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Abstract

Optimal Trajectory Generation and Robust Control

of a Launch Vehicle during Ascent Phase

Seunghyun Kim
Department of Mechanical and Aerospace Engineering
The Graduate School

Seoul National University

This research focused on trajectory generation and control of a flexible launch vehicle during
ascent flight. An important issue of a launch vehicle design is generating optimal trajectory
during its atmospheric ascent flight while satisfying constraints such as aerodynamic load.
These constraints become more significant due to wind disturbance, especially in the max-
imum dynamic pressure region. On the other hand, modern launch vehicles are becoming
long and slender for the reduction in structure mass to increase payload. As a result, they
possess highly flexible bending modes in addition to aerodynamically unstable rigid body
characteristics.

This dissertation proposes a rapid and reliable optimization approach for trajectory
generation via sequential virtual motion camouflage (VMC) and non-conservative robust
control for an unstable and flexible launch vehicle.

First, an optimal trajectory is generated in a rapid and reliable manner through the in-
troduction of the virtual motion camouflage. VMC uses an observed biological phenomenon
called motion camouflage to construct a subspace in which the solution trajectory is gen-
erated. By the virtue of this subspace search, the overall dimension of the optimization
problem is reduced, which decreases the computational time significantly compared to a
traditional direct input programming.

Second, an interactive optimization algorithm is proposed to find a feasible solution

Vl I = -i!



easier. For this, the constraint correction step is added after VMC optimization. Since
VMC is a subspace problem, a feasible solution may not exist when subspace is not properly
constructed. In order to address this concern, a quadratic programming (QP) problem is
formulated to find a direction along which the parameters defining the subspace can be
improved. Via a computationally fast QP, specific parameters (such as prey and reference
point) used in VMC can be refined quickly and sequentially. As a result, the proposed
interactive optimization algorithm is less sensitive to the initial guess of the optimization
parameters.

Third, a non-conservative 2-DOF H,, controller for an unstable and flexible launch
vehicle is proposed. The objectives of the control system are to provide sufficient margins
for the launch vehicle dynamics and to enhance the speed of the closed-loop response.
For this, a robust control approach is used. The key of the control design is to overcome
conservativeness of the robust control. The baseline controllers using the optimal control
such as LQG and LQI are designed prior to a robust controller. These optimal controllers
are used to find a desirable shape of the sensitivity transfer function in order to reduce
conservativeness of the robust control. After implementation and analysis of the baseline
controllers, an improved sensitivity weighting function is defined as a non-conventional
form with different slopes in the low frequency and around crossover frequency, which
results in performance enhancement without loss of robustness. A two-degree-of-freedom
H, controller is designed which uses feedback and feedforward control together to improve
tracking performance with the proposed sensitivity weighting function as a target closed-
loop shape. The resulting H,, controller stabilizes the unstable rigid body dynamics with
sufficient margins in the low frequency, and also uses gain stabilization in addition to phase
stabilization to handle the lightly damped bending modes in the high-frequency region.

Keywords: Launch vehicle, Optimal trajectory generation, Virtual motion camouflage
(VMC), Robust control, H,, control

Student Number: 2013-30190
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Introduction

1.1 Background and motivations

An important issue of a launch vehicle flight is generating optimal trajectory during its
atmospheric ascent flight while satisfying constraints such as bending moment or altitude.
These constraints are significantly influenced by wind disturbance, especially in the max-
imum dynamic pressure region. Generally, atmospheric ascent guidance is conducted as
open-loop due to the difficulty of finding an analytic solution or real-time optimal guidance
in the presence of aerodynamic forces and wind. Also, during the flight, attitude control
system has to maintain the launch vehicle on the optimized trajectory by using thrust
vector control (TVC).

As illustrated in Fig. [I.1], ascent flight of a launch vehicle starts from lift-off and lasts
until the first stage separation. During this phase, the velocity of a launch vehicle increases
to Mach 5.5 at an altitude of 57 km and time of 125 sec. An ascent flight trajectory can be
separated into the vertical flight, and transition turn. After lift-off, the launch vehicle flies

vertically and turns slowly toward the designated position by using TVC.
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Figure 1.1: LV mission profile [1]

In this ascent phase, aerodynamic load management is very important because the high
dynamics pressure region can cause a structural failure from the excessive bending moment.
Therefore, the objective of the optimal trajectory generation should include minimization of
the aerodynamic load while satisfying the designated position and velocity at the final time.
Furthermore, fast computation time is desirable because a rapid trajectory optimization
can allow trajectories to be generated minutes before launch, or allow reoptimization of the
trajectory in flight.

On the other hand, modern launch vehicles are becoming long and slender for the
reduction in structure mass to increase payload as shown in Fig. [[.2] As a result, they
possess highly flexible bending modes in addition to aerodynamically unstable rigid body
characteristics. In order to stabilize the unstable rigid dynamics, a feedback controller with
a sufficient gain should be designed, but such control system has the potential to excite

lightly damped poles of the flexible bending modes [2]. Furthermore, parameters defining
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Figure 1.2: Long and slender launch vehicle configurations

the launch vehicle system such as unstable pole and natural frequencies of bending modes
are highly uncertain. Therefore, one of the main challenges of a control system for the
launch vehicle is to stabilize this unstable interaction in the presence of large uncertainty

and disturbance. At the same time, sufficient response speed is also demanded.

1.2 Literature survey

This section offers the survey results of scholarly articles, books, and other sources relevant
to this research. Since this dissertation consists of the two main topics, the related literatures
are categorized into those : (i) Optimal trajectory generation for a launch vehicle, (i7)

Controller design for a flexible launch vehicle.

1.2.1 Optimal trajectory generation for a launch vehicle

The dynamics of a launch vehicle considered in this work is nonlinear, and it has many

constraints. Therefore, nonlinear constrained optimal approaches have to be conducted to
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design the trajectory of a launch vehicle. Many numerical methods studied to solve an opti-
mal trajectory problem of a launch vehicle [3, 4] 5] 6] can be divided into two categories as
direct nonlinear programming (NLP) and indirect approaches with Pontryagin’s minimum
principle (PMP) [7].

In the indirect methods, a solution is derived from the calculus of variations, and a
two-point-boundary-value problem (TPBVP) has to be solved for trajectory optimization.
In [3], a multiple shooting method is used to enhance the convergence performance of
the simple shooting method. In [§], an indirect finite element method is adopted to solve
TPBVP of a launch vehicle. These methods usually provide quick convergence. However,
the essential shortcoming is that the convergence property is extremely sensitive to the
initial guess of costate.

