR QUALLITY

Figure 6: Block Diagram for Single Arm Controller
oram pres is
OF FOOR Q:ALITY

Figure 7: Block Diagram for Single Arm Controller

ORiginal page is OF POOR QUALITY

Con oren is
OF POOR QUALITY

Figure 9: Responses of Lower Arm to stei
Inputs of Varying Manitudes and Sinns

crexine mige is
OF POOR QUALITY

Figure 12: Syctem Pesponse for

ORIR:? Prive is OF FOC: QUALITY

Fiqure 13: System Response for

$$
\begin{aligned}
& { }_{1}=+4!0^{\circ} \\
& A_{C}=-90^{\circ}
\end{aligned}
$$

ORGUA: PRGE IS
OF POCR QUALITY

| $\phi_{1} \phi_{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 |

Figure 16: System Response with Finit,-St،it Machinc Cuin idjuster fo.
$=+4 n$

OR:G… .an is
OF POOR QUALITY

Fiqure 17: Syster Posponse with Finite-Stat Machine Gain Adjuster for

$$
\begin{align*}
& { }^{{ }_{1} C_{C}}=-45^{\circ} \\
& { }^{2}{ }_{C}=+90 .
\end{align*}
$$

(Compare with figure 14)

GEN, BURGIN,FOROT,2/12/82;
INITIALIZE, 0, 25:
CONTINUOUS, $5,0,0.0005,0.1,0.1, W:$
RECORD, INOW, TIME, ,T,0.1;
VAR,XX(E), PHII;
VAR, XX(3), PHI2:
TAR.XX(21), MOM1:
IJAR, XX(20$)$, MOM2:
UAR, XX(31), STATE;
Simulate:
IIN:
END OF FILE

loet, rooots

6

C FROGRAM MAIN(IAPES, TAPEG=80. INFUT.OUTPUT, TAPE17,TAPE18)
[IMENSION NSET(2000)
COMMON OSET(15.00)
EOUIVALENCE (OSET(1), INSET(1))
C
 1.NCRDR.NPRNT, NNFUUN, NNSET. NTAPE, SS(100), SSL(100), TNEXT.TNOW.XX(100)

C
COMMON/FURGINI/AA.BE.C…DDO,G,PI
C

REAL L1,LZ.MI.M2,MF, I 1. I2.MOMI, I10M2
C
COMMON/CONTROL/RS, KF, KP, KR,KI
COMMON/CNTRLI/RSI,KFI,KP1.KRI,KII
FEAL KF,KF'KR,KI
REAL KFI,KPI.KRI,KII
i
NNSE. T $=1500$
NCKDR $=5$
NPRNT = F ,
$N T A F \cdot E=18$
NNSE T $=1500$
Figure 19: Listing of
C
REWIND 5 Computer Simulation Source Program
REWIND 6
RFWIND 17
FithIND 18
$P I=4.4 \operatorname{AIAN}(1$.

1 CONTINUE

REWINGS	CEASPAOE is
CAIL SLAM	OF POC: QUALITY

C

END

SUBROUTINE STATE

C C C

C
DIMENSION NSET(15,00)
COMMON GSET (1500)
EOUIVALENCE (OSET (1), NSET(1))
C
COMMON/SCOM1/ ATRIR(100), DI)(100).DOL(100), DTNOW, II, MFA, MSTOP, NCLNR 1, NCRDR, NPRNT, NNRUN.NNSET,NTAFE, GS(100), SSL(100), INEXT, TNOW, XX(100)
C
COMMCIN/BURGINI/AA. BE, CCC, DDD,G.PI
C

REAL L1, L2.M1, M2, MP, I1, I2, MOMI, MOM2
C
COMMON/CONTROL/RS,KF,KP,KR,KI
COMMON/CNIFLI/RSI,KFI,KP1,KRI,KII
RFAL KI,KP,KR.KI
KEAL KF1,KP1,KR1,K11
C
 $+\quad$ (SS(4).PH1200T)
C
DATA SLOPEI/0.15485.7/
C
H(INOW.i T.5.)GO TO 710
IF (INOW.LT.15.)GO TO 720
It (INOW.LT.20.) G0 T0 730
CO 10740
710 Kict = INOW*SLOPE 1
GO $10 \quad 750$
720 KSS $1=0.7 / 429-($ INOW-S. $) * S L O P E 1$
(G) 10750

