
 

 

저 시-비 리- 경 지 2.0 한민  

는 아래  조건  르는 경 에 한하여 게 

l  저 물  복제, 포, 전송, 전시, 공연  송할 수 습니다.  

다 과 같  조건  라야 합니다: 

l 하는,  저 물  나 포  경 ,  저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.  

l 저 터  허가를 면 러한 조건들  적 되지 않습니다.  

저 에 른  리는  내 에 하여 향  지 않습니다. 

것  허락규약(Legal Code)  해하  쉽게 약한 것 니다.  

Disclaimer  

  

  

저 시. 하는 원저 를 시하여야 합니다. 

비 리. 하는  저 물  리 목적  할 수 없습니다. 

경 지. 하는  저 물  개 , 형 또는 가공할 수 없습니다. 

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/


공학석사 학위논문

로봇시스템의설계및동작동시최적화

Simultaneous Design andMotion
Optimization for Robot Systems

2020년 8월

서울대학교대학원

기계항공공학부

김 승 현



ABSTRACT

Simultaneous Design and Motion Optimization for

Robot Systems

by

Seunghyun Kim

Department of Mechanical Engineering

Seoul National University

A robot design has the potential for numerous combinations of the components

such as the actuators, links, joints, etc. Therefore, a process of finding a good

design is a challenging problem even for the robot experts. To overcome this dif-

ficulty, we present an optimization framework for the morphological shape of a

robot, considering its motion. Both the design and motion parameters can be si-

multaneously optimized for specific tasks by our methodology. In the space where

the design and motion parameters are combined, our framework seeks the steep-

est direction that reduces the objective function on the constraint manifold. To

i



overcome the flaws of the previous studies, we utilize the recently discovered re-

cursive differential dynamics, which informs of the analytic relationship between

the variation of joint torques and design parameters, thus our framework brings

faster and more accurate optimization results. We validate our optimization frame-

work through two numerical experiments: the 2-R planar manipulator with a given

end-effector trajectory and the quadruped robot with a locomotion task.

Keywords: Robot Design Optimization, Rigid Body Dynamics, Optimal Control,

Legged Robot

Student Number: 2018-20883

ii



Contents

Abstract i

List of Tables vi

List of Figures vii

1 Introduction 1

1.1 Design Optimization of Robotic Devices . . . . . . . . . . . . . . . . 1

1.2 Limitations of Previous Works . . . . . . . . . . . . . . . . . . . . . 4

1.3 Main Contributions of This Thesis . . . . . . . . . . . . . . . . . . . 5

2 Preliminaries 7

2.1 Lie Group Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 SO(3) and SE(3) . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.2 Twists and Wrenches . . . . . . . . . . . . . . . . . . . . . . 10

2.1.3 Adjoint Mappings . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Rigid Body Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Dynamics of a Single Rigid Body . . . . . . . . . . . . . . . 11

iii



2.2.2 Dynamics of Open Chains . . . . . . . . . . . . . . . . . . . 12

2.2.3 Dynamics of Floating Bodies . . . . . . . . . . . . . . . . . . 14

2.3 Recursive Differential Dynamics . . . . . . . . . . . . . . . . . . . . 15

3 Simultaneous Design and Motion Optimization 18

3.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Optimization Parameters . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1 Design Parameters . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.2 Motion Parameters . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.3 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.4 Inertial Changes . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Optimization Algorithm Description . . . . . . . . . . . . . . . . . . 27

4 Numerical Experiments 31

4.1 2-R Planar Manipulator . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1.1 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . 31

4.1.2 Optimization Results . . . . . . . . . . . . . . . . . . . . . . 33

4.2 Quadruped Robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2.1 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . 37

4.2.2 Optimization Results . . . . . . . . . . . . . . . . . . . . . . 39

5 Conclusion 44

A Appendix 46

A.1 Local parametrization of the design . . . . . . . . . . . . . . . . . . 46

A.2 Design rule for the link . . . . . . . . . . . . . . . . . . . . . . . . . 48

A.3 Derivative of the constraints . . . . . . . . . . . . . . . . . . . . . . 51

iv



A.3.1 End-effector trajectory . . . . . . . . . . . . . . . . . . . . . . 51

A.3.2 Equations of motion of the base for quadruped robots . . . 52

A.4 Laikago Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Bibliography 55

국문초록 60

v



List of Tables

4.1 Optimization result of the 2-R planar manipulator. . . . . . . . . . 34

4.2 Optimization result of the quadruped robot. . . . . . . . . . . . . . 40

A.1 Initial design parameters of Laikago. . . . . . . . . . . . . . . . . . . 54

vi



List of Figures

1.1 Examples of simultaneous morphology and motion evolution in nature. 4

2.1 A floating body example: quadruped robot. . . . . . . . . . . . . . . 14

3.1 Examples of the design definitions of robots. . . . . . . . . . . . . . 21

3.2 Transformation of the reference frame. . . . . . . . . . . . . . . . . . 22

4.1 2-R planar robot manipulator with three specified trajectories. . . . 32

4.2 Effort during the optimization process. . . . . . . . . . . . . . . . . 33

4.3 Joint angles of the 2-R manipulator of each task. . . . . . . . . . . 34

4.4 Joint torques of the 2-R manipulator of each task. . . . . . . . . . . 35

4.5 Quasi-static gait of the quadruped . . . . . . . . . . . . . . . . . . . 38

4.6 Laikago by Unitree Robotics (in MuJoCo simulator). . . . . . . . . 39

4.7 Morphology of the quadruped robot. . . . . . . . . . . . . . . . . . . 40

4.8 The quadruped robot optimization result: joint torques (Matlab). . 41

4.9 The quadruped robot optimization result: joint torques (MuJoCo). 42

4.10 Optimization result without design limitation. . . . . . . . . . . . . 43

vii



1
Introduction

1.1 Design Optimization of Robotic Devices

Designing a high-performance robot is a highly exhausting procedure that needs to

consider a huge number of parameters and underlying connections between them.

Since it is hard to discover a golden rule to build a satisfactory design, the roboti-

cists usually conduct experiments repeatedly with various possible designs and

choose the best one among the rest. To overcome this difficult and tedious pro-

cess, numerous studies about robot design optimization have been conducted. The

design of a robot has diverse components such as topology, geometry, structure, in-

ertia, compliance, actuator, etc. Among them, the geometry of the robot, i.e., the

lengths of the links or the axes of the joints, is often regarded as a critical factor

due to the ease of alteration and large design space. Therefore, most robot design

optimization studies set a design parameter as geometry, which is often called a

kinematic design.

In the robot kinematic design, robots used to be considered that they need to

1



1.1. Design Optimization of Robotic Devices 2

have versatility, not to perform some specific tasks. Therefore, the robot design

optimization frameworks had also been devised to pursue this philosophy. Two of

the most wide-spread robot design benchmarks involved with the above intention

are workspace volume and dexterity [1, 2, 3, 4]. The former index denotes the

volume of the region that can be reached by the end-effector of the robot, and

it is desirable to have a large workspace volume for versatile operation. Second,

dexterity implies an ability to generate motions in arbitrary directions. Investi-

gating both of these performance criteria is essential in the robot design process

if the robot designer wants their artifacts to be versatile. In the real application,

however, robots usually execute only certain tasks for a long time. If we look in-

side the industrial sites, after the installation of the robots that are capable of

versatile manipulation, they just continue to perform repetitive task such as pick

and place, not the various operations. Even the legged robots which do not per-

form only one operation like the above example, there are few crucial tasks that

mostly affect the ability of the robots. Therefore, during the optimization of the

robot, it is important for the robots to take the frequently executing behaviors

into consideration. A number of studies following this perspective, by which we

denote task-specific robot design optimization, have been attempted to optimize a

morphology of legged robots [5, 6], serial manipulators [7, 8], parallel robots [9],

modular robots [10, 11], and cable-driven mechanisms [12] for a given task.

On the other hand, robot movements are becoming more and more dynamic.

Parallel robots for high-speed manipulation have been devised and are widely in-

stalled in many industrial fields. One of the biggest obstacles for the parallel ma-

nipulators is reducing the shaking forces and moments, which produce unwanted

vibration [13]. Furthermore, the mobile robots which had previously been in the

research stage, are commercializing nowadays [14]. Since they have to be operated



1.1. Design Optimization of Robotic Devices 3

by the mounted battery, ways to save energy must be examined. For these reasons,

considering the dynamic performances such as energy consumption in the robot

design process is becoming more and more important. In this thesis, we propose

the robot kinematic design optimization based on the dynamic performance criteria

for the specific task.

We can formulate the presented robot design optimization problem as an ex-

panded version of a classical optimal control problem. A formal definition of the

optimal control can be described as follows:

(x∗, τ∗) = arg min
x, τ

J(x, ẋ, τ) =

∫ tf

0
r(t, x, ẋ, τ ; ρ)dt

subject to ẋ = f(t, x, τ ; ρ),

g(t, x, ẋ, τ ; ρ) ≤ 0,

h(t, x, ẋ, τ ; ρ) = 0

(1.1.1)

where x is a state, τ is an input, ρ is a design parameter, and t is a time vari-

able. The terms J and (g, h), stand for the dynamic performance criteria and the

constraints to accomplish given tasks, respectively. In the above problem, the de-

sign parameter ρ is considered to be fixed, i.e., the mechanism cannot modify its

shape but the input. In the robot design optimization, however, ρ has to be able

to change, then Equation 1.1.1 becomes

(x∗, τ∗, ρ∗) = arg min
x, τ, ρ

J(x, ẋ, τ, ρ) =

∫ tf

0
r(t, x, ẋ, τ, ρ)dt

subject to ẋ = f(t, x, τ, ρ),

g(t, x, ẋ, τ, ρ) ≤ 0,

h(t, x, ẋ, τ, ρ) = 0,

(1.1.2)

which implies this problem attempts to optimize not only the control but also the

design of the robot.