On the other hand, nonlinear programming has been studied for direct optimization
method [9] 10, 11 12} 13]. In [I1),12], a Legendre pseudospectral method for a launch vehicle
trajectory optimization is presented. There, the time domain of the trajectory is discretized
at a special set of Legendre-Gauss-Lobato points and the pseudospectral differential matrix
is used to find a derivative of discretized states. Due to this differential matrix, the number of
discretized nodes can be reduced successfully, which results in relatively rapid optimization.
However, the dimension of the problem is sometimes too large for rapid applications.

Recently, the idea of a motion camouflage (MC) strategy[14] is applied to the nonlinear
constrained trajectory optimization problem, which is called virtual motion camouflage
(VMC)[I5, 16, 17]. Therein, the VMC method is used to reformulate the typical nonlinear
constrained trajectory optimization problem by using path control parameter (PCP). Then,
the optimization problem can be solved by optimizing PCPs. Due to this reformulation,
the original dimension of the problem can be reduced, which makes the convergence faster

and easier.



1.2.2 Controller design for a flexible launch vehicle

Much research has been conducted to design controllers for flexible launch vehicles [18] [19,
20, 21]. Within these work, adaptive control approaches such as L1 adaptive control [22] 23]
24] and adaptive notch filter [25, 26] have been employed in order to handle uncertainties
in the flexible bending modes. While the adaptive control can handle the uncertainty well,
relative stability such as gain margin and phase margin, and desired level of robustness
is not guaranteed. Instead, frequency-domain synthesis techniques are more suitable to
handle uncertain flexible bending modes in the high-frequency region by specifying roll-off
characteristic [27]. For this reason, robust control synthesis such as H,, control has been
applied to the launch vehicle control design [28§].

Since conventional H,, synthesis imposes some conservatism, other robust control tech-
niques such as p-synthesis 29 B0] and multi-objective control [31] have been developed.
In [32] B3], the Youla-parameterization is used to define all stabilizing controllers, and the
linear matrix inequalities (LMI) is used to specify different design objectives. In [34], the
cross-standard form (CSF) technique is used in inverse optimal control after designing some
baseline controller to satisfy performance requirement, and then the robustness requirement
is added to this CSF system in the frequency domain.

On the other hand, a two-degree-of-freedom controller which uses both feedforward and
feedback control can be used practically to achieve the performance such as response speed
and robustness together[35]. In [36] 37], an original unstable plant is preliminarily stabilized
before employing the standard robust control design process. This two-loop structure results

in the two-degree-of-freedom control structure.



1.3 Research objectives and contributions

This dissertation deals with two main topics: (i) trajectory optimization (ii) robust control
for a flexible launch vehicle. First, we propose a rapid and reliable optimization method for
trajectory generation via sequential virtual motion camouflage. Second, a non-conservative
robust controller is proposed for an unstable and flexible launch vehicle, which is achieved
by designing an improved weighting function. The main contributions can be summarized

as below.

e A rapid and reliable optimization method for trajectory generation of a launch ve-
hicle is proposed through the introduction of the virtual motion camouflage (VMC).
VMC uses the concept of prey motion and reference point motivated by a biological
phenomenon called motion camouflage to construct a subspace in which the solution
trajectory is generated. By the virtue of this subspace search, the overall dimen-
sion of the optimization problem is reduced, which decreases the computational time
significantly compared to traditional direct input programming. Also, in the VMC
approach, certain optimal parameters are calculated rather than optimized to satisfy
equality boundary conditions. The fact that no equality constraints are involved in the
optimization also makes the convergence easier. In contrast with the indirect method,
the parameters to be optimized in the VMC approaches are physically meaningful

and defining a reasonable initial guess is not difficult.

e An interactive optimization algorithm is proposed to find a feasible solution more
accessible by adding the constraint correction step. Since the VMC is a subspace
problem, a feasible solution may not exist when subspace is not properly constructed.
In order to address this concern, a quadratic programming problem is formulated to
find a direction along which the parameters defining the subspace can be improved.
Via a computationally fast QP, certain parameters (prey and reference point) used

in VMC can be refined quickly and sequentially. As a result, the proposed interactive



optimization algorithm is insensitive to initial guess of the optimization parameters.

A non-conservative 2-DOF H, controller for an unstable and flexible launch vehicle
is proposed. The objectives of a control system are to provide sufficient margins for
the launch vehicle dynamics and to enhance the speed of the closed-loop response.
For this, a robust control approach is used. The key of the control design is targeted
to overcome conservativeness of the robust control. It is found that the two-degree-
of-freedom control structure which uses feedforward and feedback control together is
suitable and effective for this kind of system. The baseline controllers are designed
using the optimal control such as set-point LQG and LQI prior to robust control.
In order to see which shape of the sensitivity function is desirable, the different
performance indices are defined when designing the LQI. After implementation and
analysis of the baseline controllers, a non-conventional sensitivity weighting function is
devised that has different slopes in the low frequency and around crossover frequency,
which results in improvement of the performance without loss of robustness. This
result cannot be accomplished using typical weighting functions such as low-pass

filter types.

1.4 Thesis organization

The study logic of this dissertation is shown in Fig. [[.3] Chapter [2] states the six-degree-of
freedom equations of motion of a launch vehicle. In chapter 3] optimal trajectory generation
via virtual motion camouflage (VMC) is described. First, the virtual motion camouflage
(VMC) method is introduced in . VMC is applied to a trajectory generation problem
for a launch vehicle in [3.2] Here, a sequential VMC method to adjust nonlinear constraints
is also described. Chapter 4] proposes a robust control for the unstable and flexible launch
vehicle. First, the model of the launch vehicle and its properties are discussed in [4.1]
In [4.2] baseline controllers are designed prior to robust controller. Here, set-point LQG

and LQG with integral control are designed, which have a two-degree-of-freedom control
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Figure 1.3: Study logic

structure. Chapter presents in detail the robust controller designed with a two-degree-
of-freedom H,, control. Here, how the weight functions can be designed for improving
tracking performance while maintaining robust stability will be explained. In Chapter [4.4]
6-DOF simulation integrated with VMC guidance and robust control is conducted. Chapter

summarizes the issues considered in this dissertation provides concluding remarks.



Launch Vehicle Dynamics

This section describes a complete set of dynamic models of a launch vehicle incorporating

rigid body motion, aerodynamics, thrust and structural flexibility.

