139 research outputs found

    ์ „๋ถ„ ์—๋ฉ€์…˜ ์ ค์˜ ์žฅ๋‚ด ์†Œํ™” ๋ฐ ๋ฌผ์„ฑํ•™์  ํŠน์ง•

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๋†์—…์ƒ๋ช…๊ณผํ•™๋Œ€ํ•™ ๋†์ƒ๋ช…๊ณตํ•™๋ถ€, 2021. 2. ์ตœ์˜์ง„.Emulsion-filled gel is a system that collects emulsion in hydrogel, and has both high stability, which is an advantage of hydrogel, and fat-soluble material transportability, which is an advantage of emulsion. In this study, the emulsion-filled gel was stabilized by using modified corn starch, which can act as emulsifier and gelide at the same time, and the physical and storage stability and intestinal digestion characteristics of this emulsion gel were analyzed. The modified corn starch was manufactured through the reflux process of octhenyl succinic acid for the emulsification of corn starch and the sedimentation and freezing drying process, and the heat treatment process was used to act as a gelling agent. When the modified starch was used less 3 wt%, the water's interfacial surface was stabilized by starch, and if more than 4 wt% were used, emulsion gel, in which oil drops were collected in gel, was manufactured. The higher the concentration of replaced starch and oil, the higher the storage modulus and loss modulus, and the storage modulus of emulsion gel reached about 10,000 Pa when the maximum of 8 wt% starch was used. Experiments in quantifying free fatty acids released by emulsion gel in the in vitro small intestinal environment confirmed that the higher the concentration of starch created a more rigid network structure, the lower the initial digestion rate of the oil inside the emulsion gel and the 150-minute digestion rate (78% with 3 wt% starch; 70% with 8 wt% starch). In addition, after stored at room temperature for 60 days, it was observed that oil particles were dispersed without causing layer separation, and confirmed that they formed a stable emulsion. In summary, these results suggest that emulsion-filled gel developed in this study can be used as a carrier with both the properties of emulsion and hydrogel, so this study could serve as a basis for the study of developing gel-type carriers using health functional substances.์—๋ฉ€์…˜ ์ ค์€ ํ•˜์ด๋“œ๋กœ์ ค ๋‚ด์— ์—๋ฉ€์…˜์ด ํฌ์ง‘๋œ ๊ฒƒ์œผ๋กœ, ํ•˜์ด๋“œ๋กœ์ ค์˜ ์žฅ์ ์ธ ๋›ฐ์–ด๋‚œ ์•ˆ์ •์„ฑ๊ณผ ์—๋ฉ€์…˜์˜ ์žฅ์ ์ธ ์ง€์šฉ์„ฑ ๋ฌผ์งˆ ์šด๋ฐ˜์„ฑ์„ ๋ชจ๋‘ ์ง€๋‹ˆ๋Š” ์‹œ์Šคํ…œ์ด๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์œ ํ™”์ œ ์—ญํ• ๊ณผ ๊ฒ”ํ™”์ œ ์—ญํ• ์„ ๋™์‹œ์— ํ•  ์ˆ˜ ์žˆ๋Š” ๋ณ€์„ฑ ์˜ฅ์ˆ˜์ˆ˜์ „๋ถ„์„ ์‚ฌ์šฉํ•˜์—ฌ ์—๋ฉ€์…˜ ์ ค์„ ์•ˆ์ •ํ™”ํ•˜์˜€๊ณ , ์ด ์—๋ฉ€์…˜ ์ ค์˜ ๋ฌผ์„ฑํ•™์  ํŠน์„ฑ๊ณผ ์ €์žฅ ์•ˆ์ •์„ฑ, ๊ทธ๋ฆฌ๊ณ  ์žฅ๋‚ด ์†Œํ™” ํŠน์„ฑ์„ ๋ถ„์„ํ•˜์˜€๋‹ค. ๋ณ€์„ฑ ์˜ฅ์ˆ˜์ˆ˜์ „๋ถ„์€ ์˜ฅ์ˆ˜์ˆ˜์ „๋ถ„์ด ์œ ํ™”๋Šฅ์„ ์ง€๋‹ˆ๋„๋ก ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์˜ฅํ…Œ๋‹ํ˜ธ๋ฐ•์‚ฐ ์น˜ํ™˜ ๊ณผ์ •๊ณผ ์นจ์ „ ๋ฐ ๋™๊ฒฐ ๊ฑด์กฐ๊ณผ์ •์„ ๊ฑฐ์ณ ์ œ์กฐํ•˜์˜€๊ณ , ์—ด์ฒ˜๋ฆฌ ๊ณผ์ •์„ ํ†ตํ•ด ๊ฒ”ํ™”์ œ๋กœ ์ž‘์šฉํ•˜๋„๋ก ํ•˜์˜€๋‹ค. ๋ณ€์„ฑ ์˜ฅ์ˆ˜์ˆ˜์ „๋ถ„์„ 3 wt% ์ดํ•˜๋กœ ์‚ฌ์šฉํ•ด ์—๋ฉ€์…˜ ์ œ์กฐ ์‹œ ๊ธฐ๋ฆ„(20 wt%)๊ณผ ๋ฌผ์˜ ๊ณ„๋ฉด์ด ์ „๋ถ„์— ์˜ํ•ด ์•ˆ์ •ํ™” ๋˜์—ˆ๊ณ , 4 wt% ์ด์ƒ ์‚ฌ์šฉํ•  ๊ฒฝ์šฐ์—๋Š” ์—ฐ์†์ƒ์ด ์ คํ™”๋˜๋ฉด์„œ ๊ธฐ๋ฆ„ ๋ฐฉ์šธ์ด ์ ค์— ํฌ์ง‘๋œ ํ˜•ํƒœ์ธ ์—๋ฉ€์…˜ ์ ค์ด ์ œ์กฐ๋˜์—ˆ๋‹ค. ์—๋ฉ€์…˜ ์ ค์€ ์น˜ํ™˜๋œ ์ „๋ถ„๊ณผ ๊ธฐ๋ฆ„์˜ ๋†๋„๊ฐ€ ๋†’์„์ˆ˜๋ก ๋†’์€ ์ €์žฅํƒ„์„ฑ๋ฅ ๊ณผ ์†์‹คํƒ„์„ฑ๋ฅ ์„ ๋‚˜ํƒ€๋ƒˆ์œผ๋ฉฐ, ์ตœ๋Œ€์น˜์ธ 8wt%์˜ ์ „๋ถ„์„ ์‚ฌ์šฉํ•  ๊ฒฝ์šฐ ์—๋ฉ€์…˜ ์ ค์˜ ์ €์žฅํƒ„์„ฑ๋ฅ ์€ ์•ฝ 10,000 Pa ์— ๋‹ฌํ–ˆ๋‹ค. In-vitro ์†Œ์žฅ ํ™˜๊ฒฝ์—์„œ ์—๋ฉ€์…˜ ์ ค์ด ๋ฐฉ์ถœํ•˜๋Š” ์ž์œ ์ง€๋ฐฉ์‚ฐ์„ ์ •๋Ÿ‰ํ•˜๋Š” ์‹คํ—˜์„ ํ†ตํ•ด ์ „๋ถ„์˜ ๋†๋„๊ฐ€ ๋†’์•„ ๋” ๊ฒฌ๊ณ ํ•œ 3 ์ฐจ์› ๋„คํŠธ์›Œํฌ ๊ตฌ์กฐ๋ฅผ ํ˜•์„ฑํ• ์ˆ˜๋ก ์—๋ฉ€์…˜ ์ ค ๋‚ด๋ถ€ ๊ธฐ๋ฆ„์˜ ์žฅ๋‚ด ์ดˆ๊ธฐ ์†Œํ™” ์†๋„์™€ 150 ๋ถ„ ๋™์•ˆ์˜ ์†Œํ™”์œจ(3 wt% ์ „๋ถ„ ์‚ฌ์šฉ ์‹œ 78%; 8 wt% ์ „๋ถ„ ์‚ฌ์šฉ ์‹œ 70%)์ด ์œ ์˜๋ฏธํ•˜๊ฒŒ ๊ฐ์†Œํ•จ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋˜ํ•œ 60 ์ผ๊ฐ„ ์ƒ์˜จ์—์„œ ์ €์žฅํ•œ ๊ฒฝ์šฐ, ์ธต ๋ถ„๋ฆฌ๋ฅผ ์ผ์œผํ‚ค์ง€ ์•Š๊ณ  ์˜ค์ผ ์ž…์ž๊ฐ€ ๋ถ„์‚ฐ๋˜์–ด ์žˆ์Œ์„ ๊ด€์ฐฐํ•˜์—ฌ ์—๋ฉ€์…˜์˜ ์•ˆ์ •์„ฑ์ด ์œ ์ง€๋จ์„ ์•Œ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์š”์ปจ๋Œ€, ์ด ๊ฒฐ๊ณผ๋“ค์€ ๋ณธ ์—ฐ๊ตฌ์—์„œ ๊ฐœ๋ฐœ๋œ ์—๋ฉ€์…˜ ์ ค์ด ์—๋ฉ€์…˜์˜ ํŠน์„ฑ๊ณผ ํ•˜์ด๋“œ๋กœ์ ค์˜ ํŠน์„ฑ์„ ๋ชจ๋‘ ๊ฐ–์ถ˜ ์šด๋ฐ˜์ฒด๋กœ์„œ ํ™œ์šฉ๋  ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ์‹œ์‚ฌํ•˜์—ฌ, ๋ณธ ์—ฐ๊ตฌ๋Š” ๊ฑด๊ฐ•๊ธฐ๋Šฅ์„ฑ๋ฌผ์งˆ์„ ์ด์šฉํ•˜์—ฌ ์‹ํ’ˆ์šฉ ์ ค ํ˜•ํƒœ์˜ ์šด๋ฐ˜์ฒด๋ฅผ ๊ฐœ๋ฐœํ•˜๋ ค๋Š” ์—ฐ๊ตฌ์— ๊ธฐ์ดˆ ์ž๋ฃŒ๋ฅผ ์ œ๊ณตํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์ด๋‹ค.Table of contents โ…ฐ List of Tables โ…ฒ List of Figures โ…ณ Abstract โ…ถ โ… . INTRODUCTION 1 โ…ก. MATERIALS AND METHODS 6 2.1. Materials 6 2.2. Maize starch modified with octenyl succinic anhydride (MS) preparation 6 2.3. Determination of degree of substitution (DS) 7 2.4. Fourier transform infrared spectroscopy measurement 7 2.5. Preparation of oil-in-water emulsion-filled gels stabilized by MS 8 2.6. Rheological characterization 8 2.7. Instrumental texture profile analysis 9 2.8. Determination of the in vitro digestion patterns of the emulsions 10 2.9. Monitoring lipolysis of the emulsions in vitro in simulated small intestinal fluid 10 2.10. Microscopic observation 12 2.11. Determination of the storage stability 12 2.12. Statistical analysis 13 โ…ข. RESULTS AND DISCUSSION 14 3.1. Infrared spectra of MS 14 3.2. Formation of the emulsion-filled gel 17 3.3. Viscoelasticity of the emulsion-filled gels 21 3.4. Texture profile analysis of the emulsion-filled gels 32 3.5. Starch digestion patterns of emulsion-filled gels 36 3.6. Lipolysis of the emulsion-filled gels 41 3.7. Storage stability of emulsions-filled gels 47 โ…ฃ. CONCLUSION 50 โ…ค. REFERENCES 52 โ…ฅ. ๊ตญ๋ฌธ์ดˆ๋ก 59Maste