1.2. Limitations of Previous Works 4

Such a simultaneous optimization scheme can also be found in nature. Several

studies have describes the interaction of the shape and motion in the evolution of

animals [15, 16]. Figure 1.1 shows the morphological difference between species. It

comes from the synergy of the body and the brain to adapt better to nature. As

we can see in Figure 1.1a, human beings have been evolved to properly walk with

two legs. Figure 1.1b shows the difference between each quadruped mammal. Each

animal has optimized its own morphology to suit its own behavior.

(a) Anatomy of Primates (b) Anatomy of Mammals

Figure 1.1: Examples of simultaneous morphology and motion evolution in nature.

1.2 Limitations of Previous Works

Most similar research to our simultaneous design and motion optimization ap-

proach is [17]. They presented computational schemes to concurrently optimizing

both the design and motion of a robot for a certain task. However, due to the

complexity of the equations of motion, it gets harder to differentiate them analyt-

ically as the mechanism becomes more complicated. Hence, the previous studies

including [17] adopted finite differentiation of the dynamic equations with respect



1.3. Main Contributions of This Thesis 5

to several parameters. In the optimization process, the knowledge of analytic dif-

ferentiation plays an important role for the good result. First, calculating the finite

difference takes lots of time and computing power. This flaw becomes worse as the

dimension becomes larger. Second, even the finite differentiation is well calculated,

that gradient differs from the real one so that the result may be inaccurate and

the process becomes slow.

Recently, recursive differential dynamics [18] which can analytically differenti-

ate the equations of motion with respect to joint screws has been developed. They

utilized the fact that joint screws can be locally parameterized. Joint screws can

be regarded as design parameters which define the morphology of the robot. In

this thesis, we use the recursive differential dynamics, thus can calculate each dif-

ferential term analytically.

1.3 Main Contributions of This Thesis

This thesis proposes a simultaneous design and motion optimization framework for

robot systems. We specifically focus on the kinematic design of the robot with the

dynamic performance criteria. The optimization proceeds by focusing on the part

that performs a particular action rather than various tasks.

Starting with the classical optimal control problem, our robot design optimiza-

tion is formulated by including the design parameter to the optimization variable.

Unlike other prior studies, we use analytic derivatives which can be computed by

the recursive differential dynamics [18], and this results in fast and accurate op-

timization outcomes. The analytic gradients are calculated in a recursive manner,

thus our framework has expandability to the complex robot structures.

The remainder of this thesis is organized as follows. In Chapter 2, we review



1.3. Main Contributions of This Thesis 6

the basics of rigid body dynamics. Based on the matrix Lie group theory, the equa-

tions of motion of the serial manipulator and floating body system are described.

Further, the recursive differential dynamics for the analytic differentiation of the

dynamic equations with respect to the design parameter is introduced. In Chapter

3, we describe our design optimization scheme. Both design and motion parame-

ters are concurrently optimized to reduce the given cost function with our method.

Chapter 4 shows the optimization results and verification in the physics simula-

tor for a 2-R planar manipulator with some given trajectories and a quadruped

robot with locomotion task. Chapter 5 discusses the key properties, limitations,

and possible extensions of our method.



2
Preliminaries

This chapter reviews some core concepts of our robot design optimization method-

ology. We first begin with Lie group theory in section 2.1. Then, we review the

basic concepts of rigid body dynamics based on Lie group theory in sections 2.2.

Recursive differential dynamics, which guides to compute the derivatives of the

equations of motion with respect to the design parameters analytically, is stated

in section 2.3.

2.1 Lie Group Theory

The kinematics and dynamics of serial chain robots can be represented using the

product of exponentials (PoE) formula. In this paper, we establish our design op-

timization framework based on this formula. This section briefly reviews the basic

concepts of Lie group theory to understand PoE formula. Further plentiful discus-

sions about this concept are in [19, 20, 21].

7



2.1. Lie Group Theory 8

2.1.1 SO(3) and SE(3)

The three-dimensional Special Orthogonal Group, SO(3) for brevity, is Lie group

and represents the rotation of a rigid body in three-dimensional space. SO(3) is

the set of matrices as follows:

SO(3) = {R ∈ R3×3|RR> = I, det(R) = 1}. (2.1.1)

Lie algebra of SO(3), denoted by so(3), is a set of 3× 3 real skew-symmetric ma-

trices:

so(3) = {Ω ∈ R3×3|Ω> + Ω = 0}. (2.1.2)

An element of so(3) can also be represented as a three-dimensional real vector.

Let ω = (ω1, ω2, ω3) be an element of R3. The skew-symmetric representation of

the given vector can be expressed as

[ω] =


0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 . (2.1.3)

The three-dimensional Special Euclidean Group SE(3) is also Lie group and de-

notes the rigid body motion in three-dimensional space. SE(3) consists of 4 × 4

real matrices of the form

T =

R p

0 1

 , R ∈ SO(3), p ∈ R3. (2.1.4)

The corresponding Lie algebra se(3) is of the form

[S] =

[ω] v

0 0

 ∈ R4×4, (2.1.5)



2.1. Lie Group Theory 9

where [ω] ∈ so(3) and v ∈ R3. Similar to the case of so(3), S is a six-dimensional

real vector form of S = (ω>, v>)>.

The Lie group and Lie algebra have a relationship of exponential mapping. Given

S = (ω>, v>)> ∈ se(3), the corresponding Lie group T ∈ SE(3) can be expressed

as follows:

T = e[S] =

e[ω] G(ω)v

0 1

 , (2.1.6)

where e[w] is a matrix exponential and G(w) is

G(w) = I +
1

2!
[ω] +

1

3!
[ω]2 +

1

4!
[ω]3 + · · · (2.1.7)

If the screw is normalized, i.e., S = Ŝθ = (ω̂>, v̂>)>θ where ||ω̂|| = 1 and ω = ω̂θ,

the equation 2.1.6 and 2.1.7 transform into

T =

e[ω̂]θ G(ω̂, θ)v̂

0 1

 ,
G(ω̂, θ) = Iθ + (1− cos θ)[ω̂] + (θ − sin θ)[ω̂]2.

(2.1.8)

The physical meaning of the exponential mapping from se(3) to SE(3) can be

interpreted as a screw motion, i.e., the rigid body transformation by the screw

S. In more details, let Ta and Tb be the coordinate frames of {A} and {B} with

respect to the reference frame {0}. The rigid body transformation from {A} to

{B} can be represented by a screw S = Ŝθ = (ω̂>, v̂>)>θ,

Tb = Tae
[Ŝ]θ,

e[Ŝ]θ =

e[ω̂]θ (I − e[ω̂]θ)q + hθω̂

0 1

 , (2.1.9)

which indicates the frame {A} rotates with respect to axis ω̂ passing through the

point q by the angle θ, and translates by the vector (I − e[ω̂]θ)q+hθω̂. The scalar

h represents the pitch and v̂ is determined to be v̂ = −ω̂ × q + hω̂.



2.1. Lie Group Theory 10

2.1.2 Twists and Wrenches

Consider a moving frame whose trajectory is given by

T (t) =

R(t) p(t)

0 1

 ∈ SE(3). (2.1.10)

A generalized velocity or a twist can be defined as

V = T -1Ṫ =

[ω] v

0 0

 , (2.1.11)

where [ω] = R>Ṙ and v = R>ṗ. The twist is included in se(3) and also can be

represented in a six-dimensional vector:

V =

ω
v

 . (2.1.12)

ω, v ∈ R3 denote the angular velocity and linear velocity of the moving frame,

respectively.

A generalized force or a wrench acting on a rigid body can be defined as

F =

m
f

 , (2.1.13)

where m, f ∈ R3 indicate the moment and force, respectively. The wrench F is

known as an element of se∗(3), the dual space of se(3), since F>V has a unit of

work.

2.1.3 Adjoint Mappings

Given T = (R, p) ∈ SE(3), the large adjoint mapping AdT : se(3) → se(3) is

defined as follows:

AdT ([V]) = T [V ]T -1, (2.1.14)



2.2. Rigid Body Dynamics 11

which can also be regarded as a linear operator of the form

AdT (V ) =

 R 0

[p]R R

ω
v

 . (2.1.15)

The physical meaning of a large adjoint mapping is a coordinate transformation.

Let Va and Vb denote the twist of T (t) ∈ SE(3) with respect to the different

reference frames. Then, they have the following relation:

Vb = [AdTba ]Va and Va = [AdTab ]Vb. (2.1.16)

Similarly, given A = (ω>, v>)> ∈ se(3), the small adjoint mapping adA : se(3) →

se(3) can be defined by

adA(B) = [A][B]− [B][A] or

[ωA] 0

[vA] [ωA]

ωB
ωA

 . (2.1.17)

2.2 Rigid Body Dynamics

This section describes the dynamics of rigid articulated bodies. Also, an algorithm

for recursively calculating kinematic and dynamic elements of a serial chain is pre-

sented. Further detailed information about rigid body dynamics can be found in

[19, 22, 23].

2.2.1 Dynamics of a Single Rigid Body

Before dealing with the dynamic equation of articulated bodies, we first introduce

the equations of motion (EoM) of a single rigid body. Assume the body reference

frame {c} is attached to the center of mass (COM). Then, the equations of motion

of a single rigid body is of the form

Fc = GcV̇c − ad>Vc(GcVc), (2.2.18)



2.2. Rigid Body Dynamics 12

where Gc, Vc, and Fc denote the generalized inertia, twist, and externally applied

wrench with respect to the frame {c}, respectively. The generalized inertia Gc can

be represented as

Gc =

Ic 0

0 I3×3

 ∈ R6×6, (2.2.19)

where Ic ∈ R3×3 is a rotational inertia of the rigid body with respect to the center

of mass frame, and I3×3 is the 3×3 identity matrix. Equation 2.2.18 can be identi-

cally expressed with respect to another body reference frame {b} with coordinate

transformation,

Fb = GbV̇b − ad>Vb(GbVb), (2.2.20)

and the coordinate transformation of each component,

Vb = AdTbc(Vc), (2.2.21)

V̇b = AdTbc(V̇c), (2.2.22)

Fb = Ad>
T -1bc

(Fc), (2.2.23)

Gb = [AdTcb ]
>Gc[AdTcb ]. (2.2.24)

2.2.2 Dynamics of Open Chains

Taking as a point of departure the above dynamic equation of a single rigid body,

recursive inverse dynamics algorithm can be derived for computing dynamic ele-

ments of each rigid body composing a serial open chain mechanism. Consider an

n-dof serial manipulator whose base is fixed to the ground. Algorithm 1 describes

Newton-Euler recursive inverse dynamics: given joint variables (θ, θ̇, θ̈), compute

(Vi, V̇i, Fi) of each body-attached frame and τi of each joint. The subscript i de-

notes the joint index. The recursive inverse dynamics algorithm consists of two

parts: the forward and the backward iteration step. During the forward iteration,



2.2. Rigid Body Dynamics 13

each joint twist and derivative of twist is calculated, while in the backward iter-

ation the wrenches and torques are computed from the end-effector to the base.