730 R $2.1=0.71428+($ INOW -15.$) * 5 L$ OFE 1
6010750
$740 \mathrm{RS} 1=0$.
750 CONI INUF
C
S(NFHI2=SIN(FHI2)
(GSFHI2=COS (FHI2)
(.O).PYII $=\operatorname{COS}($ PHII)
\therefore INFHII $=$ SIN(PHII)
Cus!r2= $\operatorname{COS}($ PHI $1+\mathrm{FH} \mathrm{H} 2)$
GINII2 SIN(PHIItf:Ul?)
C
C

B: I $A=C C+E B * C O S H I 2$
D) $\mathrm{I} \mathrm{I}=\mathrm{CC}$

$+\quad-8 E+G \times \cos 1 \mathrm{PZ}$ II
FPSILON $=-B E * G * C O S 1 F 2 / L I-P H I 1 D O I * * 2 * B B * S I N I H I 2$
C-50

C

CALL GAINS

C
C
ERROR $=R S-K P * P H I 2-K R * F H I 2 D O 1$
ERRORI $=R S 1-K P 1 * F H I 1-K R 1 * P H I 1 D O T$
MOM1 $=$ KF $1 * E R R O R 1+K 11 * S S\left(E_{1}\right)$
IF (MOM1.GT. 244. $)$ MCM1 $=244$.
IF (MOM1.LT.-244.) MOM1 $=-244$.
MOM2 $=K F * E R R O R+K I * S S(5)$
IF (MOM2.GT. 163.) MOM2 $=163$.
IF (MOM2.LT. - 163. $)$ MOM2 $=-163$.
C
DD(1)-SS(2)
DENOM $=$ DELT TA*ALFA-EETA**2
$D D(2)=(D E L T A *(G G M M A+M O M i)-B E T A *(E P S I L O N+M O M 2)) / D E N U M$
DD (3) $=S S(4)$
$\operatorname{DD}(4)=(-$ BE TA*(GAMMA + MOM1) + ALF $A *(E F S$ ILON + MOM2 $)$)/DENOM
DD(5) = ERROR
DD(6) =ERROR1
$x \times(3)=5(3) * x \times(57)$
$X X(4)=5 S(4) * X X(57)$
$X X(5)=D[4) * X X(57)$
$X X(6)=5 S(1) * X X(57)$
$X X(7)=L 1 * \operatorname{COSPHI} 1 * 100$.
$X X(8)=L 1 * S I N P H I 1 * 100$.
$X X(9)=X X(7)+i 2 * \cos 1 P 2 * 100$.
XX(10) $=X X(8)+L 2 * S I N 1 P 2 * 100$.
$X Y(20)=M O M 2$
$X \times(21)=M 011$
RETURN
END
SUBROUTINE INTLC
[IMENSION NSET(1500)
COMMON OSET(1500)
EOUIVAI.ENCE (OSET(1).NSET(1))
COMMON/SCOM!/ ATRIB(100),DD(100).DDL(100).DTNOW, II.MFA.MSTOP.NCLNR 1,NCTIDR,NF'RNT.NNRUN, NNSET,NTAF'E, SS(100), SSL(i00), TNEXT.TNOW, XX(100)

COMMON/BURGINI/AA, BB, CC. UDD,G,PI
C

COMMON/BIJRGIN2/LI,L2.M1,M2.MP,II.I2.R1,R2, MOM1.HOM2,CF 1.CF2
REAL L1,L2,M1,M2,MP, I1, I2, MOM1, MOM2
COMMON/CONTROL/RS , KF , K.P.KR.KI
COMMON/CNTRLI/KSI, KFI, K'R1, K'R1, Kll
KFAL KFI, KRI.KII,KFI
FEEAL KF,KP,KR,KI
C