    ์ข…์–‘ ๋ฏธ์„ธํ™˜๊ฒฝ์—์„œ ๋Œ€์‹์„ธํฌ ํ—ด ์‚ฐํ™” ํšจ์†Œ์˜ ์—ญํ• 

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์˜๊ณผ๋Œ€ํ•™ ํ˜‘๋™๊ณผ์ • ์ข…์–‘์ƒ๋ฌผํ•™์ „๊ณต, 2019. 2. ์„œ์˜์ค€.One of the most common treatment options for breast cancer is chemotherapy. After chemotherapy, however, unwanted host effects provoke tumor recurrence and aggressiveness of cancer cells which often arise as a consequence of disruption in the patients immune system. Lymphocytes, such as CD8+ cytotoxic T cells which have capability of suppressing cancer progression, are depleted following chemotherapy. Tumor-associated macrophages (TAMs), an abundant set of tumor-infiltrating myeloid cells in tumor microenvironment, play an important role in immunosuppression which often occurs during conventional chemotherapy. Dying cancer cells generated during the chemotherapy can potentially hijack accumulated TAMs, provoking tumor recurrence. Therefore, reprogramming of TAMs to maximize the chemotherapeutic efficacy is considered a promising novel anticancer strategy. In this study, I investigated whether tumor cell debris generated as a consequence chemotherapy can reduce therapeutic efficacy by modulating the activity of tumor-infiltrating macrophages. In a 4T1 syngeneic murine breast cancer model, the expression of the M1 marker, CD86 in the TAMs and the infiltration of CD8+ T cells was reduced following paclitaxel (PTX) treatment. PTX treatment also resulted in an enhancement of heme oxygenase-1 (HO-1) expression in tumor-infiltrating myeloid cells engulfing tumor cell debris. Consistent with the in vivo profile of TAMs, bone marrow-derived macrophages (BMDMs) phagocytosing breast tumor cell debris exhibited significant upregulation of HO-1 expression. HO-1 induction in BMDMs engulfing breast tumor cell debris inhibited M1 polarization and reprogramed macrophages to the M2 phenotype. In contrast, inhibition of HO-1 activity with zinc protoporphyin IX resulted in sustained M1 macrophage activity of BMDMs co-cultured with breast cancer cell debris. Therapeutic efficacy of PTX to suppress the tumor growth was significantly enhanced in HO-1 knock out mice bearing 4T1 breast cancer. Consistent with that finding, pharmacologic inhibition of HO-1 activity augmented the therapeutic efficacy of PTX by stimulating CD86+ M1 TAMs in a 4T1 breast cancer. Furthermore, blockade of HO-1 in breast tumor bearing mice promoted CD8+ T cell infiltration and activity. Taken together, the above findings suggest that tumor cell debris-induced HO-1 overexpression in macrophages during chemotherapy dampens therapeutic efficacy by manipulating anti-tumor immunity.์œ ๋ฐฉ์•” ์น˜๋ฃŒ๋ฅผ ์œ„ํ•˜์—ฌ ๋งŽ์ด ์“ฐ์ด๋Š” ์น˜๋ฃŒ๋ฐฉ๋ฒ• ์ค‘ ํ•˜๋‚˜๋Š” ํ™”ํ•™์š”๋ฒ•์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ํ™”ํ•™ ์š”๋ฒ• ์น˜๋ฃŒ ํ›„ ๋ฉด์—ญ ์‹œ์Šคํ…œ์˜ ๋ฌธ์ œ๋กœ ์•”์˜ ์žฌ๋ฐœ์ด๋‚˜ ์•…์„ฑํ™”๊ฐ€ ์ง„ํ–‰ ๋˜๊ธฐ๋„ ํ•œ๋‹ค. ํŠนํžˆ, ์•” ์ง„ํ–‰์„ ์–ต์ œํ•˜๋Š” ์ค‘์š”ํ•œ ์—ญํ• ์„ ๊ฐ€์ง€๊ณ  ์žˆ๋Š” CD8+ T์„ธํฌ๊ฐ€ ํ™”ํ•™ ์š”๋ฒ• ํ›„ ํ™œ์„ฑ์ด ๋–จ์–ด์ง€๊ธฐ๋„ ํ•œ๋‹ค. ์ข…์–‘ ๋ฏธ์„ธํ™˜๊ฒฝ์—์„œ ๋งŽ์€ ๋ถ€๋ถ„์„ ์ฐจ์ง€ํ•˜๊ณ  ์žˆ๋Š” ์ข…์–‘ ๊ด€๋ จ ๋Œ€์‹์„ธํฌ๋Š” ํ™”ํ•™ ์š”๋ฒ• ์น˜๋ฃŒ์—์„œ ํ•ญ์•” ๋ฉด์—ญ ๋ฐ˜์‘์„ ์กฐ์ ˆํ•˜๋Š” ์—ญํ• ์„ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค. ํ™”ํ•™ ์š”๋ฒ•์œผ๋กœ ์ธํ•˜์—ฌ ์ƒ์„ฑ๋œ ์‚ฌ๋ฉธ๋œ ์•”์„ธํฌ๋Š” ์ข…์–‘ ๊ด€๋ จ ๋Œ€์‹์„ธํฌ๋ฅผ ์กฐ์ ˆ ํ•˜์—ฌ ์•”์„ ์žฌ๋ฐœ์‹œํ‚ค๊ธฐ๋„ ํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋ฏ€๋กœ ์ข…์–‘ ๊ด€๋ จ ๋Œ€์‹์„ธํฌ๋ฅผ ์žฌํ”„๋กœ๊ทธ๋ž˜๋ฐ ํ•˜์—ฌ์„œ ํ™”ํ•™์š”๋ฒ•์˜ ํšจ๊ณผ๋ฅผ ๊ทน๋Œ€ํ™”์‹œํ‚ค๋Š” ๋ฐฉ๋ฒ•์ด ํ•ญ์•” ์น˜๋ฃŒ ์ „๋žต ์ค‘ ์ฃผ๋ชฉ๋ฐ›๊ณ  ์žˆ๋‹ค. ์ด๋ฒˆ ์—ฐ๊ตฌ์—์„œ๋Š” ํ™”ํ•™ ์š”๋ฒ• ํ›„ ์‚ฌ๋ฉธ๋œ ์•”์„ธํฌ๊ฐ€ ๋Œ€์‹์„ธํฌ์˜ ํ™œ์„ฑ์„ ์กฐ์ ˆํ•˜์—ฌ ํ•ญ์•” ์น˜๋ฃŒ์˜ ํšจ๊ณผ๋ฅผ ์ค„์ด๋Š”์ง€ ์•Œ์•„๋ณด์•˜๋‹ค. 4T1 ์œ ๋ฐฉ์•” ๋ชจ๋ธ์—์„œ ํŒŒํด๋ฆฌํƒ์…€์„ ์ฒ˜๋ฆฌํ•œ ๊ตฐ์—์„œ๋Š” CD86+M1 ๋Œ€์‹ ์„ธํฌ์™€ CD8+ T์„ธํฌ์˜ ๋น„์œจ์ด ์ค„์–ด๋“ค์—ˆ๋‹ค. ํฅ๋ฏธ๋กญ๊ฒŒ๋„ ํŒŒํด๋ฆฌํƒ์…€์„ ํˆฌ์—ฌํ•œ ๊ตฐ์—์„œ ์‚ฌ๋ฉธ๋œ ์•”์„ธํฌ๋ฅผ ์žก์•„๋จน์€ ๋Œ€์‹์„ธํฌ์˜ ํ—ด์‚ฐํ™” ํšจ์†Œ ๋ฐœํ˜„์ด ์ฆ๊ฐ€ ๋˜์–ด์žˆ์—ˆ๋‹ค. ๋˜ํ•œ, ์‚ฌ๋ฉธ๋œ ์•”์„ธํฌ๋ฅผ ์žก์•„๋จน์€ ๊ณจ์ˆ˜ ์œ ๋ž˜ ๋Œ€์‹ ์„ธํฌ์˜ ํ—ด ์‚ฐํ™” ํšจ์†Œ ๋ฐœํ˜„๋„ ํ™•์ธ ํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์‚ฌ๋ฉธ๋œ ์•”์„ธํฌ๋ฅผ ์žก์•„๋จน์€ ๊ณจ์ˆ˜ ์œ ๋ž˜ ๋Œ€์‹์„ธํฌ์˜ ํ—ด ์‚ฐํ™” ํšจ์†Œ์˜ ๋ฐœํ˜„์€ M1 ๊ทน์„ฑํ™”๋ฅผ ์ค„์ด๊ณ  M2 ๊ทน์„ฑํ™”๋ฅผ ์ฆ๊ฐ€ ์‹œ์ผฐ๋‹ค. ๋ฐ˜๋Œ€๋กœ ํ—ด ์‚ฐํ™” ํšจ์†Œ๋ฅผ ๋น„ํ™œ์„ฑํ™” ์‹œํ‚ค๋ฉด ์‚ฌ๋ฉธ๋œ ์•”์„ธํฌ๋ฅผ ์žก์•„ ๋จน์€ ๊ณจ์ˆ˜ ์œ ๋ž˜ ๋Œ€์‹ ์„ธํฌ์˜ M1 ํ™œ์„ฑ์ด ์œ ์ง€๋จ์„ ๊ด€์ฐฐํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ํ—ด ์‚ฐํ™” ํšจ์†Œ ๋…น์•„์›ƒ ๋งˆ์šฐ์Šค๋ฅผ ์‚ฌ์šฉํ•œ 4T1 ์œ ๋ฐฉ์•” ๋ชจ๋ธ์—์„œ๋Š” ํŒŒํด๋ฆฌํƒ์…€์˜ ์น˜๋ฃŒ ํšจ๊ณผ๊ฐ€ ์ฆ์ง„๋˜์—ˆ๋‹ค. ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ, 4T1 ์œ ๋ฐฉ์•” ๋ชจ๋ธ์—์„œ zinc protoporphyin IX๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ HO-1 ํ™œ์„ฑ์„ ์–ต์ œํ•˜๋‹ˆ CD86+ M1 ๋Œ€์‹ ์„ธํฌ ๋น„์œจ์ด ์ฆ์ง„๋˜์–ด ํŒŒํด๋ฆฌํƒ์…€์˜ ์น˜๋ฃŒ ํšจ๊ณผ๋ฅผ ์ฆ๊ฐ€์‹œ์ผฐ๋‹ค. ๋˜ํ•œ ์œ ๋ฐฉ์•” ๋ชจ๋ธ์—์„œ ํ—ด ์‚ฐํ™” ํšจ์†Œ์˜ ์–ต์ œ๋Š” CD8+ T์„ธํฌ์˜ ์œ ์ž…์„ ์ฆ์ง„์‹œ์ผฐ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด, ํ™”ํ•™์š”๋ฒ•์œผ๋กœ ์ƒ์„ฑ๋œ ์‚ฌ๋ฉธ๋œ ์•”์„ธํฌ๋ฅผ ํ†ตํ•˜์—ฌ ๋Œ€์‹ ์„ธํฌ์˜ ์ฆ๊ฐ€๋œ ํ—ด ์‚ฐํ™” ํšจ์†Œ๋Š” ํ•ญ์•” ๋ฉด์—ญ์„ ์–ต์ œํ•˜์—ฌ ํ•ญ์•”์น˜๋ฃŒ ํšจ๊ณผ๋ฅผ ๊ฐ์†Œ ์‹œํ‚จ๋‹ค๋Š” ๊ฒƒ์„ ์•Œ์•˜๋‹ค. ์ด๋Ÿฌํ•œ ๊ฒฐ๊ณผ๋Š” ์œ ๋ฐฉ์•” ์ข…์–‘ ๋ฏธ์„ธ ํ™˜๊ฒฝ์—์„œ ํ™”ํ•™์š”๋ฒ•์œผ๋กœ ์ฆ๊ฐ€๋œ ํ—ด ์‚ฐํ™” ํšจ์†Œ๋ฅผ ํ‘œ์ ์œผ๋กœ ์น˜๋ฃŒ ํ•˜๋ฉด ๋ฉด์—ญ ์‹œ์Šคํ…œ์„ ์กฐ์ ˆํ•˜์—ฌ ํ™”ํ•™ ์š”๋ฒ•์„ ์ฆ์ง„์‹œํ‚ฌ ์ˆ˜ ์žˆ์Œ์„ ์‹œ์‚ฌํ•œ๋‹ค.TABLE OF CONTENTS ABSTRACT----------------------------------------------------------------------i TABLE OF CONTENTS---------------------------------------------------iv LIST OF FIGURES-----------------------------------------------------------ix LIST OF ABBREVIATIONS--------------------------------------------xiii 1. Introduction-----------------------------------------------------------------------1 2. Materials and Methods-----------------------------------------------------------5 3. Results ---------------------------------------------------------------------------16 3.1 Chemotherapy induces an immunosuppressive TME in breast cancer-------------------------------------------------------------------------------------------16 3.2 Phagocytosis of tumor cell debris regulates the polarization of macrophages to a pro-tumor phenotype-----------------------------------------17 3.3 Engulfment of tumor cell debris induces HO-1 expression in macrophages-----------------------------------------------------------------------20 3.4 HO-1 overexpression triggered by phagocytosis of tumor cell debris regulates the polarization of macrophages--------------------------------------21 3.5 HO-1 inactivation amplifies the therapeutic efficacy of PTX ----------23 3.6 HO-1 inhibition promotes anti-tumor T cell function in response to PTX treatment---------------------------------------------------------------------------24 3.7 HO-1 inactivation-induced M1 TAMs are crucial for the enhanced response to PTX therapy----------------------------------------------------------25 4. Discussion-----------------------------------------------------------------------69 5. References-----------------------------------------------------------------------75 Appendix---------------------------------------------------------------------------90 Taurine chloramine potentiates phagocytic activity of peritoneal macrophages through upregulation of dectin-1 mediated by heme oxygenase-1-derived carbon monoxide 1. Abstract--------------------------------------------------------------------------92 2. Introduction----------------------------------------------------------------------94 3. Materials and Methods---------------------------------------------------------97 4. Results --------------------------------------------------------------------------104 4.1 TauCl potentiates host defense to fungal infection-----------------------104 4.2 TauCl promotes phagocytic efficiency of peritoneal macrophages in a fungal infection-------------------------------------------------------------------104 4.3 TauCl increases dectin-1 expression in macrophages of mice infected with fungal pathogens-----------------------------------------------------------106 4.4 TauCl-induced HO-1 expression is critical for upregulation of dectin-1 expression in macrophages in a murine peritonitis---------------------------107 4.5 TauCl-induced HO-1 expression is essential for enhanced phagocytic activity of macrophages in a murine peritonitis-------------------------------108 4.6 CO enhances phagocytic activity of murine macrophages through upregulation of dectin-1 expression--------------------------------------------109 4.7 TauCl-induced HO-1 expression upregulates dectin-1 expression through PPAR-ฮณ activation------------------------------------------------------109 5. Discussion----------------------------------------------------------------------134 6. References----------------------------------------------------------------------140 ABSTRACT IN KOREAN (๊ตญ๋ฌธ์ดˆ๋ก) --------------------------------------148Docto