More details and proof of the algorithm can be found in [19].

Algorithm 1 Recursive Inverse Dynamics

Input: θ, θ̇, θ̈

Output: Vi, V̇i, Fi, τi

1: Initialize: V0 = 0, V̇ = −g Fn+1 = Fext

2: procedure - forward recursion

3: for i = 1 : n do

4: Ti−1,i = e[Ai]θi

5: Vi = Aiθ̇i + [Ad
T -1i−1,i

]Vi−1

6: V̇i = Aiθ̈i + [Ad
T -1i−1,i

]V̇i−1 + [adVi ]Aiθ̇i

7: end for

8: procedure - backward recursion

9: for i = n : 1 do

10: Fi = [Ad
T -1i,i+1

]>Fi+1 +GiV̇i − [adVi ]
>GiVi

11: τi = A>i Fi

12: end for

There exist a few more forms of equations of motion for a serial manipulator.

The EoM of the mechanism can be determined in a closed-form:

τ = M(θ)θ̈ + C(θ, θ̇) + J(θ)>Fext, (2.2.25)

where M(θ), C(θ, θ̇), and J(θ) denote the mass matrix, Coriolis and gravitational



2.2. Rigid Body Dynamics 14

forces, and Jacobian of the contact point, respectively. Moreover, the above dy-

namic equation can be reformulated from the fact that the joint torque has a lin-

ear relationship with the inertia:

τ = Y (θ, θ̇, θ̈)Φ + J(θ)>F, (2.2.26)

where Y ∈ Rn×10n is the regressor and Φ ∈ R10n is the augmented vector of the

link inertias. Note that in Equation 2.2.26, the kinematic and inertial parameters

can be separated into Y and Φ.

2.2.3 Dynamics of Floating Bodies

Figure 2.1: A floating body example: quadruped robot.

A Floating body indicates a rigid articulated body system whose base is not

fixed to the ground. This arises when the legged structure robot becomes airborne.

To describe its kinematic configuration, the base configuration should also be con-

sidered, i.e., (SE(3) × qr), where SE(3) and qr denote the configuration of the

base and the joints of the floating system, respectively. This can be interpreted

that the virtual 6-dof is added to the floating base from the world frame. One



2.3. Recursive Differential Dynamics 15

of the most typical floating systems is the legged robot. It consists of several se-

rial chains and Algorithm 1 can be applied to each serial chain to compute the

joint torques. However, since the base is no longer fixed, one should carefully use

it when initializing V0 and V̇0.

Typically, the dynamics of the floating bodies can be express as follows:

M(q)q̈ + C(q, q̇) + J(q)>F = S>τ, (2.2.27)

where q , [q>b q>r ]> is the overall configuration of the floating system (qb ∈ R6

and qr ∈ Rn are the configuration of the base and the joints, respectively), and

S = [0n×6 In×n] is the actuated joint selection matrix.

2.3 Recursive Differential Dynamics

In this section, a recursive algorithm for differentiating the equations of motion

with respect to the kinematic parameters is presented. Given a twist A ∈ se(3),

its neighborhood Â ∈ se(3) is known to be locally parametrized as

Â = Ade[η](A), (2.3.28)

for some η ∈ se(3) [24]. Equation 2.3.28 can be differentiate with respect to η as

follows:

δA = −[adA]δη. (2.3.29)

By Equation 2.3.29 and Algorithm 1, we can obtain the following recursive algo-

rithm which computes the derivatives of the joint torques with respect to the joint

screws and the joint variables. Note that compared to [18], the terms for the joint

variables (θ,θ̇,θ̈) to the derivatives are added, since we consider motions as well

as designs for the performance of the robot. To simplify the notation, we use the



2.3. Recursive Differential Dynamics 16

following abbreviations: Adi := AdTi−1,i , Ad−1i := AdT−1
i−1,i

. The [(i : j), (k : l)]

sub-matrix of a matrix M is denoted by [M ](i:j,k:l).

Proposition 2.3.1 (Recursive Differential Dynamics [18]). The differential rela-

tionship between the joint torques, joint twists, and joint variables can be written

δτ = S(Φ)δx, (2.3.30)

where δx =
[
[δη1, δθ1, δθ̇1, δθ̈1]

>, · · · , [δηn, δθn, δθ̇n, δθ̈n]>
]>

and S(Φ) ∈ Rn×9n whose

i-th row is given by

Si =−F>i [ad0
Ai ] +A>i Ri

[ad0
Ai ] :=

[
06×9(i−1) [adAi ] 06×(9(n−i)+3)

]
.

(2.3.31)

Ri can be recursively calculated as follows:
Pi = [Ad−1i ]Pi−1 + P 0

i ,

Qi = [Ad−1i ]Qi−1 − [adAiθ̇i ]Pi +Q0
i ,

Ri = [Ad−>i+1]Ri+1 − ([adVi ]
>Gi + [ad∗GiVi ])Pi +GiQi +R0

i .

(2.3.32)

where P 0
i , Q0

i , R
0
i ∈ R6×9n are zero-padded on both sides similar to [ad0

Ai
]:

[
P 0
i

]
(:,9(i−1)+(1:6))

= [Ad−1i ][adVi−1 ](I −Adi)− [adAiθ̇i ],[
P 0
i

]
(:,9(i−1)+(7:8))

=
[
[Ad−1i ][adVi−1 ] Ai

]
,[

Q0
i

]
(:,9(i−1)+(1:6))

= [Ad−1i ][adV̇i−1
](I −Adi)− [adVi ][adAiθ̇i ]− [adAiθ̈i ],[

Q0
i

]
(:,9(i−1)+(7:9))

=
[
[Ad−1i ][adV̇i ] [adVi ]Ai Ai

]
,[

R0
i

]
(:,9(i−1)+(1:6))

= −[Ad−1i+1]
>[ad∗Fi+1

](Ad−1i+1 − I),[
R0
i

]
(:,9(i−1)+7)

= −[Ad−1i+1]
>[ad∗Fi+1

]Ai+1.

(2.3.33)



2.3. Recursive Differential Dynamics 17

Initial conditions for the recursions are as follows:
P1 = −

[
[adA1θ̇1

] 06×1 A1 06×1 06×9(n−1)

]
,

Q1 =
[
−[adA1θ̈1

] + [Ad−11 ][adV̇0 ](I − [Ad1]) [Ad-1
1 ][adV̇0 ]Ai 06×1 Ai 06×9(n−1)

]
,

Rn = −([adVn ]>Gn + [ad∗GnVn ])Pn +GnQn.

(2.3.34)

For more detailed explanations and proof, see [18].

Proposition 2.3.1 provides an insight into how to differentiate the dynamics

with respect to the design parameters. Due to the complex structure of the equa-

tions of motion, it was regarded as an impossible task to analytically differentiate

EoM, especially with respect to the design parameters. Therefore, many studies

have substituted them numerically; this step causes inaccuracy and lag in the op-

timization process. Proposition 2.3.1 can be utilized to calculate an analytic gra-

dient, however, the derivatives in Proposition 2.3.1 are with respect to the joint

screws, not the design parameters. We will bridge this gap later in Chapter 3.

Consequently, the derivative of the joint torque with respect to the design param-

eters can be analytically determined by a chain rule so that the design parameters

can be optimized to reduce the overall dynamic performances.



3
Simultaneous Design and Motion

Optimization

In this chapter, we describe the robot design optimization framework considering

its motion. Both design and motion parameters are concurrently optimized to re-

duce the given cost function with our method. We define the optimization problem

as an expanded version of classical optimal control. The constraints are set for the

robot to achieve given tasks. The core of our method is the recursive differential

dynamics utilized to compute the analytic gradient of the joint torque.

3.1 Problem Definition

In what follows we assume a general design optimization problem can be formu-

lated as follows:

18



3.1. Problem Definition 19

minimize
ρ, x, ẋ, τ

J(ρ, x, ẋ, τ)

subject to ẋ = f(t, x, τ ; ρ),

g(t, x, ẋ, τ ; ρ) ≤ 0,

h(t, x, ẋ, τ ; ρ) = 0

(3.1.1)

We define the motion parameter as m = (x, ẋ) to contain all of the information

about the joint trajectories enough to describe EoM. The types of robots that we

consider in this thesis are serial manipulators or that consist of some serial chains.

In these cases, m = (θ, θ̇, θ̈), where θ denotes the joint angles. The user may need

to replace (θ, θ̇, θ̈) with proper variables for complex or higher-order mechanisms.

For the serial manipulator, the joint torque τ is able to be computed by Algo-

rithm 1, which gets (θ, θ̇, θ̈) of a serial manipulator and outputs joint torques.

Hence, Equation 3.1.1 can be converted into the equivalent form:

minimize
ρ,m

J(ρ,m)

subject to g(t, ρ,m) ≤ 0,

h(t, ρ,m) = 0.

(3.1.2)

There are some cases that the joint torques cannot be completely determined

with only ρ and m, e.g., quadruped robots, because the contact forces are indefi-

nite if there are more than three point contacts [25]. In this case, we add the pa-

rameter fe which describes the external force to the optimization variables (ρ,m).