2.1 Frame and coordinate

In this study, two frames and coordinate systems are used. The guidance coordinate system
is defined on inertia frame denoted as (I). The origin of the guidance coordinate system is
located at the launch site, its X and Z axes respectively point the normal to the surface
and launch heading, and the Y-axis completes the right-handed coordinate system. The
body-fixed coordinate system is defined on body frame denoted as (b) which is moving with

the launch vehicle body. The above frame and coordinate system are illustrated in Fig

2.2 Rigid body motion

The six-degree-of-freedom (6-DOF') equations of motion of a lunch vehicle consist of the

translational motion and rotational motion. The translational equation of motion of the



A x[ Yb Xb
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Figure 2.1: Coordinate systems

center of gravity of a launch vehicle is expressed in a inertia frame as follows:

X FI
Y | =—| F! (2.1)
A F!
or can be expressed in a body frame
U F? D u
1
w F? r w

T
where [ X T Z ] is the position vector of a launch vehicle expressed in the guidance

T

T
coordinate system. [ u v w } and [ p q r ] are the vehicle’s translational and an-

T
gular velocities in body frame, respectively. F! = [ F! Fyf FI | 1is the total force acting

on the vehicle.

10 | &= Y|



The total inertia force F! and body frame force F° has the following relationship:
Fl=CppF? (2.3)

where direction cosine matrix is defined as

cos 6 cos Y cos 6 sin —sin6
Cyyr = | singsinfcostp — cos¢siny sin¢sinfsin + cos pcost) sin ¢ cos

cos ¢sinf cosy + sin psiny  cos ¢sinfsiny — sin ¢ cosyy cos ¢ cos

The total force consists of the following three terms

FI:FI +Ftlhrust+FgI (24)

aero

where FZ

toror Filust and F) are the aerodynamic force, the thrust force and gravity force,

respectively.

The rotational equation of motion is expressed in a body fixed frame as

P P P
g =" q|xJ| ¢ |+T (2.5)
T T T

where J = diag [, Iy, 1,.] is the inertia matrix of the vehicle and T? is the total moment

acting on the vehicle. The total moment consists of the following two terms

Tb = Tb + Ttl;zrust (26)

aero

where T°

b oo and T . are the aecrodynamic moment, the thrust moment, respectively.

=7
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The Euler angles are updated by following kinematic equation

é cosf sinysinf  cos¢sind P
= — si 2.7
' o5l 0 cos¢cosf sin ¢ cos 6 q (2.7)
Y 0 sin ¢ cos ¢ r

2.3 Aerodynamic forces and moments

The aerodynamic forces and moments depend on the air speed. The vehicle’s relative ve-
locity vector can be expressed as

vEi=vi-vI (2.8)

rel — wind

Vi = Cb/IVr]ez (2.9)

rel

where, V! and V!

" ing are vehicle’s velocity and local wind’s velocity expressed in the inertia
frame. Then the angle of attack, sideslip angle, Mach number and dynamic pressure can

be defined using the relative vehicle’s velocity.

- -1 V;bel,;t
a = tan 7 (2.10)

rel,z

Ve,
B=sin"! [ = (2.11)
Vel

b
M = M (2.12)
a
1 2
Q= 5plV2l (213)

where a is the speed of sound and p is the air density and they are functions of altitude.
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The aerodynamic forces are expressed in the body frame as

D = QSCp(M)
Y = QSCy, (M)8
N = QSCNQ(M)CY

(2.14)

where Cy, (M) and Cy, (M) are the aerodynamic coefficients in y and z axes of the body

frame and Cp(M) is the drag coefficient. Q and S are dynamic pressure and reference area,

respectively.

Then, the aerodynamic forces acting on the vehicle are

F(fero,:c =-D
b _

Fae’ro,y - C

F .. =—-N

aero,z

and the aerodynamic moments about the center of gravity are

Tzferom =0

Tc?eroy = lCPY
b

Taero,z = ZCPN

where [, is the length between the center of pressure and the center of mass.

13
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2.4 Gravity force

The gravity force F| is defined as

1

Fj=m| g! (2.17)

g

9!

The mass m is updated by assuming that rocket nozzle is perfectly expanded as

TUGC

_ 2.18
gOISp ( )

m =

where T4, go and [, are the thrust force in a vacuum, the acceleration of the gravity and

specific impulse measured in seconds.

2.5 Thrust forces and moments

The thrust is simply modeled as
T:Tvac_Ae " Pe

where T is the total thrust force. Ty, A and p. are the total vacuum thrust, the exit area
and exit pressure of the nozzle.
Then the components of the thrust force expressed in the body frame are

Fb

thrust,x

=T
F? —T6,

thrust,y —

F} = -T§, (2.19)

thrust,z
where 0, and J, are the pitch and yaw gimbal deflection angles of TVC, respectively.
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The components of the moment generated by the thrust are

chero x 0
T(i)eroy = 10953;’
T(fero,z = lcgéz (220)

where [, is the length between the center of mass and the gimbal attach point.

2.6 Flexible bending modes

A flexible bending mode of the vehicle can be modeled as second-order sysytem:
77 + 2@”7 + WQTI = (I)TFtbh'rust (221)

where ® is the flex-mode influence matrix at the gimbal attach point.
The effect of bending modes can be modeled by adding perturbation angle at the Euler

angles.

bm ¢
VY (0

where ¢,,, 0, ¥, are the sensor measurements of Euler angles and WU is the flex-mode

influence matrix at the instrument unit location.
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Optimal Trajectory Generation

An important issue of a launch vehicle flight is the generating optimal trajectory during its
atmospheric ascent while satisfying constraints such as bending moment. These constraints
are significantly influenced by wind disturbance, especially in the maximum dynamic pres-
sure region. Generally, atmospheric ascent guidance is conducted as open loop due to the
difficulty of finding an analytic solution or real-time optimal guidance in the presence of
aerodynamic forces and winds. In this phase, aerodynamic load management is essential
because high dynamics pressure region can cause a structural failure from the excessive
bending moment. Therefore, an objective of the trajectory generation is the minimization

of the aerodynamic load while satisfying designated position and velocity at the final time.

3.1 VMC based trajectory optimization

In order to consider dynamics of the launch vehicle, nonlinear constraints are included
in a trajectory optimization problem. In this section, general problem formulation of the
nonlinear constrained optimization is described followed by the problem formulation using

virtual motion camouflage.
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3.1.1 Nonlinear constrained trajectory optimization problem

The performance index for the typical trajectory optimization is given as

J =[xty tr)] + / ' L(x,u,t)dt (3.1)

to

subject to the inequality constraints

glz,u,t) <0, gecRP! (3.2)
and the equality constraints

h(x,u,t) =0, hc R, (3.3)

Here, z € R™! u € R™! and t; denote the state vector, control vector and final time,

respectively. The equality constraints (3.3)) include the following boundary conditions

¥ [x(to), (ty), to, ts] =0, € R (3.4)
and the equations of motion
= f(x,u,t). (3.5)

The optimal trajectory will be found to minimize (or maximize) the performance index
(3.1) in what is called the “full space”. The solution might be locally or globally optimal

depending on optimization methods.