    ๋กœ๋ด‡ ์‹œ์Šคํ…œ์˜ ์„ค๊ณ„ ๋ฐ ๋™์ž‘ ๋™์‹œ ์ตœ์ ํ™”

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ๊ธฐ๊ณ„๊ณตํ•™๋ถ€, 2020. 8. ๋ฐ•์ข…์šฐ.A robot design has the potential for numerous combinations of the components such as the actuators, links, joints, etc. Therefore, a process of finding a good design is a challenging problem even for the robot experts. To overcome this difficulty, we present an optimization framework for the morphological shape of a robot, considering its motion. Both the design and motion parameters can be simultaneously optimized for specific tasks by our methodology. In the space where the design and motion parameters are combined, our framework seeks the steepest direction that reduces the objective function on the constraint manifold. To overcome the flaws of the previous studies, we utilize the recently discovered recursive differential dynamics, which informs of the analytic relationship between the variation of joint torques and design parameters, thus our framework brings faster and more accurate optimization results. We validate our optimization framework through two numerical experiments: the 2-R planar manipulator with a given end-effector trajectory and the quadruped robot with a locomotion task.๋กœ๋ด‡ ๋””์ž์ธ์—๋Š” ์•ก์ธ„์—์ดํ„ฐ, ๋งํฌ, ๊ด€์ ˆ ๋“ฑ๊ณผ ๊ฐ™์€ ๊ตฌ์„ฑ์š”์†Œ์˜ ์ˆ˜๋งŽ์€ ์กฐํ•ฉ ๊ฐ€๋Šฅ์„ฑ์ด ์กด์žฌํ•œ๋‹ค. ๋”ฐ๋ผ์„œ, ์ข‹์€ ๋กœ๋ด‡ ๋””์ž์ธ์„ ์ฐพ๋Š” ๊ณผ์ •์€ ์ „๋ฌธ๊ฐ€์—๊ฒŒ๋„ ์–ด๋ ค์šด ๋ฌธ์ œ์ด๋‹ค. ์œ„ ๋ฌธ์ œ์ ์„ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด ๋กœ๋ด‡์˜ ๋™์ž‘์„ ๊ณ ๋ คํ•˜์—ฌ ํ˜•ํƒœ๋ฅผ ์ตœ์ ํ™”ํ•˜๋Š” ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์‹œํ•œ๋‹ค. ์ œ์‹œ๋œ ๋ฐฉ๋ฒ•๋ก ์„ ํ†ตํ•ด ํŠน์ • ์ž‘์—…์„ ์œ„ํ•œ ๋กœ๋ด‡ ํ˜•ํƒœ ๋ฐ ๋™์ž‘์˜ ๋™์‹œ ์ตœ์ ํ™”๊ฐ€ ๊ฐ€๋Šฅํ•˜๋‹ค. ์œ„ ๋ฐฉ๋ฒ•๋ก ์€ ํ˜•ํƒœ ๋ฐ ๋™์ž‘ ๋ณ€์ˆ˜๊ฐ€ ๊ฒฐํ•ฉ๋œ ๊ณต๊ฐ„ ์ƒ์—์„œ ๋ชฉ์ ํ•จ์ˆ˜๋ฅผ ๊ฐ€์žฅ ๋งŽ์ด ๊ฐ์†Œ์‹œํ‚ค๋Š” ๊ตฌ์†์กฐ๊ฑด ๋งค๋‹ˆํด๋“œ ์ƒ์—์„œ์˜ ๋ฐฉํ–ฅ์„ ์ฐพ์•„ ์ตœ์ ํ™”๋ฅผ ์ง„ํ–‰ํ•œ๋‹ค. ์ด์ „ ์—ฐ๊ตฌ๋“ค์˜ ๊ฒฐ์ ์„ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด ์šฐ๋ฆฌ๋Š” ์ตœ๊ทผ ๊ฐœ๋ฐœ๋œ ๋ฐ˜๋ณต ๋ฏธ๋ถ„ ๋™์—ญํ•™(recursive differential dynamics) ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์‚ฌ์šฉํ•œ๋‹ค. ์ด ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ†ตํ•ด ๊ด€์ ˆ ํ† ํฌ ๋ณ€ํ™”์™€ ํ˜•ํƒœ ๋ณ€ํ™” ์‚ฌ์ด์˜ ํ•ด์„์  ๊ด€๊ณ„๋ฅผ ๊ณ„์‚ฐํ•  ์ˆ˜ ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ, ์ œ์‹œ๋œ ๋ฐฉ๋ฒ•๋ก ์„ ์‚ฌ์šฉํ•˜๋ฉด ๋”์šฑ ๋น ๋ฅด๊ณ  ์ •ํ™•ํ•œ ์ตœ์ ํ™” ๊ฒฐ๊ณผ๋ฅผ ๋„์ถœํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด ๋‘ ๊ฐ€์ง€ ์ˆ˜์น˜์  ์‹คํ—˜์„ ํ†ตํ•ด ์œ„ ์ตœ์ ํ™” ๋ฐฉ๋ฒ•๋ก ์„ ๊ฒ€์ฆํ•˜์˜€๋‹ค: ์—”๋“œ์ดํŽ™ํ„ฐ๊ฐ€ ์ฃผ์–ด์ง„ ๊ถค์ ์„ ์ถ”์ข…ํ•˜๋Š” 2์ถ• ํ‰๋ฉด ๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ, 4์กฑ๋กœ๋ด‡์˜ ๋ณดํ–‰์ž‘์—….1 Introduction 1 1.1 Design Optimization of Robotic Devices 1 1.2 Limitations of Previous Works 4 1.3 Main Contributions of This Thesis 5 2 Preliminaries 7 2.1 Lie Group Theory 7 2.1.1 SO(3) and SE(3) 8 2.1.2 Twists and Wrenches 10 2.1.3 Adjoint Mappings 10 2.2 Rigid Body Dynamics 11 2.2.1 Dynamics of a Single Rigid Body 11 2.2.2 Dynamics of Open Chains 12 2.2.3 Dynamics of Floating Bodies 14 2.3 Recursive Differential Dynamics 15 3 Simultaneous Design and Motion Optimization 18 3.1 Problem Definition 18 3.2 Optimization Parameters 20 3.2.1 Design Parameters 20 3.2.2 Motion Parameters 23 3.2.3 Constraints 24 3.2.4 Inertial Changes 26 3.3 Optimization Algorithm Description 27 4 Numerical Experiments31 4.1 2-R Planar Manipulator 31 4.1.1Experimental Settings 31 4.1.2Optimization Results 33 4.2 Quadruped Robot 36 4.2.1Experimental Settings 37 4.2.2Optimization Results 39 5 Conclusion 44 A Appendix 46 A.1 Local parametrization of the design 46 A.2 Design rule for the link 48 A.3 Derivative of the constraints 51 A.3.1 End-effector trajectory 51 A.3.2 Equations of motion of the base for quadruped robots 52 A.4 Laikago Specification 53 Bibliography 55 ๊ตญ๋ฌธ์ดˆ๋ก 60Maste