Our framework solves the optimization problem with a dynamic performance.

In this thesis, we set the objective function as follows:

J(ρ,m) =
1

2

∫ tf

0
τ>τdt, (3.1.3)



3.2. Optimization Parameters 20

which is widely called effort that captures the desire to reduce the applied joint

torques during the task. The users can choose the objective functions they want to

optimize. Since we can compute the derivative of the joint torque with respect to

the design parameters, we can efficiently solve Problem 3.1.2 with various dynamic

performance criteria.

3.2 Optimization Parameters

As already discussed, two essential kinds of parameters exist in our design opti-

mization framework: i) design parameters and ii) motion parameters. In this sec-

tion, we describe how to define these parameters.

3.2.1 Design Parameters

To fully define the kinematic design of a robot, the information of the joints such

as its position and axis is needed. Among the way to describe them, one of the

most popular methods is defining the design as a set of joint frames by which the

users can obtain the kinematic composition of the robot. This manner is similar

to the convention of URDF (Unified Robotics Description Format [26]), which is

an XML specification to model multi-body systems such as robotic arms or legged

robots.

Figure 3.1 show the examples of the kinematic design definition in our frame-

work. First, the base frame should be defined, and the joint and end-effector frames

can be described with respect to the base frame. Then, the design ρ can be de-

scribed as a following set of SE(3).

ρ , {Tb, T1, · · · , Tnj , T ee1 , · · · , T eenee}, (3.2.4)



3.2. Optimization Parameters 21

(a) Design definition: a serial chain (b) Design definition: a quadruped

Figure 3.1: Examples of the design definitions of robots.

where Tb, Ti, and T eei denote the frame of base, joint, and end-effector, respec-

tively. nj and nee are the number of joints and end-effectors. We set each compo-

nent of T = (R, p) as follows:

• p denotes the 3-dimensional position of the joint (motor) or the end-effector.

• Where R =
[
x̂ ŷ ẑ

]
, ẑ denotes the joint axis.

Since we define the design parameters as a set of SE(3), the feasible space of

Equation 3.1.2 becomes the product space of matrix Lie group (design parameter)

and vector space (motion parameter). In a gradient-based optimization of a matrix

Lie group, the update rule of the optimization variables is

T ← e[η]T or T ← Te[η], (3.2.5)

where η is the corresponding Lie algebra. Therefore, one question arises: which

is a better update rule? To answer this question, recall Equation 2.3.28. In this

equation, the local parametrization of the joint screw is formulated by the large

adjoint group action whose physical meaning is the change of the reference frame.



3.2. Optimization Parameters 22

Figure 3.2: Transformation of the reference frame.

Figure 3.2 shows this situation. Assuming {0} and {0̂} denote the different

reference frames, the coordinate transformation of the screw A ∈ se(3), which can

be depicted by T ∈ SE(3), is of the form

A0̂ = [Ade[η] ]A0, (3.2.6)

where e[η] = T0̂0, i.e., the transformation from frame {0̂} to {0}. The above equa-

tion is equivalent to Equation 2.3.28, and we can say that Equation 2.3.28 is same

as the transformation of the reference frame by e−[η]. Consequently, the infinites-

imal change of T should be

T̂ = e[η]T, η ∈ se(3). (3.2.7)

in order to follow the same view of Equation 2.3.28. Since the recursive differential

dynamics departs from Equation 2.3.28, we can utilize the attractive results (the

derivative of the joint torque with respect to the change of joint screw) in [18] with

the given update rule. Mathematical supplements can be found in Appendix A.1.



3.2. Optimization Parameters 23

3.2.2 Motion Parameters

In order to solve the optimization problem that contains the trajectory in the op-

timization variable, the parametrization of a joint trajectory is needed to change

the problem into a tractable one. To do this, B-spline curve is used which has been

widely used in many robotic researches [27, 28]. This section briefly reviews the

concept of B-spline, and how the motion parameters can be expressed by B-spline.

More detailed information can be found in [29].

θ(t) ∈ Rd can be described as a weighted-sum of some points

θ(t) = θ(t;u1:nk , c1:nc) =

nc∑
i=1

Ni,p(t)ci,

u ∈ R, c ∈ Rd, p = nk − nc, t ∈ [0, tf ],

(3.2.8)

where u, c, and N denote the knots, B-spline control points, and B-spline basis

functions, respectively. p is the order of B-spline, nk and nc is the number of knots

and control points, and t denotes the time variable. The B-spline basis function

Ni,p(t) is Cp−2 continuity and can be recursively computed as follows [30]:

Ni,p =
t− ui

ui+p−1 − ui
Ni,p−1(t) +

ui+p − t
ui+p − ui+1

Ni+1,p−1(t),

Ni,1 =

1 if ui ≤ t < ui+1,

0 otherwise.

(3.2.9)

The velocity and acceleration θ̇(t), θ̈(t) of the trajectory can be derived from Equa-

tion 3.2.8,

θ̇(t) =

nc∑
i=1

Ṅi,p(t)ci, θ̈(t) =

nc∑
i=1

N̈i,p(t)ci, (3.2.10)

where the derivative of the B-spline basis function is

Ṅi,p(t) =
p

ui+p − ui
Ni,p−1(t)−

p

ui+p+1 − ui+1
Ni+1,p−1(t). (3.2.11)



3.2. Optimization Parameters 24

N̈i,p(t) can be derived by differentiating the above equation. The differentiation of

θ, θ̇, and θ̈ with respect to c = [c>1 , · · · , c>nc ]
> can be represented by

δθ(t) = Np(t)δc,

δθ̇(t) = Ṅp(t)δc,

δθ̈(t) = N̈p(t)δc.

(3.2.12)

where Np(t) = [N1,p(t), · · · , Nnc,p(t)]. Ṅp(t) and N̈p(t) can be defined in a similar

fashion.

Next, we describe the conversion from the trajectory to the B-spline control

points. Let θ = [θ(t1)
>, · · · , θ(tnt)>]> the collection of the points on the trajectory

θ(t). nt denotes the number of discrete time intervals, t1 = 0, and tnt = tf . The

corresponding B-spline control point c can be computed in a least-square sense

E(c) =
1

2

nt∑
j=1

||
nc∑
i=1

Ni,p(tj)ci − θ(tj)||2, (3.2.13)

of which the solution becomes

c = (A>A)-1A>θ, (3.2.14)

where A can be derived by the B-spline basis functions. Further details can be

found in [30]. Consequently, in this thesis, the motion parameter is expressed as

m = (c1, c2, · · · , cnc)>, (3.2.15)

by the B-spline control points.

3.2.3 Constraints

Constraints limiting design and motion parameters need to be formulated in order

to achieve a given task. In this thesis, we first define the task constraint as the



3.2. Optimization Parameters 25

trajectory of the end-effectors the robot should follow, similar to [17]. Examples

for this kind of constraint can be easily found in many robotic applications, e.g.,

pick-and-place, cutting, grinding etc. In the locomotion task of the legged robot,

also, the trajectories of the feet are usually prescribed based on the step length,

step height, and the period.

The differential kinematics of n-dof serial chain can be described in the form

(T -1δT )∨ =

n∑
i=1

{([Adi]− [Adi+1])δηi + [Adi+1]Aiδθi}+ [Adn+1]δηn+1,

[Adi] , [AdM -1e−[An]θn ···e−[Ai]θi ], [Adn+1] = [AdM -1 ],

(3.2.16)

where Ai, δηi, δθi denote the screw, infinitesimal change of the design parameter,

and the angle of ith joint, respectively. If the current design and motion param-

eter pairs follow the given trajectory, the task constraint for trajectory can be

presented as a linear equation of the form

A

δη
δθ

 = 0, (3.2.17)

where δη = [δη>1 , · · · , δη>n+1]
> and δθ = [δθ1, · · · , δθn]>. More details can be found

in Appendix A.3

Besides the above constraints which describe the trajectories of the end-effectors,

the user can add more constraints if needed. For the quadruped locomotion task,

the foot forces need to be physically valid; the normal forces are positive and large

enough not to slip. Therefore, we added the well-known friction pyramid inequality

constraints for the quadruped locomotion task as follows:

0 ≤ fz, fx ≤ µfz, −fx ≤ µfz, fy ≤ µfz, −fy ≤ µfz, (3.2.18)

where µ is Coulomb friction coefficient, and (fx, fy, fz) denotes the force exerted

to the foot from the ground. z is the normal direction. Furthermore, some of the



3.2. Optimization Parameters 26

most frequently treated constraints are the joint limits: min/max angle, velocity,

acceleration, etc. They can also be easily adopted by simple inequalities of the

motion parameter.

3.2.4 Inertial Changes

To handle the inertial perturbation by changing the design parameter, parametriza-

tion for the inertial term is needed. In this thesis, we set the inertia of the ac-

tuators as a point mass. Also, the inertia of the link is defined to the thin rod

connecting the positions of the adjacent actuators. We call this as a design rule.

The users can define their own design rule for their application. Further details

can be found in Appendix A.2.

Reset δx = [δη>, δm>]> by using Proposition 2.3.1 and Equation 3.2.12 to con-

vert (θ, θ̇, θ̈) into our motion parameter m defined by the B-spline control points.

From Equation 2.2.26,

δτ(t) = Sδx+ Y δΦ, (3.2.19)

since Proposition 2.3.1 assumes only the inertial terms are fixed. Under the defi-

nition of the inertial term, the derivative of Φ becomes

δΦ = Dδη. (3.2.20)

Therefore, we can calculate the derivative of the joint torque as

δτ(t) = (S + [Y D 0nj×nm ])δx, (3.2.21)

where nj and nm denotes the number of joints and motion parameters, respec-

tively.



3.3. Optimization Algorithm Description 27

3.3 Optimization Algorithm Description

Our framework concurrently optimizes both design and motion parameters of the

robot. Let x be the optimization variable, then x should contain both design and

motion parameters so that x = (ρ,m). There are some cases that the additional

variables are needed, e.g., quadruped robot with locomotion task (see Chapter 4.2).