3.1.2 VMC formulation

In [15, 16], the idea of “motion camouflage” (MC) strategy [14] is applied to the nonlin-
ear constrained trajectory optimization problem, which is called virtual motion camouflage

(VMC). The VMC formulation consists of the aggressor x,(t), virtual prey «,(t) and ref-

17
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xr (1)

Figure 3.1: VMC concept

erence point x,(t) as shown in Fig.|3.1] The aggressor’s path depends on the prey motion
and reference point, and can be controlled by the path control parameter (PCP) v(t) as
follows:

T, =x, +v(x, — ). (3.6)

The derivatives of @,(t) can be obtained as follows:

T, =T, +0(x, —x,) +v(T, —T,) (3.7)

&y = Tr + U(xp — ) +20(2p — &) +0(Zp — Ty). (38)

The VMC formulation considers the following basic assumptions made in [16].

Assumption 1. The state vector £ € R™ ! can be rearranged into two parts: the position
state T, (t) € R"* and the state rate x,,.(t) € R")* Correspondingly, the equations of

motion & = f(x,u,t) can be rewritten into two parts: &, = f.(x,t) and g = fs (x,u,t).

Assumption 2. The mappings from (€., T,,t) to x5 and from (x,x,t) to u(t) are as-
sumed to be injective, which means the control variables w(t) and the state rate x4.(t) can
be solved by Ty = [, (g, Ty, t) and uw = f 1 (@, Ty, t) either explicitly or implicitly using

an iterative fashion.
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Based on Assumptions [1} [J] and Egs. (3.6)-(3.8)), the state and control variables can be
represented as functions of the PCP, prey motion, reference point, and their corresponding
derivatives. Therefore, given @, (t) and x,(t), the original optimization problem represented

in Section B.1.1] can be transformed as follows:

tr
J:go[v,z},v'j,...,tf]—l—/ L(v,6,6,....8)dt (3.9)

to

subject to the state and control inequality constraints
g(v,v,1,...,t;) <0, geR™! (3.10)
and the equality constraints
h =¥, o,0,...,to,ts) =0, & R*L (3.11)

Here, the boundary conditions are only considered as the equality constraints since the
system dynamics are already involved when calculating @, (t) and w(t) based on
Assumption 2]

In order to obtain the numerical solution through nonlinear programming, the PCP
v(t) is discretized into the PCP nodes vy, k = 0,..., N using Legendre-Gauss-Lobatto
(LGL) pseudospectral method. The vector form of the discretized PCP nodes is denoted by
I

v = [vg,...,un]" where vy = v(tp) and vy = v(ty). The PCP time history is approximated

using the Lagrange interpolation polynomials [38] as

N
v(r) &> viBi(T) (3.12)
i=0
where the base functions 5;(7),i = 1,..., N, are the Lagrange interpolating polynomials of

order N. The scaled time 7 is zeros of Ly which is the derivative of the Legendre polynomial
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Ly, and is defined as follows:

2t —tr —t
r=2T 0 1] (3.13)
tr—ty

In the original time scale ¢, the k-th time derivatives of the PCP vector is obtained as

dt*

d* 2 1F
hd l } D"v (3.14)
ty —to
where the differentiation matrix D can be found in [38].

As a consequence, the performance index (3.9 can be rewritten as the following dis-

cretized form:

N
ty—to
J=glv.tf] + == ;L(U)wk (3.15)

where wy, is the weights for the k-th LGL node. The inequality and equality constraints

can be formed as

g(v,ty) <0 (3.16)
h(v,t) = 0. (3.17)

The solution space is contained by selected «, and x,. Then trajectory is controlled by
PCP nodes v in given «, and x,. Therefore, selection of the reference point and prey motion
is very important and how to select these will be discussed in Section3.2.2] With selected
reference point and prey motion, the optimal trajectory can be obtained by solving the
parameter optimization problem with respect to the PCP nodes. In this way, the problem

size is reduced from 3N to N in the 3-D trajectory optimization problem.
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3.2 VMC based trajectory optimization applied to the launch

vehicle

In this section, VMC based trajectory optimization method is applied to the launch vehicle
during ascent phase. First, how guidance inputs are generated from the optimized path
will be explained. Next, the optimal trajectory generation problem is formulated using the

VMC framework described in the previous section.

3.2.1 Relationship between launch vehicle dynamics and VMC

By summing that the axial force (f,) is dominant relative to other axes (f,, f.), and TVC

angles are small, the 3-DOF translational equation of motion can be expressed as

e fecosfcosy) —mg
.. 1

=— i 3.18
}f - fzcosfsiny ( )
Z fesinf

where axial force f, =T — D and (XY, Z) denotes the inertial position of the vehicle.
For the VMC formulation, the state vector is defined as x = [X YV Z X Y Z|T.
Based on Assumption [I| the state vector is separated into two parts: the position state

vector &, = [X T Z]T, and the state rates vector &, = [X Y Z]|T. Using (3.6)-(3.9),

the position state of the aggressor and its derivatives are given as

x, =z, +v(x, —x,) (3.19)
T, = 0(x, —x,) + 0T, (3.20)
G, = B(x, — ) + 208, + v, (3.21)

where @, remains fixed in this study during optimization. The selection of the prey motion

x, and the reference point @, will be discussed in Section [3.2.2]
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The guidance inputs of the launch vehicle are desired Euler angles for pitch plane 6 and

yaw plane 1. Using the dynamic equation (3.18]), the guidance inputs can be calculated as

6 = sin~! (TZ) (3.22)

1 Y
1 = tan (X—> : (3.23)

In this study, the thrust is predetermined regardless of trajectory. Therefore, the con-
straint on the total velocity has to be considered in the optimization. The derivative of the

total speed with given scheduled thrust can be calculated as

_ Jzcosacos B+ f,sin 8+ f.sinacos
m

Ve — g COS 7y CoS Y (3.24)

where the flight path angle v, heading angle y and the derivative of the total velocity V'

v =sin"! (é) (3.25)
x = tan™! (%) (3.26)

(3.27)

can be calculated as

The aerodynamic angles such as the angle of attack o = tan™*(w/u) and the sideslip

angle 3 = sin~'(v/V) can be calculated from the definition as

o — tan-! tan @ cos (1 — x) + tan~y (3.28)
B cos (1 — x) — tan 6 tan~y '

B =sin"! (cosysin (x — 1)) . (3.29)
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3.2.2 Selection of reference point and virtual prey motion

The selection of the virtual prey motion and reference point is important because it is
closely related to the problem space. They can be selected to reflect physical meaning and
making a reasonable initial guess is not difficult.

In the planar motion, the appropriate reference point can be selected on the line which
is perpendicular to the center point of the prey motion [I7]. Whereas, in 3-D space, the
selection of the reference point can be a convoluted problem. In [16], the sequential VMC
method involving two steps in an iteration process is proposed to solve this problem. In
the first step, an optimal solution can be found within subspace constructed by reference
point, and then a linear programming and a line search algorithm are used in the second
step to improve reference point.