    A Study on the asymmetric control of 3-phase thyristor bridge for SMES

    Get PDF
    ์ผ๋ฐ˜์ ์œผ๋กœ 3์ƒ ์‚ฌ์ด๋ฆฌ์Šคํ„ฐ ๋ธŒ๋ฆฌ์ง€ ํšŒ๋กœ๋Š” AC-DC ๋ณ€ํ™˜์žฅ์น˜, ๋Œ€ํ˜• ๋ชจํ„ฐ์˜ ๊ฐ€์—ญ์†๋„ ์กฐ์ •, ์—๋„ˆ์ง€ ์ €์žฅ ์žฅ์น˜ ๋“ฑ ์ „์••, ์ „๋ฅ˜ ์ œ์–ด์˜ ์—ฌ๋Ÿฌ ๋ถ„์•ผ์—์„œ ์‚ฌ์šฉ๋˜๊ณ  ์žˆ๋‹ค. ์—๋„ˆ์ง€ ์ €์žฅ ์žฅ์น˜์—์„œ๋Š” ํ˜„์žฌ๊นŒ์ง€ ๊ฐœ๋ฐœ๋œ ์—ฌ๋Ÿฌ ๊ฐ€์ง€ ๋Œ€์šฉ๋Ÿ‰ ์—๋„ˆ์ง€ ์ €์žฅ ์žฅ์น˜๋“ค ์ค‘ ์ดˆ์ „๋„ ์—๋„ˆ์ง€ ์ €์žฅ ์žฅ์น˜ (Superconducting Magnet Energy Storage, SMES)๋Š” ์ƒ๋Œ€์ ์œผ๋กœ ์—๋„ˆ์ง€ ์ €์žฅ์šฉ๋Ÿ‰์ด ํฌ๊ณ  ์‘๋‹ต์†๋„๊ฐ€ ๋นจ๋ผ์„œ ์˜ค๋žœ ์‹œ๊ฐ„๋™์•ˆ ์žฆ์€ ์ถฉยท๋ฐฉ์ „์ด ์š”๊ตฌ๋˜๋Š” ์‹œ์Šคํ…œ์— ์ ์šฉํ•˜๊ธฐ์— ์ ํ•ฉํ•˜๊ณ  ์‚ฌ์ด๋ฆฌ์Šคํ„ฐ ๋ธŒ๋ฆฌ์ง€๋ฅผ ๋Œ€์นญ ์ œ์–ดํ•˜๋Š” ๋Œ€์‹ ์— ๋น„๋Œ€์นญ ์ œ์–ด๋ฅผ ํ•˜๋ฉด ์ƒ๋Œ€์ ์œผ๋กœ ํ‰๊ท  ์ถœ๋ ฅ์ „์••์€ ๊ฐ์†Œํ•˜์ง€๋งŒ ์œ ํšจ์ „๋ ฅ์„ ์ตœ๋Œ€ํ™”ํ•˜๋ฉด์„œ ๋ฌดํšจ์ „๋ ฅ์„ ์ตœ์†Œํ™”ํ•˜์—ฌ ์—ญ๋ฅ ์„ ์ฆ๊ฐ€์‹œํ‚ฌ ์ˆ˜ ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ SMES์šฉ 3์ƒ ์‚ฌ์ด๋ฆฌ์Šคํ„ฐ ๋ธŒ๋ฆฌ์ง€ ํšŒ๋กœ์—์„œ ์‚ฌ์ด๋ฆฌ์Šคํ„ฐ๊ฐ€ ์ ํ˜ธ๋˜๋Š” ๊ฐ์„ ๋Œ€์นญ ๋˜๋Š” ๋น„๋Œ€์นญ ์ œ์–ดํ•จ์œผ๋กœ์จ ํŠน์ง•์„ ๋ถ„์„ํ•˜์˜€๊ณ  ์—๋„ˆ์ง€๋ฅผ SMES์— ์ €์žฅํ•˜๊ณ  ํšŒ์ƒ ์‹œ์—๋Š” ์ €์žฅ๋œ ์—๋„ˆ์ง€๋ฅผ ์ž…๋ ฅ ์ „์› ์ธก์— ๊ณต๊ธ‰ํ•˜๊ฒŒ ๋œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” SMES์— ์—๋„ˆ์ง€๋ฅผ ์ €์žฅํ•˜๊ธฐ ์œ„ํ•œ ์ „๋ ฅ๋ณ€ํ™˜๊ธฐ์ธ 3์ƒ ์‚ฌ์ด๋ฆฌ์Šคํ„ฐ์—์„œ ๋น„๋Œ€์นญ ์ œ์–ด๋ฅผ ํ•จ์œผ๋กœ์จ ๋ฌดํšจ์ „๋ ฅ์„ ์ตœ์†Œํ™” ์‹œ์ผœ ์—ญ๋ฅ ์„ ์ฆ๊ฐ€์‹œํ‚ฌ ์ˆ˜ ์žˆ๋Š” ๋ฐฉ๋ฒ•์— ๋Œ€ํ•˜์—ฌ ์—ฐ๊ตฌํ•˜์˜€๋‹ค. KEY WORD: ์ดˆ์ „๋„ ์—๋„ˆ์ง€ ์ €์žฅ ์žฅ์น˜(Superconducting Magnet Energy Storage, SMES), 3์ƒ ์‚ฌ์ด๋ฆฌ์Šคํ„ฐ ๋ธŒ๋ฆฌ์ง€, ๋Œ€์นญ ์ œ์–ด, ๋น„๋Œ€์นญ ์ œ์–ด|In this paper, in general three-phase thyristor bridge circuits are used in various fields of voltage and current control such as AC-DC converter, reversible speed adjustment of large motors, and energy storage devices. Among the various energy storage devices developed so far, superconducting energy storage devices have a relatively large energy storage capacity and high response speed, which is suitable for a system requiring frequent charge and discharge of a long time. In the SMES three-phase thyristor bridge circuit, energy is stored in the SMES by symmetrical or asymmetrical control of the alpha angles at which thyristors are turned on, and reverse voltage is generated during regeneration period in which to regenerate energy is supplied on the power supply side. This paper describes the control characteristics of power converters for SMES In this paper, we have studied a method to increase the power factor by minimizing reactive power by asymmetric control in a 3-phase thyristor, which is a power converter for storing energy in SMES. KEY WORD: Superconducting Magnet Energy Storage (SMES), 3-phase thyristor bridge, Symmetrical control, Asymmetrical control๋ชฉ ์ฐจ ๋ชฉ ์ฐจ โ…ฐ ๊ทธ๋ฆผ ๋ฐ ํ‘œ ๋ชฉ์ฐจ โ…ฑ Abstract โ…ด ์ œ 1 ์žฅ ์„œ ๋ก  01 ์ œ 2 ์žฅ ์ด ๋ก  03 2.1 ์ดˆ์ „๋„ ์—๋„ˆ์ง€ ์ €์žฅ ์‹œ์Šคํ…œ(SMES) 03 2.2 ์‚ฌ์ด๋ฆฌ์Šคํ„ฐ ๋ธŒ๋ฆฌ์ง€ ์ œ์–ด 05 2.2.1 ๋Œ€์นญ ์ œ์–ด (Symmetry control) 10 2.2.2 ๋น„๋Œ€์นญ ์ œ์–ด (Asymmetry control) 15 2.3 ์ œ์–ด์— ๋”ฐ๋ฅธ ์ถœ๋ ฅ์ „์•• ๋ฐ ์ถœ๋ ฅ์ „๋ฅ˜ 23 2.4 ์‚ฌ์ด๋ฆฌ์Šคํ„ฐ ๋ธŒ๋ฆฌ์ง€์˜ ๋น„๋Œ€์นญ ์ œ์–ด ๋™์ž‘ ํŠน์„ฑ 26 2.4.1 ์ „๋ฅ˜์˜ ๊ฒน์นจ๊ณผ ์ „ํ™˜๊ฐ 27 2.4.2 ๋™์‹œ์ „ํ™˜๊ณผ ์ „ํ™˜์‹คํŒจ 30 2.5 ์—ญ๋ฅ  ๋ฐ ๊ณ ์กฐํŒŒ 44 ์ œ 3 ์žฅ ์ดˆ์ „๋„ ์—๋„ˆ์ง€ ์ €์žฅ ์žฅ์น˜์šฉ ์ „๋ ฅ๋ณ€ํ™˜๊ธฐ 47 3.1 ์ดˆ์ „๋„ ์—๋„ˆ์ง€ ์ €์žฅ ์žฅ์น˜์šฉ ์ „๋ ฅ๋ณ€ํ™˜๊ธฐ 47 3.2 ํšŒ๋กœ ๊ตฌ์„ฑ 48 3.3 ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ฐ ์‹คํ—˜ 51 3.3.1 ์ปจ๋ฒ„ํ„ฐ ๋ชจ๋“œ (Converter mode) 52 3.3.2 ์ธ๋ฒ„ํ„ฐ ๋ชจ๋“œ (Inverter mode) 55 3.4 ๊ฒฐ๊ณผ ๋ฐ ๊ณ ์ฐฐ 58 ์ œ 4 ์žฅ ๊ฒฐ ๋ก  59 ์ฐธ ๊ณ  ๋ฌธ ํ—Œ 60Maste