We also define δx = (δη>1 , · · · , δη>nρ , δc
>
1 , · · · , δc>nc)

> to contain the local parametriza-

tion δη of the design parameters.

We first discretize Problem 3.1.2. Let (t1, · · · , tnt) a set of discretized time in-

dices, where t1 = 0 and tnt = T . Then, the objective function can be approximated

to
1

2

∫ tf

0
τ>τdt ≈ 1

2
τ>τ∆t, (3.3.22)

where τ = [τ>1 , · · · , τ>nt ]
>, τi = τ(ti), and ∆t is the time interval.

To solve our design optimization problem, the gradient-descent method is adopted

which iteratively finds the direction to reduce the cost function. Since the opti-

mization variable contains both Lie group (design parameter) and vector (motion

parameter), one should be careful during the gradient update step. The update

rule of the design parameter ρ is already described in Chapter 3.2.1. For the mo-

tion parameter, which is a vector in Euclidean space since parametrized by the

B-spline control points, a general update rule m← m+ δm can be adopted.

To deal with the constraints, the below strategies are applied:

• inequality constraints: the approximated l1 exact barrier function is used

[31]. Barrier function generates high value for the objective function where

the objective variable is near or out of the boundary of the feasible region,

in order not to violate the inequality constraints. The barrier function lift



3.3. Optimization Algorithm Description 28

these constraints to the objective function, which becomes

J(x) + λ

nineq∑
i=1

pε(gi(x)),

pε(t) =

 3
2εe

t/ε − 2ε if t ≤ 0,

t− 1
2εe
−t/ε if t > 0,

(3.3.23)

where λ, ε > 0.

• equality constraints: after calculating the steepest direction for reducing the

value of the objective function without equality constraints, that gradient is

projected to the null space of the linearized equality constraints from the

current solution. This can be mathematically represented as follows:

grad← N(N>N)-1N> × grad, (3.3.24)

where grad and N denote the steepest gradient and the linearized null space

matrix of the equality constraint, respectively.

Algorithm 2 summarizes our simultaneous optimization framework. It gets the

initial design and motion pair x0 as inputs and finds the optimal parameters x∗

while maintaining the feasibility. It consists of three large parts: calculating the

gradients (line 2 and 3), updating the optimization variable (line 4, 5, and 6),

re-projecting the optimization variable to the equality constraint (line 7).

First, the gradients are calculated. From Equation 3.2.21, the derivative of each

joint torque can be computed by δτi = (Si+[YiD 0nj×nm ])δx. Let S be the stack

of the preceding equation (δτ = Sδx). Then, we can calculate the gradient as



3.3. Optimization Algorithm Description 29

Algorithm 2 Simultaneous Design and Motion Optimization

Input: Initial parameter x0, inequality constraints g(x), equality constraints h(x)

Output: x∗

1: while not reach the terminal conditions do

2: grad← CalculateObjectiveGradient(x, g)

3: A← ∂
∂xh(x)

4: N ← null(A)

5: grad← N(N>N)-1N> × grad

6: x← UpdateV ariables(x, grad, stepsize)

7: x← EqualityConstraintProjection(x, h)

8: end while

follows:

grad = ∆tτ>S + λ

nineq∑
i=1

∂pε
∂gi

∂gi
∂x

,

∂pε
∂gi

=

 3
2e
t/ε if t ≤ 0,

1 + 1
2e
−t/ε if t > 0,

.

(3.3.25)

Second, x is updated to the direction of the gradient, which is the projected

vector of what calculated in the previous step. For the projection, we linearize

the equality constraint from the current x and conduct the projection to the null

space of it. This procedure helps x not to recede from the constraint manifold.

Each partial derivative of equality constraint can be found in Appendix A.3.

Third, x is projected to the equality constraint to adjust the numerical error

generated from step 2 which comes from the linearization of the nonlinear function.



3.3. Optimization Algorithm Description 30

This procedure can be generally formulated as follows:

(x∗) = arg min
x

||h(x)||2

subject to g(x) ≤ 0,

(3.3.26)

starting from the resultant x of the first and second step of our framework. In this

thesis, we fix ρ and solve the above problem only with m in order to maintain the

design change. The above optimization problem can be replaced by a similar pro-

cedure; for example, we solve the inverse kinematics of the 2-R planar manipulator

for this step. Solving the inverse kinematics is easier than the problem formulated

as Problem 3.3.26.



4
Numerical Experiments

In this chapter, we verify our simultaneous design and motion optimization frame-

work through numerical experiments carried out on two circumstances: the 2-R

planar manipulator with given end-effector trajectories and the quadruped robot

with locomotion task. The optimization algorithm was implemented using the MAT-

LAB, and the results were certified on MuJoCo physics simulator.

4.1 2-R Planar Manipulator

4.1.1 Experimental Settings

To validate our design optimization framework, we first begin with a simple 2-

R planar manipulator whose desired end-effector trajectories are given. Figure 4.1

shows the robot and the three given trajectories: circle, triangle, and square shapes.

The diameter and the lengths of the sides of triangle and square are 1m each. The

task is set to these trajectories that the end-effector should follow. The overall time

horizon of each task is set to 4 seconds, and we pick the points on the trajectories

31



4.1. 2-R Planar Manipulator 32

by 0.05 second time interval. Since the task trajectories are only positional (there

is no designation for the rotation), the equality constraint projection step (line 7

in Algorithm 2) becomes the simple inverse kinematics problem. The manipulator

is mounted on the x-y plane and two revolute joints whose axes are set to positive

z-axis. Each length of the links, the mass of the motors, and linear density of the

links are set to 1.5m, 1kg, and 0.1kg/m, respectively. We set the zero mass to the

end-effector. The initial base position of the robot is placed at (0, 0).

Figure 4.1: 2-R planar robot manipulator with three specified trajectories.

For the 2-R planar manipulator case, we fix the change of the design param-

eters except for the y-coordinates of the second motor and end-effector thus our

framework can search the lengths of the links that fit well with the given task.

The corresponding joint torques are computed by Algorithm 1 which get inputs

the joint values (θ, θ̇, θ̈) calculated by the motion parameter m. The number of

B-spline control points is 25 for each trajectory, therefore the dimension of overall

optimization parameters is 152.



4.1. 2-R Planar Manipulator 33

4.1.2 Optimization Results

Figure 4.2 shows the change of the objective function during the optimization pro-

cess. The initial value of the effort (the objective function) is 978.649 and it con-

verged to 789.453, about 19.3% reduction. The resultant lengths of the links is in

Table 4.1. The length of the first link decreases from 1.5 to 0.994m the second

link is lengthened from 1.5 to 1.884m. Since the mass of the second actuator is

a dominant term, we infer that our framework tends to shorten the length of the

link 1 to reduce the joint torques, and extends the link 2 in order to reach the

trajectories. The tracking error, which is a root-mean-square value, maintains ex-

tremely small value thus we can conclude our methodology force both the design

and motion or the robot not to violate given tasks.

Figure 4.2: Effort during the optimization process.

Our framework adjusts the motion of the robot under the perturbation of the

design to achieve the given tasks. Figure 4.3 shows the joint values before and

after optimization, and we can check that the motion is changed by our framework.

We also confirm the agreement of these motion trajectories by forward kinematics



4.1. 2-R Planar Manipulator 34

Results Before optimization After optimization

Link 1 length (m) 1.5 0.994

Link 2 length (m) 1.5 1.844

Effort 978.649 789.453

Tracking error (m) 1.2412e-06 2.5739e-06

Table 4.1: Optimization result of the 2-R planar manipulator.

errors (RMS value) and visual check. The corresponding joint torques can be seen

in Figure 4.4, which are suitably declined to reduce the overall effort.

Figure 4.3: Joint angles of the 2-R manipulator of each task.



4.1. 2-R Planar Manipulator 35

Figure 4.4: Joint torques of the 2-R manipulator of each task.

In our framework, the position of the base can also be included in the de-

sign parameter. We also experimented with the above situation, and the process

results in the case that no inverse kinematics solution exists, i.e., the robot can-

not reach some points of the trajectories. The singular configuration of the rigid

body structure has an advantage on the actuating force; the humans stand straight

to support their weight using the bones. Since our methodology seeks the design

to obtain better dynamic performance, the resultant morphology tends to be in a

singular configuration under the output motion parameter. This episode might de-

pend on the task we provided. The case with a fixed base position has not reached



4.2. Quadruped Robot 36

the singular configuration. Since the singularity is the thing to avoid, the method

to deal with this problem should be devised. One way to handle this problem is by

restricting the design not to modify a lot. The designs of commercial robots are

invented by the robot experts and they consider hundreds of factors for a good

design. However, our framework concentrates on the dynamic performances and

may harm other design criteria. We guess the design limitation is the compromise

between the two design perspectives. We leave this for future work.

4.2 Quadruped Robot

Our second design optimization problem considers a quadruped robot with a loco-

motion task. The locomotion is the most important task for the quadruped robots

since it is usually performed for the longest time. For this problem, the external

forces, i.e., foot forces need to be augmented to the optimization variable, since

the design and motion cannot fully determine the actuator forces. If the quadruped

robot has more than three point contacts, the contact forces become redundant

and there are infinite possible combinations to be consistent with the whole move-

ment of the robot system [25]. Therefore, we should add the external forces to the

optimization variable, and it becomes x = (xFR, xFL, xRR, xRL) where the sub-

script denotes the foot index (front right, front left, rear right, rear left). Each

xj , (ρ,m, fe) where j ∈ {FR,FL,RR,RL}, fe = (fe(t1)
>, · · · , fe(tnt)>)> and

each fe(ti) contains three directional components (fx, fy, fz). In addition, we add

the equations of motion for the base of the quadruped to the equality constraints.