In this study, the reference point is placed on the line which is tangential to the direction

of the initial vehicle’s velocity as follows

Ly = Lq0 + k’$‘a70 (330)

where £ is a scale factor. &, and &, denote the initial position and velocity vector of
the aggressor, respectively. At the end of the ascent phase, the final position and velocity
have to be satisfied at preplanned time. Therefore, the vehicle has the initial and terminal
boundary conditions &,, €40, Ta5 and &, . Since there exist twelve boundary conditions

in 3-D, the virtual prey motion can be selected as the following polynomials:

xp,a: aflt3 + blt2 + Clt + dl
Ty = Tpy = &2t3 + thQ + cot + dy . (331)
Tp,z CL3t3 + b3t2 + Cgt + d3

The coefficients a;, b;, ¢;, and d;, i = 1,2, 3 are determined by the initial and final boundary

conditions. From (3.31]), we can obtain the prey motion satisfying the initial and final
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x10*

X(altitude)

o Initial position
% Final pos
& Ref point
==#== Prey motion

Y -1 7 x10%

Figure 3.2: Reference point and prey motion

position and orientation of the launch vehicle. The designed reference point and prey motion

are represented in Fig. [3.2
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T,(thrust force)

AF(aero force)

CG

Figure 3.3: Aerodynamic load

3.2.3 Trajectory optimization via VMC

In this subsection, VMC is applied to a trajectory optimization problem for the launch
vehicle during ascent phase. An ascent flight trajectory can be separated into vertical flight
and transition turn. After lift-off, the launch vehicle flies vertically and turns slowly toward
the designed position by using TVC (thrust vector control). A trajectory optimization is
conducted after the vertical flight.

In the transition turn, aerodynamic forces acting on the center of pressure increase as
dynamic pressure increases. To maintain the equilibrium of moments, the thrust force from
the TVC has to be generated. As a result, the significant bending moment is applied to the
launch vehicle as shown in Fig. which can cause a structural failure of the vehicle [39].
Therefore, the trajectory optimization problem is formulated to minimize the maximum
aerodynamic load while satisfying final conditions of the position and velocity of the vehicle.
The aerodynamic load can be defined as Qar. Here, (Q and ar are the dynamic pressure
and the total angle of attack, respectively.

The nonlinear optimization problem is defined as follows:

Given x, and x,, v = [Vg]k=01,. ~ Will be designed to minimize the performance index

J = max (Q(t)ar(t)) (3.32)

te[to,tf]
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subject to

V() — Vi) <1 3.33
10(t0)]| < 5° 3.34
19(to)|| < 5° 3.35

w
w
(=)

—m/2<0(t) <7/2
— /2 <YP(t) < m/2
z4(to) = Peamo

V(to) = Vemro

w W
w W
NoREEN0)

/N /N /N /N /N /N /N /N /
w (%)
N w
(@) -~

R D o R e O S e e

ra(ty) = Pony
V(ts) = Vous

w
S
—_

where Py and Vigyy are the position vector and the velocity vector of the launch vehicle.
Each constraint is included for the following reasons:

Since thrust force of the vehicle is preplanned, the derivative of the velocity is determined
regardless of the trajectory. The desired velocity is calculated as in Eq. . Therefore,
the derivative of the velocity constraint Eq. is considered. As mentioned before,
the launch vehicle flies vertically at the beginning of the ascent phase. For this, the com-
mands are set to # = 0 and ¢ = 0 during vertical flight. Therefore, to keep the command
smooth between vertical flight and transition turn, the constraints Eqgs. and
are included. Egs. and are to constrain guidance input range. The equality
constraints Egs. — are included for boundary conditions.

In the above problem formulation, the equality constraints are about the boundary
conditions. In the VMC, PCP and prey motion at specific nodes can be calculated rather
than optimized or guessed to satisfy the boundary conditions [16]. By calculating them, the
equality constraints are not included in optimization. As a result, the optimal trajectory

can be obtained by solving the following optimal problem without equality constraints:
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Given x, and x,, v = [vk)k=2,. N2 Will be designed to minimize the performance index

J = maz (Q(t)ar(t)) (3.42)

te[to,tf]

subject to

IV(t) = Vi) <1
16(t0)l] < 5°
[ (to)[| < 5°
— /2 <6(t) <m/2

—m/2 <P(t) <7/2. (3.43)

It is solved by using sequential quadratic programming (SQP) method.

Remark 1. For boundary condition, we set vo =1, vy = 1, 40 = Tpo, TaN = Tpn Which
results in T, = To, Tqr = Tf, and vy, vy_1 are calculated based on Lemmas 1-3 of [16] to

satisfy Ta0 = To and xq 5 = Ty.

3.2.4 Sequential VMC: constraint correction

In the VMC formulation, solution space is limited by the prey motion and the reference
point. By the virtue of this subspace search, the computation time can be reduced. However,
a problem can arise when the constructed subspace (defined by the selected prey motion
and reference point) does not contain a solution which satisfies the constraints. Since the
launch vehicle dynamics is usually nonlinear and complicated in 3-D space, this may occur
easily.

A way to address this concern is to adjust subspace by updating prey motion and
the reference point. In [16], the sequential VMC method is proposed involving two steps.

In the first step, an optimal solution can be found within subspace, and then a linear

3 o i
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programming and a line search algorithm are used in the second step to update the reference
point for improving cost function. This approach may work well when constraints are
already satisfied, and performance enhancement is the only concern. On the other hand, in
our problem, we utilize a sequential problem as a “constraint correction” step to find an
updating direction that makes subspace contains a feasible solution.

The sequential VMC method is introduced here to adjust the subspace after a solution
has been found within the initial subspace. For constraint correction, a quadratic program-
ming (QP) is used to find a correcting direction by neglecting the term related to the cost
function. It means that we do not put any restriction to the cost function in the constraint
correction step. The QP sub-problem is defined as follows:

Given the subspace solution found at the k-th VMC optimization, an improving direc-

tion d can be found by minimizing

0.5d"d (3.44)
subject to
aa)g(: kdk < =g, i=1,.p (3.45)
and
—Aj<dj <Ay, j=1,...n, (3.46)

where, g; are the inequality constraints and the variable X, € R" includes the variables

about the discretized v, x, and x, as

Xs - [(02 V3 ... UN)a (xr Yr Zr‘)a (:Cpl ypl Zp1>7 (pr ypZ Zp2)7 (RS (xpN ypN ZpN)]T . (347)

In the QP problem, constraints are linearized in the current optimization point. Thus
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parameters should not change too much to justify the linear approximations. Therefore,
move limit Aj; and A;, are incorporated to limit the magnitude of the updating direction.
Here, 30 percent of the current value is defined as the move limit.