    ๋„์‹œ ๋ฌผ์ˆœํ™˜ ๊ด€๋ฆฌ๋ฅผ ์œ„ํ•œ ๋น—๋ฌผ ๊ทธ๋ฆฐ์ธํ”„๋ผ์ŠคํŠธ๋Ÿญ์ณ ์‹ค์ฒœ์ „๋žต์— ๊ด€ํ•œ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ํ™˜๊ฒฝ๋Œ€ํ•™์› : ํ˜‘๋™๊ณผ์ • ์กฐ๊ฒฝํ•™, 2014. 2. ์กฐ๊ฒฝ์ง„.์ตœ๊ทผ ๊ธฐํ›„๋ณ€ํ™”์— ๋”ฐ๋ฅธ ๊ฐ•์šฐํŒจํ„ด์˜ ๋ณ€ํ™”์™€ ๋„์‹œํ™”๋กœ ์ธํ•œ ๋ถˆํˆฌ์ˆ˜์ธต์˜ ์ฆ๊ฐ€๋กœ ์ธํ•ด ๋„์‹œํ™์ˆ˜์˜ ์ฆ๊ฐ€, ์ง€ํ•˜์ˆ˜์œ„์˜ ์ €ํ•˜, ์—ด์„ฌํ˜„์ƒ์˜ ์‹ฌํ™”, ์ˆ˜์งˆ์˜ค์—ผ์˜ ์•…ํ™” ๋“ฑ์ด ๋นˆ๋ฒˆํ•˜๊ฒŒ ๋ฐœ์ƒ๋˜๊ณ  ์žˆ๋‹ค. ์ด์— ๋ณธ ์—ฐ๊ตฌ๋Š” ๋„์‹œ์ง€์—ญ์— ๋ฌผ์ˆœํ™˜ ์™œ๊ณก์œผ๋กœ ์ธํ•ด ๋ฐœ์ƒ๋˜๋Š” ๋ฌธ์ œ์ ์„ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์ตœ๊ทผ ๋„์‹œ ๋ฌผ์ˆœํ™˜ ๊ด€๋ฆฌ ์ „๋žต์œผ๋กœ์„œ ๋ฏธ๊ตญ์„ ์ค‘์‹ฌ์œผ๋กœ ํ™œ๋ฐœํ•˜๊ฒŒ ๋…ผ์˜๋˜๊ณ  ์žˆ๋Š” ๊ทธ๋ฆฐ์ธํ”„๋ผ์ŠคํŠธ๋Ÿญ์ณ(์ดํ›„ ๋ณธ๋ฌธ์—์„œ๋Š” ์•ฝ์–ด์ธ๊ทธ๋ฆฐ์ธํ”„๋ผ๋กœ ํ‘œ๊ธฐํ•œ๋‹ค)์˜ ์ •์ฑ…, ๊ธฐ์ˆ ์š”์†Œ, ๊ณ„ํš ๋ฐ ์„ค๊ณ„์ „๋žต ๋“ฑ ๊ทธ๋ฆฐ์ธํ”„๋ผ์ŠคํŠธ๋Ÿญ์ณ ์‹ค์ฒœ์ „๋žต์— ๊ด€ํ•˜์—ฌ ์—ฐ๊ตฌํ•˜๊ณ ์ž ํ•œ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ๋จผ์ € ๊ทธ๋ฆฐ์ธํ”„๋ผ์˜ ๊ฐœ๋…, ์œ ํ˜•, ํŽธ์ต ๋“ฑ์˜ ์ด๋ก ์  ๋‚ด์šฉ์„ ๊ณ ์ฐฐํ•˜์˜€๊ณ , ์ตœ๊ทผ ๊ทธ๋ฆฐ์ธํ”„๋ผ์˜ ์ •์ฑ…์  ์‹คํ–‰์— ์žˆ์–ด ์„ ๋„์ ์ธ ๋ถ๋ฏธ์— ์ฃผ์š”๋„์‹œ๋“ค์˜ ๊ทธ๋ฆฐ์ธํ”„๋ผ ์ •์ฑ…์„ ๋ถ„์„ํ•˜๊ณ  ์„œ์šธ์‹œ์˜ ๊ทธ๋ฆฐ์ธํ”„๋ผ ๊ด€๋ จ ์ •์ฑ…๊ณผ ๋น„๊ต๋ถ„์„ํ•˜์—ฌ ๊ตญ๋‚ด์— ๊ทธ๋ฆฐ์ธํ”„๋ผ ์ •์ฑ…์ˆ˜๋ฆฝ์— ์žˆ์–ด ์‹œ์‚ฌ์ ์„ ์ œ์‹œํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค. ๋˜ํ•œ ๊ทธ๋ฆฐ์ธํ”„๋ผ๊ฐ€ ์‹ค์ œ๋กœ ์กฐ์„ฑ๋œ ํ•ด์™ธ์˜ ๋‹ค์–‘ํ•œ ๊ทธ๋ฆฐ์ธํ”„๋ผ ๊ณ„ํš ๋ฐ ์„ค๊ณ„์‚ฌ๋ก€๋ฅผ ๋ถ„์„ํ•˜์—ฌ ๊ทธ๋ฆฐ์ธํ”„๋ผ์˜ ๊ธฐ์ˆ ์š”์†Œ์™€ ๊ณ„ํš ๋ฐ ์„ค๊ณ„์ „๋žต์„ ๋„์ถœํ•˜์˜€๋‹ค. ์ด๋Ÿฌํ•œ ์—ฐ๊ตฌ๋ฅผ ํ† ๋Œ€๋กœ ๊ตญ๋‚ด ์ตœ์ดˆ๋กœ ๊ตญ๊ฐ€๊ณต์›์œผ๋กœ ์กฐ์„ฑ๋˜๊ณ  ์žˆ๋Š” ์šฉ์‚ฐ๊ณต์› ์„ค๊ณ„ ๊ตญ์ œ๊ณต๋ชจ์— ์ œ์ถœ๋œ ์ถœํ’ˆ์ž‘๋“ค์˜ ๊ทธ๋ฆฐ์ธํ”„๋ผ ์„ค๊ณ„์ „๋žต์„ ๋ถ„์„ํ•˜๊ณ  ํ–ฅํ›„ ์กฐ์„ฑ๋  ์šฉ์‚ฐ๊ณต์›๊ณผ ์ฃผ๋ณ€ ๋„์‹œ์ง€์—ญ์˜ ๋ฌผ์ˆœํ™˜ ํšŒ๋ณต์„ ์œ„ํ•ด ์ ํ•ฉํ•œ ๊ทธ๋ฆฐ์ธํ”„๋ผ ์ „๋žต์„ ๋„์ถœํ•˜์˜€๋‹ค. ์—ฐ๊ตฌ๊ฒฐ๊ณผ๋ฅผ ์š”์•ฝํ•˜๋ฉด ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. ์ฒซ์งธ, ๋ฏธ๊ตญ์„ ์ค‘์‹ฌ์œผ๋กœ 1990๋…„๋Œ€ ํ›„๋ฐ˜์— ํ†ต์šฉ๋˜๊ธฐ ์‹œ์ž‘ํ•œ ๊ทธ๋ฆฐ์ธํ”„๋ผ๋Š” ์ž์—ฐ์ง€์—ญ๊ณผ ์˜คํ”ˆ์ŠคํŽ˜์ด์Šค ๋“ฑ์˜ ์ƒํ˜ธ์—ฐ๊ฒฐ์„ ์ค‘์š”์‹œํ•˜๋Š” ๊ณต์›๋…น์ง€๋„คํŠธ์›Œํฌ ๊ฐœ๋…์—์„œ ์‹œ์ž‘ํ•˜์—ฌ, ์ตœ๊ทผ์—๋Š” ๋„์‹œ์ง€์—ญ์— ํ›ผ์†๋œ ์ž์—ฐ์˜ ์ˆ˜๋ฌธํ•™์  ๊ณผ์ •์„ ํšŒ๋ณตํ•˜๊ธฐ ์œ„ํ•œ ์ง€์†๊ฐ€๋Šฅํ•œ ๋„์‹œ ๋ฌผ์ˆœํ™˜ ๊ด€๋ฆฌ ์ „๋žต์œผ๋กœ์„œ ๊ทธ๋ฆฐ์ธํ”„๋ผ ๊ฐœ๋…์œผ๋กœ ์ง„ํ™”๋˜๊ณ  ์žˆ๋‹ค. ๋‘˜์งธ, ๊ทธ๋ฆฐ์ธํ”„๋ผ๋Š” ํ˜‘์˜์  ์˜๋ฏธ์—์„œ ์†Œ๊ทœ๋ชจ์˜ ๋ ˆ์ธ๊ฐ€๋“ , ์‹์ƒ์ˆ˜๋กœ, ์ธ๊ณต์Šต์ง€, ์˜ฅ์ƒ๋…นํ™”, ์นจํˆฌํŠธ๋ Œ์น˜, ํˆฌ์ˆ˜์„ฑํฌ์žฅ, ๋น—๋ฌผ์ €์žฅ์‹œ์„ค ๋“ฑ ๋„์‹œ์ง€์—ญ์— ์ ์šฉ๊ฐ€๋Šฅํ•œ ๊ฐ•์šฐ์œ ์ถœ์ˆ˜ ๋ฐ ์˜ค์—ผ์› ์ €๊ฐ ๊ธฐ์ˆ ์š”์†Œ๋ฅผ ํฌํ•จํ•  ๋ฟ ์•„๋‹ˆ๋ผ ๊ด‘์˜์  ์˜๋ฏธ์—์„œ ๊ทธ๋ฆฐ์ธํ”„๋ผ๋Š” ๋„์‹œ์ง€์—ญ์˜ ๊ฑด์ „ํ•œ ๋ฌผ์ˆœํ™˜์„ ์œ„ํ•œ ์‚ฐ๋ฆผ, ํ•˜์ฒœ ๋“ฑ์˜ ์ž์—ฐ์ง€์—ญ๊ณผ ๊ณต์›, ๋…น์ง€ ๋“ฑ ์˜คํ”ˆ์ŠคํŽ˜์ด์Šค์˜ ๋ณด์กด๊ณผ ์ƒํ˜ธ์—ฐ๊ฒฐ์„ ์˜๋ฏธํ•˜๋Š” ๋„์‹œ์ง€์—ญ์˜ ์ฃผ์š”ํ•œ ์ƒํƒœ์  ์ธํ”„๋ผ๋ฅผ ํฌํ•จํ•œ๋‹ค. ์…‹์งธ, ๊ทธ๋ฆฐ์ธํ”„๋ผ๋Š” ๊ฐ•์šฐ์œ ์ถœ์ˆ˜์˜ ์ €๊ฐ๊ณผ ์นจํˆฌ, ์ง€ํ•˜์ˆ˜ ์ถฉ์ „, ๋„์‹œํ™์ˆ˜์™€ ์นจ์ˆ˜์˜ ์˜ˆ๋ฐฉ ๋“ฑ ๋„์‹œ์ง€์—ญ์˜ ๋ฌผ์ˆœํ™˜ ํšŒ๋ณต ๋ฟ ์•„๋‹ˆ๋ผ ๋„์‹œ์ง€์—ญ์˜ ์—ด์„ฌํ˜„์ƒ ์™„ํ™”, ๋™์‹๋ฌผ์˜ ์„œ์‹์ฒ˜ ์ œ๊ณต, ์ƒ๋ฌผ๋‹ค์–‘์„ฑ ์ฆ์ง„, ๋Œ€๊ธฐ์งˆ ํ–ฅ์ƒ, ์—๋„ˆ์ง€ ์‚ฌ์šฉ์ ˆ๊ฐ, ์—ฌ๊ฐ€ยทํœด์–‘ ๊ธฐํšŒ์˜ ์ œ๊ณต, ์‚ถ์˜ ์งˆ ํ–ฅ์ƒ, ์ž์‚ฐ๊ฐ€์น˜ ์ƒ์Šน, ๊ธฐํ›„๋ณ€ํ™” ์ ์‘๊ณผ ์™„ํ™” ๋“ฑ ๋‹ค์–‘ํ•œ ์‚ฌํšŒ์ , ๊ฒฝ์ œ์ , ํ™˜๊ฒฝ์ ์ธ ํŽธ์ต์„ ๋‹ค์ฐจ์›์ ์œผ๋กœ ์ง€์†๊ฐ€๋Šฅํ•˜๊ฒŒ ์ œ๊ณตํ•  ์ˆ˜ ์žˆ๋‹ค. ๋„ท์งธ, ๋ฏธ๊ตญ์˜ ํ•„๋ผ๋ธํ”ผ์•„, ํฌํ‹€๋žœ๋“œ, ์‹œ์• ํ‹€ ๋“ฑ์˜ ์ฃผ์š”๋„์‹œ์—์„œ๋Š” ๊ธฐ์กด์˜ ๋ฐฐ์ˆ˜๊ด€, ํ•˜์ˆ˜์‹œ์„ค, ๊ด€๋กœ ๋“ฑ ๊ฐ•์šฐ์œ ์ถœ์ˆ˜ ๊ด€๋ฆฌ๋ฅผ ์œ„ํ•œ ๋‹จ์ผ๋ชฉ์ ์˜ ํšŒ์ƒ‰์ธํ”„๋ผ๋ฅผ ์ง€์–‘ํ•˜๊ณ  ๋‹ค์ฐจ์›์ ์ด๊ณ  ๋น„์šฉํšจ๊ณผ์ ์ด๋ฉฐ ์ง€์†๊ฐ€๋Šฅํ•œ ํŽธ์ต์„ ์ œ๊ณตํ•˜๋Š” ๊ทธ๋ฆฐ์ธํ”„๋ผ ์ •์ฑ…์„ ์ˆ˜๋ฆฝํ•˜๊ณ  ์ด๋ฅผ ์กฐ์„ฑํ•˜๊ธฐ ์œ„ํ•ด ๊ทธ๋ฆฐ์ธํ”„๋ผ ๊ทœ์ • ๋ฐ ์กฐ๋ก€, ์‹œ๋ฒ”์‚ฌ์—…, ๊ต์œก ๋ฐ ์ง€์›ํ™œ๋™, ๋น—๋ฌผ์š”๊ธˆ, ์ธ์„ผํ‹ฐ๋ธŒ ๋“ฑ์˜ ๋‹ค์–‘ํ•œ ์ •์ฑ…์ˆ˜๋‹จ์„ ํ™œ์šฉํ•˜๊ณ  ์žˆ๋‹ค. ๋‹ค์„ฏ์งธ, ํ•ด์™ธ์˜ ์ฃผ์š”๋„์‹œ๋“ค์€ ๋„์‹œ์˜ ๋ฌผ์ˆœํ™˜ ํšŒ๋ณต์„ ์œ„ํ•ด ๊ทธ๋ฆฐ์ธํ”„๋ผ์˜ ์–‘์ ์ธ ํ™•์ถฉ๋ฟ ์•„๋‹ˆ๋ผ ๋„์‹œ, ๋‹จ์ง€, ๋ถ€์ง€, ๊ฐ€๋กœ ๋“ฑ์˜ ๋‹ค์–‘ํ•œ ํ† ์ง€์ด์šฉ์— ์งˆ ๋†’์€ ์ˆ˜์ค€์˜ ๊ทธ๋ฆฐ์ธํ”„๋ผ์˜ ๊ณ„ํš๊ณผ ์„ค๊ณ„๋ฅผ ํ†ตํ•ด ๋„์‹œ๋ฏผ์—๊ฒŒ ์พŒ์ ํ•œ ํ™˜๊ฒฝ๊ณผ ์‹ฌ๋ฏธ์ ์ธ ๋งŒ์กฑ๊ฐ์„ ์ œ๊ณตํ•  ์ˆ˜ ์žˆ๋Š” ์ž‘๋™ํ•˜๋Š” ์กฐ๊ฒฝ์„ค๊ณ„๋กœ์„œ ๊ทธ๋ฆฐ์ธํ”„๋ผ์˜ ์กฐ์„ฑ์„ ์‹ค์ฒœํ•˜๊ณ  ์žˆ๋‹ค. ์—ฌ์„ฏ์งธ, ํ–ฅํ›„ ์กฐ์„ฑ๋  ์šฉ์‚ฐ๊ณต์›์€ ์ธ๊ณต์Šต์ง€, ์ƒํƒœํ•˜์ฒœ, ํ˜ธ์ˆ˜, ์ƒํƒœ์—ฐ๋ชป, ์‹์ƒ์ˆ˜๋กœ, ์ €๋ฅ˜์ง€, ํˆฌ์ˆ˜์„ฑํฌ์žฅ ๋“ฑ ์‹์ƒ๊ธฐ๋ฐ˜๊ณผ ๋น„์‹์ƒ๊ธฐ๋ฐ˜์˜ ๊ทธ๋ฆฐ์ธํ”„๋ผ ๊ธฐ์ˆ ์š”์†Œ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ์šฉ์‚ฐ๊ณต์› ๋‚ด ์กฐ์„ฑ๋˜๋Š” ๋…น์ง€, ์ˆ˜๊ณต๊ฐ„, ๊ฑด๋ฌผ, ๋„๋กœ, ๋ณดํ–‰๋กœ ๋“ฑ ๋‹ค์–‘ํ•œ ํ† ์ง€์ด์šฉ์— ์ ์šฉํ•˜๊ณ  ๊ฐ๊ฐ์˜ ๊ทธ๋ฆฐ์ธํ”„๋ผ ๊ธฐ์ˆ ์š”์†Œ๋“ค์ด ์ƒํƒœ์  ์ž‘๋™์‹œ์Šคํ…œ์œผ๋กœ ๊ธฐ๋Šฅํ•  ๋ฟ ์•„๋‹ˆ๋ผ ์„œ๋กœ ์—ฐ๊ฒฐ๋˜๊ณ  ๋„คํŠธ์›Œํฌ ๋จ์œผ๋กœ์„œ ๋” ํฐ ํ™˜๊ฒฝ์ , ๊ฒฝ์ œ์ , ์‚ฌํšŒ์  ํŽธ์ต์„ ์ฐฝ์ถœํ•  ์ˆ˜ ์žˆ๋‹ค.์ œ1์žฅ ์„œ๋ก  ์ œ1์ ˆ ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ชฉ์  ์ œ2์ ˆ ์—ฐ๊ตฌ ๋ฒ”์œ„ ๋ฐ ๋ฐฉ๋ฒ• 1. ์—ฐ๊ตฌ์˜ ๋ฒ”์œ„ 2. ์—ฐ๊ตฌ์˜ ๋‚ด์šฉ ๋ฐ ๋ฐฉ๋ฒ• ์ œ3์ ˆ ์—ฐ๊ตฌ์‚ฌ 1. ๋ถ„์‚ฐ์‹ ๋น—๋ฌผ๊ด€๋ฆฌ์— ๊ด€ํ•œ ์—ฐ๊ตฌ 2. ์ €์˜ํ–ฅ๊ฐœ๋ฐœ์— ๊ด€ํ•œ ์—ฐ๊ตฌ 3. ๊ทธ๋ฆฐ์ธํ”„๋ผ์ŠคํŠธ๋Ÿญ์ณ์— ๊ด€ํ•œ ์—ฐ๊ตฌ 4. ๋„์‹œ ๋ฌผ์ˆœํ™˜ ๊ด€๋ฆฌ ๊ธฐ์ˆ ์š”์†Œ์— ๊ด€ํ•œ ์—ฐ๊ตฌ ์ œ4์ ˆ ๋„์‹œ ๋ฌผ์ˆœํ™˜ ๊ด€๋ฆฌ ๊ด€๋ จ ๊ตญ๋‚ด๋ฒ•๊ทœ ๊ฒ€ํ†  ์ œ2์žฅ ๊ทธ๋ฆฐ์ธํ”„๋ผ์ŠคํŠธ๋Ÿญ์ณ ์ด๋ก ์  ๊ณ ์ฐฐ ์ œ1์ ˆ ๋„์‹œ ๋ฌผ์ˆœํ™˜์„ ์œ„ํ•œ ๊ทธ๋ฆฐ์ธํ”„๋ผ์ŠคํŠธ๋Ÿญ์ณ ๊ฐœ๋… 1. ๊ณต์›๋…น์ง€ ๋„คํŠธ์›Œํฌ๋กœ์„œ ๊ทธ๋ฆฐ์ธํ”„๋ผ์ŠคํŠธ๋Ÿญ์ณ 2. ๋„์‹œ ๋ฌผ์ˆœํ™˜ ๊ด€๋ฆฌ๋กœ์„œ ๊ทธ๋ฆฐ์ธํ”„๋ผ์ŠคํŠธ๋Ÿญ์ณ ์ œ2์ ˆ ๋„์‹œ ๋ฌผ์ˆœํ™˜์„ ์œ„ํ•œ ๊ทธ๋ฆฐ์ธํ”„๋ผ์ŠคํŠธ๋Ÿญ์ณ ์œ ํ˜• 1. ์ ์šฉ๊ธฐ๋ฒ•์— ๋”ฐ๋ฅธ ๊ทธ๋ฆฐ์ธํ”„๋ผ์ŠคํŠธ๋Ÿญ์ณ ์œ ํ˜• 2. ๊ฐ•์šฐ์ฒ˜๋ฆฌ ๋ฐฉ์‹์— ๋”ฐ๋ฅธ ๊ทธ๋ฆฐ์ธํ”„๋ผ์ŠคํŠธ๋Ÿญ์ณ ์œ ํ˜• ์ œ3์ ˆ ๋„์‹œ ๋ฌผ์ˆœํ™˜์„ ์œ„ํ•œ ๊ทธ๋ฆฐ์ธํ”„๋ผ์ŠคํŠธ๋Ÿญ์ณ ํŽธ์ต 1. ๊ทธ๋ฆฐ์ธํ”„๋ผ์ŠคํŠธ๋Ÿญ์ณ์˜ ์ง€์†๊ฐ€๋Šฅํ•œ ํŽธ์ต 2. ๊ทธ๋ฆฐ์ธํ”„๋ผ์ŠคํŠธ๋Ÿญ์ณ์˜ ๋‹ค์ฐจ์›์  ํŽธ์ต ์ œ4์ ˆ ๋„์‹œ ๋ฌผ์ˆœํ™˜์„ ์œ„ํ•œ ๊ทธ๋ฆฐ์ธํ”„๋ผ์ŠคํŠธ๋Ÿญ์ณ ์ •์ฑ… 1. ๊ทธ๋ฆฐ์ธํ”„๋ผ์ŠคํŠธ๋Ÿญ์ณ ์‹คํ–‰์„ ์œ„ํ•œ ๋น—๋ฌผ๊ทœ์ • ๋ฐ ์ง€๋ฐฉ์กฐ๋ก€ 2. ๊ทธ๋ฆฐ์ธํ”„๋ผ์ŠคํŠธ๋Ÿญ์ณ ๋„์ž…๊ณผ ํ™•๋Œ€๋ฅผ ์œ„ํ•œ ์‹œ๋ฒ”์‚ฌ์—… 3. ๊ทธ๋ฆฐ์ธํ”„๋ผ์ŠคํŠธ๋Ÿญ์ณ ๊ต์œก ๋ฐ ์ง€์›ํ™œ๋™ 4. ๊ทธ๋ฆฐ์ธํ”„๋ผ์ŠคํŠธ๋Ÿญ์ณ ์žฌ์ •์ง€์›์„ ์œ„ํ•œ ๋น—๋ฌผ์š”๊ธˆ 5. ๊ทธ๋ฆฐ์ธํ”„๋ผ์ŠคํŠธ๋Ÿญ์ณ ์žฅ๋ ค๋ฅผ ์œ„ํ•œ ์ธ์„ผํ‹ฐ๋ธŒ 6. ์†Œ๊ฒฐ ์ œ3์žฅ ๊ทธ๋ฆฐ์ธํ”„๋ผ์ŠคํŠธ๋Ÿญ์ณ ๊ณ„ํš ๋ฐ ์„ค๊ณ„์‚ฌ๋ก€๋ถ„์„ ์ œ1์ ˆ ๋„์‹œ ๋ฌผ์ˆœํ™˜์„ ์œ„ํ•œ ๊ทธ๋ฆฐ์ธํ”„๋ผ์ŠคํŠธ๋Ÿญ์ณ ๊ณ„ํš ๋ฐ ์„ค๊ณ„์‚ฌ๋ก€ 1. ๊ทธ๋ฆฐ์ธํ”„๋ผ์ŠคํŠธ๋Ÿญ์ณ ๊ณ„ํš ๋ฐ ์„ค๊ณ„์‚ฌ๋ก€ ๊ฐœ์š” 2. ๊ทธ๋ฆฐ์ธํ”„๋ผ์ŠคํŠธ๋Ÿญ์ณ ๊ณ„ํš ๋ฐ ์„ค๊ณ„์‚ฌ๋ก€ ๋ถ„์„ ์ œ2์ ˆ ๋„์‹œ ๋ฌผ์ˆœํ™˜์„ ์œ„ํ•œ ๊ทธ๋ฆฐ์ธํ”„๋ผ์ŠคํŠธ๋Ÿญ์ณ ๊ธฐ์ˆ ์š”์†Œ ๋„์ถœ 1. ๊ทธ๋ฆฐ์ธํ”„๋ผ์ŠคํŠธ๋Ÿญ์ณ ๊ณ„ํš ๋ฐ ์„ค๊ณ„์‚ฌ๋ก€ ๊ธฐ์ˆ ์š”์†Œ ๋ถ„์„ 2. ๊ทธ๋ฆฐ์ธํ”„๋ผ์ŠคํŠธ๋Ÿญ์ณ ๊ธฐ์ˆ ์š”์†Œ ๋„์ถœ ์ œ3์ ˆ ๋„์‹œ ๋ฌผ์ˆœํ™˜์„ ์œ„ํ•œ ๊ทธ๋ฆฐ์ธํ”„๋ผ์ŠคํŠธ๋Ÿญ์ณ ๊ณ„ํš ๋ฐ ์„ค๊ณ„์ „๋žต 1. ์—ฐ๊ฒฐ๋œ ์‹œ์Šคํ…œ์œผ๋กœ์„œ ๊ทธ๋ฆฐ์ธํ”„๋ผ์ŠคํŠธ๋Ÿญ์ณ 2. ์ƒํƒœ์  ์ž‘๋™์‹œ์Šคํ…œ์œผ๋กœ์„œ ๊ทธ๋ฆฐ์ธํ”„๋ผ์ŠคํŠธ๋Ÿญ์ณ 3. ๋‹ค์ฐจ์›์  ์ ‘๊ทผ์œผ๋กœ์„œ ๊ทธ๋ฆฐ์ธํ”„๋ผ์ŠคํŠธ๋Ÿญ์ณ ์ œ4์žฅ ๊ทธ๋ฆฐ์ธํ”„๋ผ์ŠคํŠธ๋Ÿญ์ณ ๊ตญ๋‚ด ์ ์šฉ์„ฑ ๊ฒ€ํ†  ์ œ1์ ˆ ์šฉ์‚ฐ๊ณต์› ์„ค๊ณ„ ๊ตญ์ œ๊ณต๋ชจ ์ถœํ’ˆ์ž‘ ๊ทธ๋ฆฐ์ธํ”„๋ผ์ŠคํŠธ๋Ÿญ์ณ ์ „๋žต ๋ถ„์„ 1. ์šฉ์‚ฐ๊ณต์› ์„ค๊ณ„ ๊ตญ์ œ๊ณต๋ชจ ์ถœํ’ˆ์ž‘ ๊ทธ๋ฆฐ์ธํ”„๋ผ์ŠคํŠธ๋Ÿญ์ณ ์ „๋žต ๋ถ„์„๋‚ด์šฉ 2. ์šฉ์‚ฐ๊ณต์› ์„ค๊ณ„ ๊ตญ์ œ๊ณต๋ชจ ์ถœํ’ˆ์ž‘ ๊ทธ๋ฆฐ์ธํ”„๋ผ์ŠคํŠธ๋Ÿญ์ณ ์ „๋žต ๋ถ„์„ 3. ์šฉ์‚ฐ๊ณต์› ์„ค๊ณ„ ๊ตญ์ œ๊ณต๋ชจ ์ถœํ’ˆ์ž‘ ๊ทธ๋ฆฐ์ธํ”„๋ผ์ŠคํŠธ๋Ÿญ์ณ ์ „๋žต ๋ถ„์„์ข…ํ•ฉ ์ œ2์ ˆ ์šฉ์‚ฐ๊ณต์› ๊ทธ๋ฆฐ์ธํ”„๋ผ์ŠคํŠธ๋Ÿญ์ณ ์ „๋žต ๋„์ถœ 1. ์—ฐ๊ฒฐ๋œ ์‹œ์Šคํ…œ์œผ๋กœ์„œ ๊ทธ๋ฆฐ์ธํ”„๋ผ์ŠคํŠธ๋Ÿญ์ณ์ณ ์ „๋žต 2. ์ƒํƒœ์  ์ž‘๋™์‹œ์Šคํ…œ์œผ๋กœ์„œ ๊ทธ๋ฆฐ์ธํ”„๋ผ์ŠคํŠธ๋Ÿญ์ณ ์ „๋žต 3. ๋‹ค์ฐจ์›์  ์ ‘๊ทผ์œผ๋กœ์„œ ๊ทธ๋ฆฐ์ธํ”„๋ผ์ŠคํŠธ๋Ÿญ์ณ ์ „๋žต ์ œ5์žฅ ๊ฒฐ๋ก  ์ฐธ๊ณ ๋ฌธํ—Œ AbstractDocto