From the fact that we utilize Newton-Euler inverse dynamics algorithm which in

fact the equations of motion for the links, to compute the joint torques, the EoM

of the base is needed to compute the gradient direction that is consistent with the



4.2. Quadruped Robot 37

whole EoM of the robot system. Consequently, the augmented design optimization

problem can be formulated as follows:

minimize
x

1

2

∫ T

t=0
(τ>FRτFR + · · ·+ τ>RLτRL)dt

subject to fze,j(ti) ≤ 0,

− fxe,j(ti) + µfze,j(ti) ≤ 0, fxe,j(ti) + µfze,j(ti) ≤ 0,

− fye,j(ti) + µfze,j(ti) ≤ 0, fye,j(ti) + µfze,j(ti) ≤ 0,

1

2
|pdes,j(ti)− pj(ti, ρ,m)|2 = 0,

1

2
|GbV̇b(ti)− [adVb(ti)]

>GbVb(ti)−
4∑
j=1

[Ad
T -1bj

]>Fe,j(ti)|2 = 0,

(i = 1, 2, · · · , nt, j = 1, 2, 3, 4).

(4.2.1)

where nt is the number of time instant, Gb and Vb respectively denote the inertia

and twist of the base, Tbj is the coordinate transformation from the body frame b

to the jth foot frame, and Fe,j = (0, 0, 0, f>e,j)
> denotes the external wrench by the

contact of each foot. The three inequality constraints denote the friction pyramid

constraints, the forth and fifth equality constraints represent the task constraints

and the EoM of the base, respectively.

4.2.1 Experimental Settings

There are several kinds of locomotion patterns and among them, we adopt the

quasi-static gait, which maintains the ZMP of the quadruped within the support

polygon during the locomotion. Figure 4.5 shows how the quasi-static gait is com-

prised. The quadruped robot pushes the legs in the following order: front right

(FR), front left (FL), rear right (RR), rear left (RL). The overall time horizon of

the gait is set to 8 seconds, and the short 0.15-second four-leg support phase is



4.2. Quadruped Robot 38

given to move the ZMP toward the next support polygon. Further details about

the above gait pattern can be found in [32].

(a) Gait graph of the qausi-static gait.

(b) Support polygon during the quasi-static gait.

Figure 4.5: Quasi-static gait of the quadruped

For the numerical experiments, Laikago by Unitree Robotics is selected [33].

Laikago has four 3-dof legs that the axis of the first motor is parallel and the

second and third motors are perpendicular to the front direction, respectively. The

body mass and inertia are 15kg and l(Ic) = (0.1062, 0.3406, 0.3906, 0, 0, 0)> with

respect to the base frame, respectively. The masses of the motors are set to 1kg,

1.5kg, and 0.5kg in order close to the body. The linear density of the link is set



4.2. Quadruped Robot 39

to 0.1kg/m. The initial design parameters can be found in Appendix A.4.

We limit the design to be left-right symmetry and to modify only the lengths

of the upper and lower legs during the optimization for practicality. The initial

motion is generated using the method described in [34]. For the control of the

quadruped robot in the physics simulator, the inverse dynamics control scheme in

[23] is adopted which utilizes the PD signal of the joint trajectories and P signal

of the external foot forces.

Figure 4.6: Laikago by Unitree Robotics (in MuJoCo simulator).

4.2.2 Optimization Results

Table 4.2 shows the optimization result of the quadruped locomotion. We can see

that our framework successfully reduces the effort during the locomotion task. The

lengths of the upper legs increase and the lower legs shorten to reach the desired

foot trajectory. We can observe the joint torques in Figure 4.8 and 4.9, which

verify the successful optimization results. The overall change of the design and

the effort are 11.3% and 28.1%, respectively. This result implies even the small

change in the design can result in much better improvement in the performance,

and we can conclude that the design optimization step is essential in the robot



4.2. Quadruped Robot 40

design process.

Results Before optimization After optimization

Front Upper leg length (m) 0.253 0.269

Front Lower leg length (m) 0.278 0.237

Rear Upper leg length (m) 0.253 0.278

Rear Lower leg length (m) 0.278 0.230

Effort (Matlab) 4477.644 3660.171

Effort (MuJoCo) 5599.212 4025.264

Table 4.2: Optimization result of the quadruped robot.

(a) Before optimization. (b) After optimization.

Figure 4.7: Morphology of the quadruped robot.



4.2. Quadruped Robot 41

F
ig

u
re

4
.8

:
T

h
e

q
u

ad
ru

p
ed

ro
b

ot
op

ti
m

iz
at

io
n

re
su

lt
:

jo
in

t
to

rq
u

es
(M

at
la

b
).



4.2. Quadruped Robot 42

F
ig

u
re

4.
9:

T
h

e
q
u

a
d

ru
p

ed
ro

b
ot

op
ti

m
iz

at
io

n
re

su
lt

:
jo

in
t

to
rq

u
es

(M
u

J
oC

o)
.



4.2. Quadruped Robot 43

Indeed, our framework can handle the arbitrary alteration of the joint config-

uration. We also optimize the quadruped robot under no design limitation except

left-right symmetry. Figure 4.10 shows the resultant morphology, where the effort

reduces from 4477.644 to 2910.441. Note that the axes of the actuators are also

be optimized. We did not verify this resultant shape in MuJoCo since it is hard

to synthesize. Using our framework without any design limitation may result in

a quite weird morphology, but also permits various design changes. Many studies

parametrize the design as simple as possible for the computational simplicity, e.g.,

computing the gradients. Due to the unified method for dealing with the design

parameter, our framework can handle various design possibilities and be imple-

mented to more complex structures.

(a) Before optimization.

(b) After optimization.

Figure 4.10: Optimization result without design limitation.



5
Conclusion

We have proposed a framework simultaneously optimizing both design and mo-

tion parameters for robot systems. Rather than focusing on versatility, our opti-

mization scheme first assumes that it is critical for the robots to be optimized for

specific tasks. Therefore, our concurrent design and motion optimization method

can be formulated as an expanded version of the classical optimal control problem,

i.e., the design parameters are added to the optimization variables. In particular,

an effort has been considered as the performance criteria to guarantee the robot

better dynamically performance. One of the most critical defects of the previous

researches is that they had not been able to compute the analytic gradient of the

equations of motion with respect to the design parameters, therefore their meth-

ods ended up laggard and inaccurate optimization result. To overcome the above

issue, we have utilized recently discovered recursive differential dynamics that can

compute the analytic gradient of the joint screw. Therefore, our framework can be

implemented even to the complex robot structures. The constraints have been set

to accomplish the specific tasks, so the optimized robot design has achieved the

44



45

given movement with the optimized motion. We have validated our framework by

two numerical experiments: a 2-R planar manipulator whose end-effector trajec-

tories are given, and a quadruped robot operating locomotion movements. Both

the design and motion parameters of each robot have been adjusted to reduce the

dynamic performance.

This thesis can be a cornerstone of the task-specific design optimization for the

complex robot structures. However, there is still a long way to go for the superior

optimization scheme. While focusing on the task-specific performance criteria, ver-

satility may deteriorate, which is still critical to the robots. One way to mediate

these two contradict performances is to limit the change of the design, thus not

to spoil much the versatility measure such as workspace volume. Another draw-

back is that we supposed the links as the thin rods. This assumption looks fairly

reasonable and practical, but combining with shape morphing theories of the links

can carry better designs. We leave the above issues for future works.

In the robot kinematic design, determining the topology of the kinematic chain

precedes adjusting the geometric dimensions, and two design issues are usually

considered separately. Recently, attempts to solve the two problems in combina-

tion have shown great results, but they remain at a level where the kinematic per-

formances are considered, moreover, suffer from the enormous design space. The

mentioned design decision problem can be formulated as mixed-integer program-

ming. We think our efficient optimization framework can aid to drag the combined

problem down to the real application level.



A
Appendix

A.1 Local parametrization of the design

Assuming respectively the axis and the position of the joint as ẑ ∈ S2 and p ∈ R3,

the corresponding T ∈ SE(3) can be represented as

T =

R p

0 1

 , (A.1.1)

where the third column of T is z. The screw of the given joint is

A =

 ẑ

−[ẑ]p

 . (A.1.2)

By the update rule 3.2.7 with η = (ω, v)>, the perturbed axis and position of

the joint becomes (e[ω]ẑ, e[ω]p+G(ω)v). Therefore, the perturbed joint screw is as

follows:

46



A.1. Local parametrization of the design 47

Â =

 e[ω]ẑ

−[e[ω]ẑ](e[ω]p+G(ω)v)

 =

 e[ω]ẑ

−e[ω][ẑ]p+ [G(ω)v]e[ω]ẑ


=

 e[ω] 0

[G(ω)v]e[ω] e[ω]

 ẑ

−[ẑ]p


= [Ade[η] ]A.

(A.1.3)

Since the resultant equation is the same as Equation 2.3.28, we can use the recur-

sive differential dynamics, which starts from Equation 2.3.28, by our definition of

the design perturbation.