After solving the QP, the next subspace is defined as follows
X, =X,+d (3.48)

where v in X,"" is used as the initial value of the next VMC optimization. The next VMC
optimization is conducted with the updated subspace constructed by «, and x, in X,"“".
This sequential VMC is illustrated in Fig. [3.4] Here, the prey motion and the reference
point are updated to improve subspace.

The entire sequential VMC algorithm is summarized as below.
stepl : Initial guess for x, and x,

step2 : VMC optimization is solved with the given x, and x,.

If the current solution satisfies constraints, algorithm stops. Otherwise, go to Step 3
step3 : QP sub-problem is solved for a constraint correction and updates the subspace.

step4 : VMC optimization is solved with the updated x, and z,.

If the current solution satisfies constraints, algorithm stops. Otherwise, go to Step 3.

3.2.5 Comparison study

In order to compare with the optimal result, the conventional direct input programming
method and pseudospectral method are examined, which are full-space approaches. For
comparison, the same performance index is considered.

First, the direct input programming method in [40] is introduced. The parameter vector

3 11 3
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Figure 3.4: Sequential VMC, update of prey motion and reference point by improving
direction ‘d’

to be optimized is defined as

Upip = [0(t1), 0(t2), ... ,0(tn),o(t1), b(ta), ... ,b(tn)]" . (3.49)

The nonlinear optimization problem for the load relief is formulated as follows:

The input parameter vector Up;p will be designed to minimize the performance index

J = maz (Q(t)ar(t)) (3.50)

tE(to,tf]

subject to

—x/2 < 0(t) < )2

— /2 <YP(t) < 7/2

Za(to) = Pomo

V(to) = Voo

a(ts) = Fourg

V(ty) = Ve - (3.51)
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The above optimal problem is solved by using sequential quadratic programming (SQP).

Next, the pseudospectral method [11] is performed using the input parameter vector
T 7
Upsw = (X1, Vi, 207, ., (X, Yoy, Zn)"] (3.52)

where (X;, Vi, Z)" are the inertia position of the vehicle in 3-D dimension and N is
the number of discretized nodes. These discretized nodes are defined as Legendre-Gauss-
Lobatto(LGL) points. As a result, the number of optimal parameters is 3N. The nonlinear
optimization problem for the load relief is formulated as follows:

The parameter vector Upgy; will be designed to minimize the performance index

J = max (Q(t)ar(t)) (3.53)

tefto,ty]

subject to

—x/2 < 0(t) < 7)2
—x)2 < b(t) < 7)2

Za(to) = Powmo

V(to) = Vemo

Za(ts) = Pous

V(ty) =Vom,s - (3.54)

The above optimal problem is solved by using sequential quadratic programming (SQP).

3.3 Numerical simulations

In this section, a numerical simulation is conducted to demonstrate the proposed sequential
VMC method for trajectory generation. The information of the considered launch vehicle

is given in Table. 3.1} The specification of the ascent phase mission is described in Fig. [3.5]
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Vertical flight
6; :0deg
T tena : 10 sec

Ascent phase final conditions

Final position condition
Xy © 57 km
Zy @35 km

Final velocity condition
Vr 1700 m/s (Mach 5.3)
Vi x - 1700sin(rr/4) m/s
Vsz - 1700cos(/4) m/s

Final time
tr: 125 sec

Figure 3.5: Ascent phase mission

Table 3.1: Launch vehicle specifications

Description

Value

Launch mass
Launch thrust

200 ton
3000 kN

Maximum allowed aerodynamic load 2600 Pa rad

Table shows the initial and final conditions of the ascent phase.

In the ascent phase flight, the bending moment is significantly influenced by wind dis-

turbance, especially in the maximum dynamic pressure region. The reference wind profile

considered in this study is shown in Fig. [3.6] The four cases are considered depending on

wind profile as follows:
e case 1: No wind
e case 2: X-axis wind
e case 3: Z-axis wind

e case 4: X, Z-axes wind
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Table 3.2: Ascent phase mission

Description Value

Initial position [ 0 0 0 ] km
Final position [ 57 0 35 | km
Final velocity [ 1700sin(w/4) 0 1700cos(w/4) | m/s

Final time 125 sec
Wind Z axis wind Y axis
60 T T T 60 T : .
50 50
40 r 40
B £
= =
2 30 L3¢
2 2
T T
20+ 20
10 10 1
0 . . o . .
-30 -20 -10 0 10 -60 -40 -20 0 20
m/s m/s

Figure 3.6: Reference wind profile

Since the discretized nodes are placed sparsely in VMC method, the intermediate guid-
ance input is calculated by the interpolation method. In order to check the reliability of
the discretized numerical solution, the solution trajectory is reconstructed by numerical in-
tegration with forth-order Runge-Kutta denoted as “RK4” and compared with discretized
trajectory. The result of reconstruction simulation is shown in Figs. and [3.8] From the
results, the discretized method is reliable when 20 nodes are used. Therefore, the number

of the discretized nodes in the remain simulation is set as 5, 10, 15 and 20 to see its effect.
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Figure 3.7: Trajectory comparison (RK4 and 20 nodes)
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——VMC result
— — RK4 result
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Figure 3.8: Comparison of aerodynamic angles (RK4 and 20 nodes)
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3.3.1 Case 1: No wind disturbance

The optimization results with 20 nodes are shown in Fig. [3.9 The pitch command and
yaw command inputs are shown in Fig. [3.9(a) and (b). Since the Z-axis is defined to the
direction of the final heading angle, yaw command did not require when there exists no wind
disturbance. In Fig. [3.9(c), the angle of attack has the small value from 50 to 70 seconds
where the maximum dynamic pressure occurs. The sideslip angle has nearly zero value for
the same reason of the yaw command as shown in Fig. [3.9(d). The aerodynamic load is

shown in Fig. [3.9(f). The optimized trajectory shown in Fig. satisfies all constraints.
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Figure 3.9: Optimization results of case 1: No wind (using 20 nodes)
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Figure 3.10: Trajectory results of case 1: No wind

QO initial position
X final position
# updated ref point
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initial ref point
initial prey motion
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(a) using 5 nodes

O initial position
X final position
# updated ref point
~+-updated prey motion
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initial ref point
initial prey motion

(b) using 20 nodes
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3.3.2 Case 2: Z-axis wind disturbance

The optimization results using 20 nodes are shown in Fig. The results are compared
with the result when wind disturbance is not considered. The solid blue lines denote op-
timization results considering wind disturbance, and the red dashed lines denote results
without considering wind disturbance.