    ์ƒ์Šน๋‹จ๊ณ„ ๋ฐœ์‚ฌ์ฒด์˜ ์ตœ์  ๊ถค์  ์ƒ์„ฑ ๋ฐ ๊ฐ•๊ฑด ์ œ์–ด ๊ธฐ๋ฒ•

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€, 2018. 2. ๊น€ํ˜„์ง„.This research focused on trajectory generation and control of a flexible launch vehicle during ascent flight. An important issue of a launch vehicle design is generating optimal trajectory during its atmospheric ascent flight while satisfying constraints such as aerodynamic load. These constraints become more significant due to wind disturbance, especially in the maximum dynamic pressure region. On the other hand, modern launch vehicles are becoming long and slender for the reduction in structure mass to increase payload. As a result, they possess highly flexible bending modes in addition to aerodynamically unstable rigid body characteristics. This dissertation proposes a rapid and reliable optimization approach for trajectory generation via sequential virtual motion camouflage (VMC) and non-conservative robust control for an unstable and flexible launch vehicle. First, an optimal trajectory is generated in a rapid and reliable manner through the introduction of the virtual motion camouflage. VMC uses an observed biological phenomenon called motion camouflage to construct a subspace in which the solution trajectory is generated. By the virtue of this subspace search, the overall dimension of the optimization problem is reduced, which decreases the computational time significantly compared to a traditional direct input programming. Second, an interactive optimization algorithm is proposed to find a feasible solution easier. For this, the constraint correction step is added after VMC optimization. Since VMC is a subspace problem, a feasible solution may not exist when subspace is not properly constructed. In order to address this concern, a quadratic programming (QP) problem is formulated to find a direction along which the parameters defining the subspace can be improved. Via a computationally fast QP, specific parameters (such as prey and reference point) used in VMC can be refined quickly and sequentially. As a result, the proposed interactive optimization algorithm is less sensitive to the initial guess of the optimization parameters. Third, a non-conservative 2-DOF H infty controller for an unstable and flexible launch vehicle is proposed. The objectives of the control system are to provide sufficient margins for the launch vehicle dynamics and to enhance the speed of the closed-loop response. For this, a robust control approach is used. The key of the control design is to overcome conservativeness of the robust control. The baseline controllers using the optimal control such as LQG and LQI are designed prior to a robust controller. These optimal controllers are used to find a desirable shape of the sensitivity transfer function in order to reduce conservativeness of the robust control. After implementation and analysis of the baseline controllers, an improved sensitivity weighting function is defined as a non-conventional form with different slopes in the low frequency and around crossover frequency, which results in performance enhancement without loss of robustness. A two-degree-of-freedom H infty controller is designed which uses feedback and feedforward control together to improve tracking performance with the proposed sensitivity weighting function as a target closed-loop shape. The resulting H infty controller stabilizes the unstable rigid body dynamics with sufficient margins in the low frequency, and also uses gain stabilization in addition to phase stabilization to handle the lightly damped bending modes in the high-frequency region.1 Introduction 1 1.1 Background and motivations 1 1.2 Literature survey 3 1.2.1 Optimal trajectory generation for a launch vehicle 3 1.2.2 Controller design for a flexible launch vehicle 5 1.3 Research objectives and contributions 6 1.4 Thesis organization 7 2 Launch Vehicle Dynamics 9 2.1 Frame and coordinate 9 2.2 Rigid body motion 9 2.3 Aerodynamic forces and moments 12 2.4 Gravity force 14 2.5 Thrust forces and moments 14 2.6 Flexible bending modes 15 3 Optimal Trajectory Generation 16 3.1 VMC based trajectory optimization 16 3.1.1 Nonlinear constrained trajectory optimization problem 17 3.1.2 VMC formulation 17 3.2 VMC based trajectory optimization applied to the launch vehicle 21 3.2.1 Relationship between launch vehicle dynamics and VMC 21 3.2.2 Selection of reference point and virtual prey motion 23 3.2.3 Trajectory optimization via VMC 25 3.2.4 Sequential VMC: constraint correction 27 3.2.5 Comparison study 29 3.3 Numerical simulations 31 3.3.1 Case 1: No wind disturbance 36 3.3.2 Case 2: Z-axis wind disturbance 39 3.3.3 Case 3: Y -axis wind disturbance 43 3.3.4 Case 4: Z and Y -axes wind disturbance 48 3.3.5 Performance comparison 51 4 Robust Control 57 4.1 Launch vehicle model description 57 4.1.1 Rigid body model 58 4.1.2 Flexible modes and Actuator 59 4.1.3 System properties and design specications 63 4.2 Baseline controllers design 65 4.2.1 Set-point LQG 65 4.2.2 Integral LQG 69 4.3 Robust controller design 74 4.3.1 H infinity control theory 74 4.3.2 Two-degree-of freedom H infinity controller 76 4.3.3 Selection of weighting functions: Wp and Wu 77 4.3.4 Synthesis results 82 4.3.5 Comparison study 88 4.4 Numerical simulation 94 5 Conclusions 98 Abstract (in Korean) 106Docto

    Anesthetic considerations for awake craniotomy

    Get PDF
    Awake craniotomy is a gold standard of care for resection of brain tumors located within or close to the eloquent areas. Both asleep-awake-asleep technique and monitored anesthesia care have been used effectively for awake craniotomy and the choice of optimal anesthetic approach is primarily based on the preferences of the anesthesiologist and surgical team. Propofol, remifentanil, dexmedetomidine, and scalp nerve block provide the reliable conditions for intraoperative brain mapping. Appropriate patient selection, adequate perioperative psychological support, and proper anesthetic management for individual patients in each stage of surgery are crucial for procedural safety, success, and patient satisfaction.ope

    Implementation of algebraic multigrid method and performance analysis on unstructured flow solver