A.2. Design rule for the link 48

A.2 Design rule for the link

The inertial parameter of the rigid multibody with n bodies can be represented

by Φb = [φ>b1 , φ
>
b2
, · · · , φ>bn ]> ∈ R10n, where

φbi = [mi, hbi , l(Ibi)]
> ∈ R10 (A.2.4)

is the inertial parameters of the ith rigid body with mass mi, mass center position

pbi ∈ R3, hbi = mipbi , and linearized rotational inertia l(Ibi) ∈ R6. In this thesis, we

set the inertia of each rigid body as the following rule: the ith rigid body contains

the (i+ 1)th motor with a point mass and ith link whose inertia is represented by

a thin rod between two motors. Assuming Mi, pi, and ρL respectively denote the

mass of the ith motor, the position of the ith motor, and the linear density of the

links, the mass of the ith link becomes M l
i = ρL|pi+1 − pi|. The following results

represent the ith rigid body inertia:

mi = Mi+1 +M l
i ,

pc =
1

mi
(Mi+1pi+1 +

1

2
M l
i (pi + pi+1)),

hbi = mipc,

Ixx = ρL(p>i+1Qxxpi +
1

3
(pi+1 − pi)>Qxx(pi+1 − pi))|pi+1 − pi|,

(A.2.5)

where Qxx =


0 0 0

0 1 0

0 0 1

 and pc denotes the center of mass position from the frame

{bi}. Other I can be computed in the same way with the above equation but the



A.2. Design rule for the link 49

different Q. The corresponding matrices are as follows:

Qyy =


1 0 0

0 0 0

0 0 1

 , Qzz =


1 0 0

0 1 0

0 0 0

 ,

Qxy =


0 1

2 0

1
2 0 0

0 0 0

 , Qyz =


0 0 0

0 0 1
2

0 1
2 0

Qzx =


0 0 1

2

0 0 0

1
2 0 0

 .
(A.2.6)

The derivatives of φbi are as follows:

δmi =
ρL√

(pi+1 − pi)>(pi+1 − pi)

pi − pi+1

pi+1 − pi

>  δpi

δpi+1

 ,
δpc = [

1
2M

i
l

Mi+1 +M i
l

I3×3
Mi+1

1
2M

i
l

Mi+1 +M i
l

I3×3]

 δpi

δpi+1


+ pi

Mi+1ρL

2(Mi+1 +M i
l )

2
√

(pi+1−pi)
>((pi+1 − pi)

pi − pi+1

pi+1 − pi

>  δpi

δpi+1


+ pi+1

−Mi+1ρL

2(Mi+1 +M i
l )

2
√

(pi+1−pi)
>((pi+1 − pi)

pi − pi+1

pi+1 − pi

>  δpi

δpi+1

 ,
δhbi = δmipc +miδpc.

(A.2.7)

Each derivative of I with respect to p can be computed by

∂I

∂pi
=ρL(|pi+1 − pi|(Qpi+1 −

2

3
Q(pi+1 − pi) + p>i+1Qpi+

1

3
(pi+1 − pi)>Q(pi+1 − pi)

1√
(pi+1 − pi)>(pi+1 − pi)

(pi − pi+1)),
(A.2.8)



A.2. Design rule for the link 50

∂I

∂pi+1
=ρL(|pi+1 − pi|(Qpi +

2

3
Q(pi+1 − pi) + p>i+1Qpi+

1

3
(pi+1 − pi)>Q(pi+1 − pi)

1√
(pi+1 − pi)>(pi+1 − pi)

(pi − pi+1))+

2Mi+1Qpi+1.

(A.2.9)

From Equation 3.2.7, the derivative of p becomes

∂pi
∂ηi

= [−[pi] I3×3] , (A.2.10)

thus the matrix D in Equation 3.2.19 can be derived by the chain rule.



A.3. Derivative of the constraints 51

A.3 Derivative of the constraints

A.3.1 End-effector trajectory

Forward kinematics of an n-dof serial chain can be represented as follows:

T =

n∏
i=1

e[Ai]θiM, (A.3.11)

where each Ai denotes the screw of joint i expressed in the base frame and M is

the SE(3) of the end-effector in its zero configuration. Each e[Ai]θi can be locally

parameterized by e[δηi]e[Ai](θi+δθi)e−[δηi] and its first-order approximation becomes

(I + [δηi])e
[Ai]θi(I + [Ai]δθi)(I − [δηi]). (A.3.12)

Therefore,

T -1δT = (e[A2]θ2 · · ·M)-1(e−[A1]θ1 [δη1]e
[A1]θ1 − [δη1] + [A1]δθ1)(e

[A2]θ2 · · ·M)

+ (e[A3]θ3 · · ·M)-1(e−[A2]θ2 [δη2]e
[A2]θ2 − [δη2] + [A2]δθ2)(e

[A3]θ3 · · ·M)

+ · · ·+M -1(e−[An]θn [δηn]e[An]θn − [δηn] + [An]δθn)M

+M -1e[δηn+1]M,

(A.3.13)

where its vector form can be derived as follows:

(T -1δT )∨ = Ad1(δη1)−Ad2(δη1) + Ad2(A1)δθ1 + · · ·

+ Adn(δηn)−Adn+1(δηn) + Adn+1(An)δθn

+ Adn+1(δηn+1).

(A.3.14)



A.3. Derivative of the constraints 52

Let Adi as AdM -1e−[An]θn ···e−[Ai]θi for abbreviation. Thus, (T -1δT )∨ = A

δη
δθ

, where

A ∈ R6×(7n+6) whose has elements as follows:

[A](:,6(i−1)+1:6i) = [Adi]− [Adi+1],

[A](:,6n+6+i) = [Adi+1]Ai,

i = 1, · · · , n,

[A](:,6n+1:6n+6) = [Adn+1].

(A.3.15)

A.3.2 Equations of motion of the base for quadruped robots

The equations of motion of the base can be represented as follows:

GbV̇b − [adVb ]
>GbVb = −

4∑
j=1

([Ad
T -1b1

]>F1)j , (A.3.16)

where Tb1 denotes the SE(3) from the base to the first body frame, and F1 is the

wrench acting on the first body frame with respect to this frame. The subscript j

at the far right denotes the jth leg. Since we fix the inertia and movement of the

base, the derivative of the left-hand side becomes zero, and the right-hand side is

−
4∑
j=1

([Ad
T -1b1

]>R1δx− [Ad
T -1b1

]>[ad∗F1
]([Ad

T -1b1
]− I)δη1 − [Ad

T -1b1
]>[ad∗F1

]A1δθ1)j .

(A.3.17)



A.4. Laikago Specification 53

A.4 Laikago Specification

This chapter shows the initial design parameters of Laikago. Each frame is de-

scribed with respect to the base frame of the quadruped.



A.4. Laikago Specification 54

D
es

ig
n

fr
am

e
T
1

T
2

T
3

T
ee

F
ro

n
t

ri
g
h
t

      0
0
−
1

0
.1
9
5

0
1

0
−
0
.0
8
2

1
0

0
0
.0
4
7

0
0

0
1

      

      0
1

0
0
.1
9
5

0
0

1
−
0
.1
3
6

1
0

0
0
.0
4
7

0
0

0
1

      

      0
1

0
0
.0
5
3

0
0

1
−
0
.1
1
8

1
0

0
−
0
.1
6
1

0
0

0
1

      

      1
0

0
0
.0
1
3

0
1

0
−
0
.1
1
8

0
0

1
−
0
.4
3
6

0
0

0
1

      

F
ro

n
t

le
ft

      0
0

1
0
.1
9
5

0
1

0
0
.0
8
2

1
0

0
0
.0
4
7

0
0

0
1

      

      0
1

0
0
.1
9
5

0
0

1
0
.1
3
6

1
0

0
0
.0
4
7

0
0

0
1

      

      0
1

0
0
.0
5
3

0
0

1
0
.1
1
8

1
0

0
−
0
.1
6
1

0
0

0
1

      

      1
0

0
0
.0
1
3

0
1

0
0
.1
1
8

0
0

1
−
0
.4
3
6

0
0

0
1

      

R
ea

r
ri

gh
t

      0
0
−
1
−
0
.2
3
8

0
1

0
−
0
.0
8
2

1
0

0
0
.0
4
7

0
0

0
1

      

      0
1

0
−
0
.2
3
8

0
0

1
−
0
.1
3
6

1
0

0
0
.0
4
7

0
0

0
1

      

      0
1

0
−
0
.3
8
0

0
0

1
−
0
.1
1
8

1
0

0
−
0
.1
6
1

0
0

0
1

      

      1
0

0
−
0
.4
2
0

0
1

0
−
0
.1
1
8

0
0

1
−
0
.4
3
6

0
0

0
1

      

R
ea

r
le

ft

      0
0
−
1
−
0
.2
3
8

0
1

0
0
.0
8
2

1
0

0
0
.0
4
7

0
0

0
1

      

      0
1

0
−
0
.2
3
8

0
0

1
0
.1
3
6

1
0

0
0
.0
4
7

0
0

0
1

      

      0
1

0
−
0
.3
8
0

0
0

1
0
.1
1
8

1
0

0
−
0
.1
6
1

0
0

0
1

      

      1
0

0
−
0
.4
2
0

0
1

0
0
.1
1
8

0
0

1
−
0
.4
3
6

0
0

0
1

      

T
a
b

le
A

.1
:

In
it

ia
l

d
es

ig
n

p
ar

am
et

er
s

of
L

ai
ka

go
.



Bibliography

[1] Bruno Siciliano and Oussama Khatib. Springer handbook of robotics. Springer,

2016.

[2] Frank Chongwoo Park. The optimal kinematic design of mechanisms. 1991.

[3] Yunjiang Lou, Guanfeng Liu, Ni Chen, and Zexiang Li. Optimal design

of parallel manipulators for maximum effective regular workspace. In 2005

IEEE/RSJ International Conference on Intelligent Robots and Systems, pages

795–800. IEEE, 2005.

[4] Wei Li and Jorge Angeles. The design of a 3-cps parallel robot for maximum

dexterity. Mechanism and Machine Theory, 122:279–291, 2018.

[5] Sehoon Ha, Stelian Coros, Alexander Alspach, Joohyung Kim, and Katsu Ya-

mane. Task-based limb optimization for legged robots. In 2016 IEEE/RSJ In-

ternational Conference on Intelligent Robots and Systems (IROS), pages 2062–

2068. IEEE, 2016.

[6] Andrew Spielberg, Brandon Araki, Cynthia Sung, Russ Tedrake, and Daniela

Rus. Functional co-optimization of articulated robots. In 2017 IEEE Inter-

national Conference on Robotics and Automation (ICRA), pages 5035–5042.

IEEE, 2017.

[7] Gabriel Bravo-Palacios, Andrea Del Prete, and Patrick M Wensing. One robot

for many tasks: Versatile co-design through stochastic programming. IEEE

Robotics and Automation Letters, 5(2):1680–1687, 2020.

55



BIBLIOGRAPHY 56

[8] EJ Van Henten, DA Van’t Slot, CWJ Hol, and LG Van Willigenburg. Op-

timal manipulator design for a cucumber harvesting robot. Computers and

electronics in agriculture, 65(2):247–257, 2009.