The pitch command and yaw command inputs are shown in Figs. [3.11f(a) and (b). In
Fig. [3.11|(c), the angle of attack has small values at 50 to 70 seconds where the maximum
dynamic pressure occurs. Since Z-axis wind is related to the pitch plane, the angle of attack
history is quite different from no wind considering case. The sideslip angle has nearly zero
value with the same reason of the yaw case as shown in Fig. [3.11)(d). In Fig. |3.11(f),
the optimized trajectory can reduce aerodynamic load when considering wind, while the
aerodynamic load is significantly large when optimization is conducted without wind. The
optimized trajectories are shown in Fig. [3.12]

The optimization is conducted with various Z-axis wind profile to find the tendency of
the resulting trajectory. The results are shown in Figs. and [3.14] From the trajectory
results shown in Fig. [3.13] the influence of the Z-axis wind to the trajectory is not sig-
nificant. This tendency is caused by that Z-axis velocity of the vehicle is very large when

compared with other axes velocity and the wind disturbance velocity.
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3.3.3 Case 3: Y-axis wind disturbance

Here, the simulation results with Y-axis wind disturbance are examined. The optimization
result using 20 nodes are shown in Fig.|3.15, The results are compared with the result when
wind disturbance is not considered.

The pitch command and yaw command inputs are shown in Figs. [3.15(a) and (b). In
order to adjust the Y-axis wind, yaw command is initially generated to make the vehicle’s
heading toward wind direction. After that yaw command is changed to turn the vehicle
toward the final position. In Fig. [3.15(c), the angle of attack is slightly reduced at 50 to 70
seconds where the maximum dynamic pressure occurs. Since Y-axis wind is related to the
yaw plane, sideslip angle history is significantly different with no wind considering case. In
Fig.[3.15(f), the optimized trajectory can reduce aerodynamic load when considering wind,
while the aerodynamic load is significantly large when optimization is conducted without
wind. The optimized trajectories are shown in Fig. [3.16]

The optimization is conducted with various Y-axis wind profile in order to find the
tendency of the resulting trajectory. The maximum wind velocity is changed as 10, —10,
—30 and —50 m/s. The results are shown in Figs. and [3.18] From the results shown
in Figs. |3.17] adjusting Y-axis wind is more important than Z-axis wind because Y-axis
velocity of the vehicle is relatively small compared with Z-axis velocity. Therefore, on the

Y-axis, small wind disturbance can cause a large aerodynamic load to the vehicle.
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3.3.4 Case 4: 7 and Y-axes wind disturbance

The simulation results with both Z and Y axes wind disturbance are examined. The op-
timization results with 20 nodes are shown in Fig. 3.19) and Fig. [3.20] The results are
compared with the result when wind disturbance is not considered. The solid blue lines
denote optimization results considering wind disturbance, and the red dashed lines denote
results without considering wind disturbance. The simulation results show the composite
tendency of previous sections about Z-axis wind and Y-axis wind. At this time, both angle
of attack and sideslip angles are significantly different with optimization result with no
wind considering. The aerodynamic load is significantly large when wind disturbance is not

considered.
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3.3.5 Performance comparison

In this subsection, the proposed sequential VMC method is compared with direct input
programming (DIP) and pseudospectral method (PSM). The results are analyzed by com-
putational time and cost in Tables. [3.3] [3.4] and [3.5]

The optimization results using 20 nodes are shown in Figs. and [3.22] It is shown
that the results from the proposed sequential VMC method are comparable with the two
full space methods. The comparison of computational time and cost is summarized in
Table. [3.6) and Fig. [3.23] The cost of direct input programming is smaller than VMC, but
the tendency of the guidance input and resulting aerodynamic angles are similar. On the

other hand, computational time of the VMC is significantly shorter than the other methods.
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Table 3.3: VMC optimization results

Case 1 : No wind

Number of nodes Cost (Pa rad) Computational time (sec)

) 1000.0 1.14
10 998.3 1.63
15 875.9 2.44
20 852.0 4.80

Case 2 : Z-axis wind

Number of nodes Cost (Pa rad) Computational time (sec)

) 1419.7 0.89
10 990.8 1.46
15 897.0 2.01
20 673.1 4.45

Case 3 : Y-axis wind

Number of nodes Cost (Pa rad) Computational time (sec)

) 1351.7 3.22
10 1218.0 3.64
15 865.8 5.58
20 811.2 6.48

Case 4 : Y, Z-axes wind

Number of nodes Cost (Parad) Computational time (sec)

5 1479.6 1.98
10 1191.8 2.62
15 973.2 3.15
20 695.0 6.69
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Table 3.4: Direct input programming results

Direct input programming (Case 4 : Y,Z-axes wind)

Number of nodes Cost (Pa rad) Computational time (sec)

) 1981 21
10 1256 97
15 1054 143
20 513 274

Table 3.5: Pseudospectral optimization results

Pseudospectral method (Case 4 : Y,Z-axes wind)

Number of nodes Cost (Pa rad) Computational time (sec)

5 2328.5 2.66
10 1095.6 7.98
15 866.0 14.98
20 635.5 32.22

Table 3.6: Comparison of cost and computational time

# of nodes 5 10 15 20
Sequential VMC Cost (Pa rad) 1479.6 | 1191.8 | 973.2 | 695.0
(proposed) Computational time (sec) | 1.98 2.62 | 3.15 | 6.69
Pseudospectral Cost (Pa rad) 2328.5 | 1095.6 | 866.0 | 635.5
method Computational time (sec) | 2.66 7.98 | 14.98 | 32.22
Direct input Cost (Pa rad) 1981 1256 | 1054 | 513
programming | Computational time (sec) 21 97 143 274

95



computational time (sec)

Qat (Cost)

150

d
e 274 sec
L 7z
L
e
7 - .
100 1
, s —&—VMC method
L7 —G- Direct input programming
e Pseudospectral method
, 4
50 4
7/
4
4
/
[
6.6 sec
o¥ L T |
5 10 15 20
number of nodes
(a) computational time
25007
—&—VMC method
-0~ Direct input programming
2000 ¢ Pseudospectral method

1500 ¢ N
\

1000 -
500 A ©
0 ‘ ‘ |
5 10 15 20

number of nodes

(b) cost

Figure 3.23: Comparison of results

o6



Robust Control

Modern launch vehicles are becoming long and slender for the reduction in structure mass
to increase payload. As a result, they possess highly flexible bending modes in addition to
aerodynamically unstable rigid body characteristics. In order to stabilize the unstable rigid
system, a feedback controller with a sufficient gain should be designed, but such control
system has the potential to excite lightly damped poles of the flexible bending modes [2].
Furthermore, parameters defining the launch vehicle system such as unstable pole and
natural frequencies of bending modes are highly uncertain. Therefore, one of the main
challenges of a control system for a launch vehicle is to stabilize this unstable interaction
in the presence of substantial uncertainty and disturbance. At the same time, sufficient
response speed is also demanded. The main part of the study will be conducted for the

pitch axis.