    Get PDF
    ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋น„์ •๋ ฌ ๊ฒฉ์ž ๊ธฐ๋ฐ˜ ์••์ถ•์„ฑ ์œ ๋™ ํ•ด์„์ž์— ์ˆ˜๋ ด ๊ฐ€์†ํ™” ๊ธฐ๋ฒ•์ธ algebraic multigrid (AMG) ๊ธฐ๋ฒ•์„ ์ ์šฉ ํ›„ ๊ฐ€์† ์„ฑ๋Šฅ ๋ถ„์„์„ ์ง„ํ–‰ํ•˜์˜€๋‹ค. Classic AMG ๊ธฐ๋ฒ•๊ณผ additive correction ๊ธฐ๋ฐ˜ AMG ๊ธฐ๋ฒ•์„ ์ด์šฉํ•˜์—ฌ ํƒ€์›ํ˜• ํŽธ๋ฏธ๋ถ„ ๋ฐฉ์ •์‹์„ ํ’‚์œผ๋กœ์จ ๊ฐ ๊ธฐ๋ฒ•์˜ ์„ฑ๋Šฅ ๋น„๊ต ํ›„ ๋น„์ •๋ ฌ ๊ฒฉ์ž ๊ธฐ๋ฐ˜ ์œ ๋™ ํ•ด์„์ž์— AMG ๊ธฐ๋ฒ•์„ ์ ์šฉํ•˜์˜€์œผ๋ฉฐ, 2์ฐจ์› ์•„์Œ์†, ์ฒœ์Œ์†, ์ดˆ์Œ์† ์˜์—ญ์˜ ๋น„์ •๋ ฌ ๊ฒฉ์ž์™€ ์ •๋ ฌ ๊ฒฉ์ž ๊ธฐ๋ฐ˜์˜ ๋Œ€์นญ ์ตํ˜•์„ ํ•ด์„ํ•จ์œผ๋กœ์จ ์ ์šฉ๋œ AMG ๊ธฐ๋ฒ•์˜ ์ˆ˜๋ ด ๊ฐ€์†๊ณผ ์ •ํ™•์„ฑ์„ ๊ฒ€์ฆํ•˜์˜€๋‹ค. ์ถฉ๊ฒฉํŒŒ๊ฐ€ ๋ฐœ์ƒํ•˜๋Š” ์ฒœ์Œ์†๊ณผ ์ดˆ์Œ์† ์˜์—ญ ๊ณ„์‚ฐ์—์„œ๋Š” limiter freezing ๊ธฐ๋ฒ•์ด ์‚ฌ์šฉ๋˜์–ด ์ž”์ฐจ(residual)์˜ ๊ฐ์†Œ๊ฐ€ ๋ฉˆ์ถ”๋Š” ๊ฒฝ์šฐ limiter ๊ฐ’์„ ๊ณ ์ •ํ•˜์—ฌ ์‚ฌ์šฉํ•จ์œผ๋กœ์จ ๊ณ„์‚ฐ์„ ์ง„ํ–‰ํ•˜์˜€๋‹ค. AMG ๊ธฐ๋ฒ•์˜ coarsening์€ additive correction method๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ๊ฐ ๊ณ„์ธต(level)์—์„œ ์ฃผ์–ด์ ธ ์žˆ๋Š” ๊ฒฉ์ž ์—ฐ๊ฒฐ ๊ฐ•๋„์— ๋”ฐ๋ฅธ ์‘์ง‘(agglomeration)์„ ํ†ตํ•ด ์ง„ํ–‰๋˜์—ˆ์œผ๋ฉฐ, ๊ฐ ๊ฒฉ์ž์˜ ์—ฐ๊ฒฐ ๊ฐ•๋„๋ฅผ ์ •์˜ํ•˜๋Š” ์‘์ง‘ ๊ธฐ๋ฒ•์„ ๋ณ€ํ™”์‹œ์ผœ๊ฐ€๋ฉฐ ์‚ฌ๋ก€ ์—ฐ๊ตฌ(case study)๋ฅผ ์ง„ํ–‰ํ•จ์œผ๋กœ์จ ์‘์ง‘ ๊ธฐ๋ฒ•์˜ ์ฐจ์ด์— ๋”ฐ๋ฅธ AMG ๊ธฐ๋ฒ•์˜ ์„ฑ๋Šฅ ์˜ํ–ฅ์— ๋Œ€ํ•œ ๋ถ„์„์„ ์ง„ํ–‰ํ•˜์˜€๋‹ค. ์‚ฌ๋ก€ ์—ฐ๊ตฌ์—๋Š” Jacobian ํ–‰๋ ฌ ๋Œ€๊ฐ ์š”์†Œ์˜ ์ ˆ๋Œ“๊ฐ’, trace of matrix, matrix norm (P-1, P-infinity, Max, Frobenius) ๊ทธ๋ฆฌ๊ณ  matrix determinant๊ฐ€ ์‘์ง‘ ๊ธฐ๋ฒ•์œผ๋กœ ์‚ฌ์šฉ๋˜์—ˆ๋‹ค. ์„ฑ๋Šฅ ๋ถ„์„ ๊ฒฐ๊ณผ, ๊ฐ€์žฅ ๋†’์€ AMG ๊ธฐ๋ฒ• ์„ฑ๋Šฅ์„ ๋ณด์ธ ์ฒซ ๋ฒˆ์งธ ๋Œ€๊ฐ ์š”์†Œ๋ฅผ ์‚ฌ์šฉํ•œ ๊ณ„์‚ฐ๊ณผ ๊ฐ€์žฅ ๋‚ฎ์€ AMG ๊ธฐ๋ฒ• ์„ฑ๋Šฅ์„ ๋ณด์ธ trace of matrix๋ฅผ ์‚ฌ์šฉํ•œ ๊ณ„์‚ฐ์˜ ์„ฑ๋Šฅ ์ฐจ์ด ์›์ธ์€ AMG ๋‚ด๋ถ€์˜ coarsening ์„ฑ๋Šฅ ์ฐจ์ด์— ๋”ฐ๋ฅธ ๊ฒƒ์œผ๋กœ ๋ถ„์„๋˜์—ˆ๋‹ค.Present study implemented convergence acceleration method on unstructured grid based compressible flow solver. The convergence acceleration and accuracy of the calculation were verified by solving the symmetrical airfoil problems based on unstructured and structured grid for the two-dimensional subsonic, transonic, and supersonic flow regions. In the transonic and supersonic flow regions where the shock wave occurs, the limiter freezing method was used. The calculation was carried out by making the limiter uses the values from the previous iteration when the residual reduction stalls. The coarsening method of the algebraic multigrid (AMG) was based on the additive correction method, and coarsening was performed through agglomeration according to the grid connection strength given at each levels of equations. By conducting case study changing the agglomeration method which defines the connection, transonic and supersonic flow region simulations were performed for the symmetrical airfoil. In addition, the difference of each agglomeration method based AMG performance was analyzed accordingly. In the case study, the absolute value of the diagonal element of the Jacobian matrix, trace of matrix, matrix norm (P-1, P-infinity, Max, Frobenius), and matrix determinant were used as agglomeration methods. As a result of the performance analysis, it was analyzed that the cause of the performance difference between the calculation with the best performance of the AMG and the calculation with the worst performance was due to the difference in coarsening performance.์ œ 1 ์žฅ ์„œ๋ก  1 1.1 Multigrid ๊ธฐ๋ฒ• 1 1.2 ์—ฐ๊ตฌ ๋ชฉํ‘œ 2 ์ œ 2 ์žฅ ์ˆ˜์น˜๊ธฐ๋ฒ• 4 2.1 ์ง€๋ฐฐ๋ฐฉ์ •์‹ 4 2.2 ์‹œ๊ฐ„ ์ ๋ถ„๋ฒ• 5 2.3 AMG ๊ธฐ๋ฒ• 6 2.3.1 Classic AMG ๊ธฐ๋ฒ• 7 2.3.2 Additive correction method ๊ธฐ๋ฐ˜ AMG ๊ธฐ๋ฒ• 11 2.3.3 AMG ์‚ฌ์ดํด 16 2.3.4 ์‘์ง‘ ๊ธฐ๋ฒ• 17 ์ œ 3 ์žฅ AMG ๊ธฐ๋ฒ• ์„ฑ๋Šฅ ๊ฒ€์ฆ 20 3.1 Poisson equation ํ•ด์„ 20 3.2 ์•„์Œ์† ์˜์—ญ NACA0012 ์ตํ˜• ํ•ด์„ 22 3.3 ์ฒœ์Œ์† ์˜์—ญ NACA0012 ์ตํ˜• ํ•ด์„ 28 3.4 ์ดˆ์Œ์† ์˜์—ญ NACA0012 ์ตํ˜• ํ•ด์„ 33 ์ œ 4 ์žฅ ์ˆ˜์น˜ํ•ด์„ 38 4.1 NACA0012 ์ตํ˜• 38 4.2 ๊ฐ€์†ํ™” ๋ถ„์„ 39 ์ œ 5 ์žฅ ๊ฒฐ๋ก  42 ์ฐธ๊ณ ๋ฌธํ—Œ 44 abstract 46์„

    Time to Surgery and Injury Severity Score

    Get PDF
    Purpose: To evaluate the association between time to surgery and injury severity score (ISS). Methods: Medical charts and records were reviewed for polytrauma patients who underwent trauma surgery from November 2014 to March 2016. The patients were divided into two groups based on the ISS. Results: Among the 217 operated patients, 22 patients underwent first and second surgery. The patients with an ISS over 17 (mean 13.0 days) had a longer interval between surgeries than patients with an ISS of 17 or less (mean 7.5 days) (p=0.031). One hundred and twenty-one patients only underwent elective surgery and there is a positive correlation between ISS and time to elective surgery (p<0.028, Pearsonโ€™s correlation coefficient=0.224). Seventy-four patients underwent emergent surgery only. Among these, the patients with an ISS of 17 or less underwent general surgery (86%) but the patients with an ISS more than 17 underwent neurological surgery (47%). Conclusion: Patients with high ISS need critical care during the preoperative and postoperative period.ope

    Is perioperative colloid infusion more effective than crystalloid in preventing postoperative nausea and vomiting?: A systematic review and meta-analysis

    Get PDF
    BACKGROUND: Adequate intravenous fluid replacement is recommended as an effective nonpharmacologic strategy for reducing postoperative nausea and vomiting (PONV), one of the most common and stressful complications of general anesthesia. We aimed to evaluate the effect of hydration, according to the type of fluid, on PONV as previous studies have reported inconsistent results. METHODS: We performed a systemic review and meta-analysis of randomized controlled trials (RCTs) comparing infusion of colloid with that of crystalloid in terms of PONV incidence and the need for rescue antiemetic therapies for 24โ€Šhours after surgery under general anesthesia. The effect of fluid infusion according to the duration of anesthesia was also examined. A literature search was performed, using MEDLINE, Excerpta Medica Database, Cochrane Central Register of Controlled Trials, Web of Science, and Scopus, up to February 2018. RESULTS: We included 8 RCTs. Compared with the crystalloid infusion, perioperative colloid infusion did not reduce PONV incidence, with a relative risk of 0.87 (95% confidence interval [CI], 0.60-1.25). However, subgroup analysis by duration of anesthesia showed a statistically significant subgroup effect (Pโ€Š=โ€Š.04, Iโ€Š=โ€Š77.4%), suggesting that the effect of colloid differed from that of crystalloid depending on the duration of anesthesia. In the subgroup that underwent anesthesia for more than 3โ€Šhours, in which the patients had mostly undergone abdominal surgeries, colloid infusion significantly reduced the incidence of PONV compared with crystalloid infusion (RR, 0.69; 95% CI, 0.53-0.89). In the subgroup that underwent anesthesia for <3โ€Šhours, colloid infusion did not reduce the incidence of PONV compared with crystalloid infusion (RR, 1.32; 95% CI, 0.76-2.27). The requirement for antiemetics was comparable between colloid and crystalloid infusions, with an RR of 0.93 (95% CI, 0.55-1.58). CONCLUSION: Colloid administration had a more preventive effect on PONV than crystalloid administration in patients undergoing abdominal surgery under general anesthesia for more than 3โ€Šhours but did not show a preventive effect in patients undergoing anesthesia for <3โ€Šhours.ope
    • โ€ฆ
    corecore