$+\quad$ (SG(4).AHIClOUT)
C

C
C.. GLOMEIRICAL AND FHYSICAL UAIA

C".
of POC: QUALITY
$L 1=0.42$
$L 2=0.42$
$M 1=16.95$
$M 2=16.95$
C.... \quad-rsers
$M P=2.5$
OF PC
I $1=0.5$
I2=0.5
$\mathrm{R} 1=0.17$
$R 2=0.17$
$M C M 1=0$.
MOM2 $=0$.
$G=9.81$
CF $1=0$.
$K F=50$.
$K R=0.4$
$K P=1$.
$K I=200$.
RS:- $00 . / \mathrm{XX}(57)$
$K F 1=200$.
$K R 1=0.2$
$K \cdot P 1=1$.
$K I!=800$.
C
$R S 1=+45 . / X \times(57)$
$\mathrm{CH} 2=0$.
c
*** INITIAL CONDITIONS
$G(1)=0$.
$55(2) 0$.
$5 S(3)=0$.
$S S(4)=0$.
$55(5)=0$.
$S(5)=0$.
C
$A A=[1+M \mid * R 1 * * ?+142 * L 1 * * 2+M P * L 1 * * 2$
$B E^{\prime}=\left(M 2 * F_{2}+M P * 1.2\right) * L 1$
$C C=12+M 2 * R 2 * 2+M P * L 2 * * 2$
$D D D=M I * R!+(M 2+M P) * L 1$
c
FRINI 91, MP, KF.KI,KP,KR
91 FORMAT (///"MP KF KI KP KR = ". 4F 10.2, F10.4.///; PRINI 92.KF1,KII.KPI.KRI
92 FORMAT(/." KF1 KII KP1 KRI = ", 3F10.2,F10.4.1/)
C
RE TURN
CND
subroutine cains
$\stackrel{C}{C}$
GIMEMSION NSET(S.OQ0)
(0ilMJN TJSET(S.000)
f UUIVAI:NCE(CJSE T(1), NSt I(1))
C
 $C-52$

C
C COMMON/BURGINI/AA BB,CC,DDD,G.PI

COMMON/BURGIN2/L1,L2, M1,M2,MP, I1, I2,R1,R2, MOM1, MOM2, CF 1 , CF 2
C REAL L1,L2, M1.M2, MP, I1.I2,MOMI. MOM2

COMMON/CONTROL/RS.KF,KP,KR,KI
COMMON/CNTRL1/FS 1, KF1.KP1.KR1,KII
REAL KF1,KR1,KI1
REAL KF, KP, KR,KI

```
    EQUIVALENCE(SS(1), PHI1),(SS(2).PHI1DGT),(SS(3),PHI2),
    +
```

 DATA FHI1DMX/0.7853/, ILAST/0/
 ERR1=RSi-PHII
 IN3 \(=1\)
 IF (ERR1.LE.0.)INS \(=0\)
 IN2 \(=1\)
 \(\operatorname{IF}(A B S(E R R 1) \cdot L T . P I / 4) I N 2=\).
 IN \(1=1\)
 IF (ABS (PHI1DUT).LT.0.7853)INI \(=0\)
 INS YME \(=8-(4 * I N 3+2 * I N Z+I N 1)\)
 GO TO (1100.1200.1300,1400,1500,1600,1700.1800)INSYMB
 1100 INEW=1
 IF (INEW. NE. ILASTICALL PRTI(TNOW, INEW, ILAST)
 \(K . F i=600\).
 \(K R 1=0.3\)
 G) 10999
 1200 INEW=2
IF (INEW. NE. ILAST) (AI L FRTI(TNOW. INEN. ILAST)
$\mathrm{KF} 1=600$.
$K R 1=0.1$
GO TO 999
1300 INEW=3
IF (INEW.NE. ILAST)CALL PRTI(TNOW. INEW. ILAST)
$K F 1=900$.
$K R 1=0.15$,
$60 \quad 10999$
1400 INEW $=4$
IF (INEW.NE. ILAST)CALL FRII(INOW. INEW. ILAST)
$K F I=800$.
$K R 1=0.1$
$60 \quad 10999$
1500 INE: $\mathrm{d}=5$
IF (INEN.NE. ILAST)CALL PRII(INOW. INEW. ILAST)
$K F 1=300$.
$K R 1=0.4$
GO T0 999
1600 INEW=6
IF (INEW.NE. ILASTICALL FRTI(INOW.INEH, ILAST)
$K F 1=300$.
$K R 1=0.2$
6010999
1700 INE $\mathrm{W}=7$
IF (INFW.NE. IL.ASTICALL FRII(INOW. INEW.ILAST)
$\mathrm{KF} 1=500$.
Figure 19 (Cont'd)

> c: Pron coaty
$K R 1=0.3$
GO TO 999
18010 INEW=8
IF (INEW. NE. ILAST)CALL PRTI(TNOW.INEW, JLAST)
$K F 1=500$. $K R 1=0.2$
999 CONTINUE
XX(31) = INEW END
C-- SUBROUTINE PRTI(TNUW, INEW. ILAST)

C FRINT 91,INOW,ILAST, INEW
91 FORMAT:" STATE CHANGED AT IIME "F12.3" FKOM"I4" TO"I4) ILAST = INEW RETURN
END
こ--.--.-.
END OF FILE

Figure 19 (Cont'd)

[^0]: *The subscript c indicates values computed y the control