[9] Yuan Yun and Yangmin Li. Optimal design of a 3-pupu parallel robot with

compliant hinges for micromanipulation in a cubic workspace. Robotics and

Computer-Integrated Manufacturing, 27(6):977–985, 2011.

[10] Sehoon Ha, Stelian Coros, Alexander Alspach, James M Bern, Joohyung Kim,

and Katsu Yamane. Computational design of robotic devices from high-level

motion specifications. IEEE Transactions on Robotics, 34(5):1240–1251, 2018.

[11] Ruta Desai, Ye Yuan, and Stelian Coros. Computational abstractions for in-

teractive design of robotic devices. In 2017 IEEE International Conference

on Robotics and Automation (ICRA), pages 1196–1203. IEEE, 2017.

[12] Jian Li, Sheldon Andrews, Krisztian G Birkas, and Paul G Kry. Task-based

design of cable-driven articulated mechanisms. In Proceedings of the 1st An-

nual ACM Symposium on Computational Fabrication, pages 1–12, 2017.

[13] Volkert Van Der Wijk, Sébastien Krut, François Pierrot, and Just L Herder.

Design and experimental evaluation of a dynamically balanced redundant pla-

nar 4-rrr parallel manipulator. The International Journal of Robotics Re-

search, 32(6):744–759, 2013.

[14] Boston Dynamics. Spot. https://www.bostondynamics.com/spot, 2020.

[15] R McNeill Alexander. Optima for animals. Princeton University Press, 1996.

https://www.bostondynamics.com/spot


BIBLIOGRAPHY 57

[16] Ewald R Weibel, Ewald R Webel, C Richard Taylor, and Liana Bolis. Princi-

ples of animal design: the optimization and symmorphosis debate. Cambridge

University Press, 1998.

[17] Sehoon Ha, Stelian Coros, Alexander Alspach, Joohyung Kim, and Katsu Ya-

mane. Computational co-optimization of design parameters and motion tra-

jectories for robotic systems. The International Journal of Robotics Research,

37(13-14):1521–1536, 2018.

[18] Jaewoon Kwon, Keunjun Choi, and Frank C Park. Kinodynamic model identi-

fication: A unified geometric approach. IEEE Transactions on Robotics, 2020,

under review.

[19] Kevin M Lynch and Frank C Park. Modern Robotics. Cambridge University

Press, 2017.

[20] Richard M Murray, Zexiang Li, S Shankar Sastry, and S Shankara Sastry. A

mathematical introduction to robotic manipulation. CRC press, 1994.

[21] Frank C Park, Beobkyoon Kim, Cheongjae Jang, and Jisoo Hong. Geometric

algorithms for robot dynamics: A tutorial review. Applied Mechanics Reviews,

70(1), 2018.

[22] Roy Featherstone. Rigid body dynamics algorithms. Springer, 2014.

[23] Michael Nalin Mistry. The representation, learning, and control of dexterous

motor skills in humans and humanoid robots. University of Southern Califor-

nia, 2009.



BIBLIOGRAPHY 58

[24] Cheng Li, Yuanqing Wu, Harald Löwe, and Zexiang Li. Poe-based robot kine-

matic calibration using axis configuration space and the adjoint error model.

IEEE Transactions on Robotics, 32(5):1264–1279, 2016.

[25] Zhijun Li, Shuzhi Sam Ge, and Sibang Liu. Contact-force distribution opti-

mization and control for quadruped robots using both gradient and adaptive

neural networks. IEEE transactions on neural networks and learning systems,

25(8):1460–1473, 2013.

[26] Willow Garage. Universal robot description format (urdf). Http://Www. ros.

org/urdf/, 2009, 2009.

[27] James E Bobrow, B Martin, G Sohl, EC Wang, Frank C Park, and Junggon

Kim. Optimal robot motions for physical criteria. Journal of Robotic systems,

18(12):785–795, 2001.

[28] C-YE Wang, Wojciech K Timoszyk, and James E Bobrow. Payload maximiza-

tion for open chained manipulators: finding weightlifting motions for a puma

762 robot. IEEE Transactions on Robotics and Automation, 17(2):218–224,

2001.

[29] Carl De Boor, Carl De Boor, Etats-Unis Mathématicien, Carl De Boor, and

Carl De Boor. A practical guide to splines, volume 27. springer-verlag New

York, 1978.

[30] D Eberly. Least-squares fitting of data with b-spline curves. url: https://www.

geometrictools.com/Documentation, 2014.



BIBLIOGRAPHY 59

[31] Shu-jun Lian. Smoothing approximation to l1 exact penalty function for in-

equality constrained optimization. Applied Mathematics and Computation,

219(6):3113–3121, 2012.

[32] Mrinal Kalakrishnan, Jonas Buchli, Peter Pastor, Michael Mistry, and Stefan

Schaal. Learning, planning, and control for quadruped locomotion over chal-

lenging terrain. The International Journal of Robotics Research, 30(2):236–

258, 2011.

[33] Unitree Robotics. Laikago pro. http://www.unitree.cc/e/action/

ShowInfo.php?classid=6&id=1, 2018.

[34] Vittorio Megaro, Bernhard Thomaszewski, Maurizio Nitti, Otmar Hilliges,

Markus Gross, and Stelian Coros. Interactive design of 3d-printable robotic

creatures. ACM Transactions on Graphics (TOG), 34(6):1–9, 2015.

http://www.unitree.cc/e/action/ShowInfo.php?classid=6&id=1
http://www.unitree.cc/e/action/ShowInfo.php?classid=6&id=1


국문초록

로봇 디자인에는 액츄에이터, 링크, 관절 등과 같은 구성요소의 수많은 조합 가능성이

존재한다. 따라서, 좋은 로봇 디자인을 찾는 과정은 전문가에게도 어려운 문제이다.

위 문제점을 극복하기 위해 로봇의 동작을 고려하여 형태를 최적화하는 방법론을 제

시한다. 제시된 방법론을 통해 특정 작업을 위한 로봇 형태 및 동작의 동시 최적화가

가능하다. 위 방법론은 형태 및 동작 변수가 결합된 공간 상에서 목적함수를 가장 많이

감소시키는 구속조건 매니폴드 상에서의 방향을 찾아 최적화를 진행한다. 이전 연구들

의 결점을 극복하기 위해 우리는 최근 개발된 반복 미분 동역학(recursive differential

dynamics) 알고리즘을 사용한다. 이 알고리즘을 통해 관절 토크 변화와 형태 변화 사

이의 해석적 관계를 계산할 수 있다. 따라서, 제시된 방법론을 사용하면 더욱 빠르고

정확한 최적화 결과를 도출할 수 있다. 총 두 가지 수치적 실험을 통해 위 최적화 방

법론을 검증하였다: 엔드이펙터가 주어진 궤적을 추종하는 2축 평면 매니퓰레이터, 4

족로봇의 보행작업.

주요어: 로봇 디자인 최적화, 강체 동역학, 최적 제어, 보행로봇

학번: 2018-20883

60


	1  Introduction 
	1.1    Design Optimization of Robotic Devices  
	1.2    Limitations of Previous Works 
	1.3    Main Contributions of This Thesis 

	2  Preliminaries 
	2.1    Lie Group Theory 
	2.1.1 SO(3) and SE(3) 
	2.1.2 Twists and Wrenches 
	2.1.3 Adjoint Mappings 

	2.2    Rigid Body Dynamics 
	2.2.1 Dynamics of a Single Rigid Body 
	2.2.2 Dynamics of Open Chains 
	2.2.3 Dynamics of Floating Bodies 

	2.3    Recursive Differential Dynamics 

	3  Simultaneous Design and Motion Optimization 
	3.1    Problem Definition 
	3.2    Optimization Parameters 
	3.2.1 Design Parameters 
	3.2.2 Motion Parameters 
	3.2.3 Constraints 
	3.2.4 Inertial Changes 

	3.3    Optimization Algorithm Description 

	4  Numerical
	4.1    2-R Planar Manipulator 
	4.1.1Experimental Settings 
	4.1.2Optimization Results 

	4.2    Quadruped Robot 
	4.2.1Experimental Settings 
	4.2.2Optimization Results 


	5  Conclusion 
	A  Appendix 
	A.1   Local parametrization of the design 
	A.2   Design rule for the link 
	A.3   Derivative of the constraints 
	A.3.1   End-effector trajectory 
	A.3.2   Equations of motion of the base for quadruped robots 

	A.4   Laikago Specification 

	Bibliography 
	국문초록 


<startpage>10
1  Introduction  1
 1.1    Design Optimization of Robotic Devices   1
 1.2    Limitations of Previous Works  4
 1.3    Main Contributions of This Thesis  5
2  Preliminaries  7
 2.1    Lie Group Theory  7
  2.1.1 SO(3) and SE(3)  8
  2.1.2 Twists and Wrenches  10
  2.1.3 Adjoint Mappings  10
 2.2    Rigid Body Dynamics  11
  2.2.1 Dynamics of a Single Rigid Body  11
  2.2.2 Dynamics of Open Chains  12
  2.2.3 Dynamics of Floating Bodies  14
 2.3    Recursive Differential Dynamics  15
3  Simultaneous Design and Motion Optimization  18
 3.1    Problem Definition  18
 3.2    Optimization Parameters  20
  3.2.1 Design Parameters  20
  3.2.2 Motion Parameters  23
  3.2.3 Constraints  24
  3.2.4 Inertial Changes  26
 3.3    Optimization Algorithm Description  27
4  Numerical Experiments31
 4.1    2-R Planar Manipulator  31
  4.1.1Experimental Settings  31
  4.1.2Optimization Results  33
 4.2    Quadruped Robot  36
  4.2.1Experimental Settings  37
  4.2.2Optimization Results  39
5  Conclusion  44
A  Appendix  46
 A.1   Local parametrization of the design  46
 A.2   Design rule for the link  48
 A.3   Derivative of the constraints  51
  A.3.1   End-effector trajectory  51
  A.3.2   Equations of motion of the base for quadruped robots  52
 A.4   Laikago Specification  53
Bibliography  55
국문초록  60
</body>