4.1 Launch vehicle model description

In this section, the dynamic model of the launch vehicle and its properties are described.

The launch vehicle system can be divided into the rigid body part and the flexible body

= Gt
7 > 11 &1
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Figure 4.1: Launch vehicle model in the pitch plane

part [41]. After describing each part, the actuator is modeled and its effect to the launch

vehicle system including rigid body and bending modes will be explained.

4.1.1 Rigid body model

The rigid body model in the pitch plane is shown in Fig. 4.1l The short period dynamics
of the rigid body model in the pitch plane can be obtained using the following moment

equation:

6= (3" My) /1

= (Loloa+T,1:0) /Ly = poo + pcd (4.1)

where a = 0 — ~ is the angle of attack, 6, v, T, and 0 are the pitch angle, flight path
angle, controlled thrust force and thruster angle deflection, respectively. For the purpose
of this paper, which is to stabilize an unstable and flexible system with large uncertainties,

we consider a simplified rigid body model by assuming that o &~ 6 and the output of the
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sensor is # only [42], 43]:

0 [be
G.(s) = i . (4.2)

The rigid body part Eq. is aerodynamically unstable because the center of mass lies aft
of the center of pressure. We consider the rigid body model linearized at the most significant
dynamic pressure point which has an unstable pole with the largest modulus [43]. The values
linearized at this point are obtained as u, = 3.22 and p. = 7.07, and both parameters have

the uncertainty of +£10 %.

4.1.2 Flexible modes and Actuator

In this study, we take into account the first three flexible bending modes due to the roll-
off by the actuator bandwidth beyond such frequency. The effect of bending modes can
be modeled by adding perturbation angle at the pitch angle 6 as shown in Fig. 4.2 The

flexible body model is obtained by summation of the first three flexible modes:

0 3
Gf(S) = Eb = ZGf’i . (43)
i=1

Each flexible bending mode is modeled as a second-order system with natural frequency

wp,; and damping (;:

O.i K;

Gra(s) =~ = T (4.4)

where 0, ; is the perturbation pitch angle due to bending vibration. K is the DC gain of the
i-th bending mode. Typically, the bending modes are lightly damped (; < 1. As a result,
the launch vehicle dynamics including rigid body Eq. (4.2)) and flexible modes Eq. (4.3) for
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Figure 4.2: Block diagram of the launch vehicle with the rigid body and flexible body parts

Table 4.1: The uncertainty range of the i-th flexible bending mode

Parameter Description Uncertainty range
K; DC gain +40 %
Wn,i Natural frequency +25 %
G damping +30 %

the pitch axis can be represented as
0, =0+0,= (GT(S) + Gf(S)) 0. (45)

Since it is very difficult to obtain the parameters of the flexible bending modes such as
natural frequency and damping precisely, they have significant uncertainties. The uncertain
ranges considered in this paper are listed in table (.1}

The Bode plot of the launch vehicle model Eq. with uncertain parameters is
shown in Fig. as blue lines. Since the system has one unstable pole from the rigid body
model, the phase starts from —180 degree. The flexible bending modes produce phase lag
at the natural frequencies of each bending mode, which results in very low phase margins.
Therefore, very small delay such as actuator dynamics can cause an unstable interaction

with flexible bending modes. For that reason, the actuator dynamics have to be included
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in the system model to be controlled. The actuator is modeled as the second-order system

Gact(s) == é = wgd (46)
50 52 + 2Cactwact3 + wgct

where w, and (4 are the natural frequency and the damping of the actuator. As a result,

the entire system to be controlled is expressed as

Gols) = 7 = (Go(5) + Gy(5)) Guals) (@7)

The Bode plot of the launch vehicle with actuator dynamics Eq. (4.7)) is shown in Fig.
as red lines. Now the first bending mode becomes unstable because its natural frequency
is close to the bandwidth of the actuator. The entire system Eq. (4.7) can be represented

as the following state-space form:

T = Ax + B9,

0 =Cx (4.8)

. . . . . T
where 2= [0 0 01 0 Gha 45 B Ong 6 3] , A€ RO, Be R, € e RO,
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4.1.3 System properties and design specifications

The root locus of the launch vehicle with actuator dynamics Eq. is shown in Fig. 4.4}
As explained in the previous section, when the actuator is considered, an unstable interac-
tion arises between the unstable rigid body and first flexible bending mode. This unstable
interaction causes following control problem:

In order to stabilize unstable poles of the rigid body part, a feedback controller with
sufficient gain should be designed, but such feedback control system has the potential to
excite lightly damped poles of the first bending mode, which destabilizes the system. To
make matters worse, the parameters of rigid body model and flexible modes are highly
uncertain. Therefore, one of the main challenges is to stabilize the launch vehicle which has
unstable interaction with large parameter uncertainties.

The objective of the control system is to provide sufficient margins for the unstable
rigid body and improved response speed of the closed-loop. Also, the control system should
be robust to the parameter uncertainty and disturbance with small tracking error. All
controllers including baseline controllers and robust controller are designed to have at least
-6 dB gain reduction margin for unstable rigid body and at least 25 deg phase margin. The
robust stability is tested by using mu-analysis [44].

In this study, we design an H,, controller to satisfy the above objectives. Typically, the
H,, robust control gives conservative results when large uncertainty is considered due to
the small-gain theorem. Therefore, we aim to design H,, controller with sufficient tracking

performance while maintaining robust stability in Section 4.3
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4.2 Baseline controllers design

In this section, the baseline controllers are designed by linear optimal control . Usually,
the optimal control gives a satisfactory nominal performance such as sufficient steady-state
error and response speed. We use the result of the optimal control as a target closed-loop
of the robust controller for the enhancement of the nominal performance.

We found that various 1-DOF controllers which use e = y —r as a feedback signal fail to
achieve the satisfactory tracking performance and robustness simultaneously. Thus, all of
the baseline controllers and H,, controller are designed with a 2-DOF structure which uses
the reference command r and output feedback signal y separately. This structure results
in feedforward control in addition to feedback control as illustrated in Fig. Here a
set-point LQG and an integral LQG are designed as a 2-DOF optimal control approach,

and their results are examined.

4.2.1 Set-point LQG

The set-point LQG control structure is shown in Fig. The control input u = J, consists

of feedforward and feedback control inputs as

u=Nr—Kz (4.9)
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where K and N are the feedback gain and the feedforward gain, respectively. Z is the
estimation of the states from output y. The feedforward control gain N is derived as follows:
By assuming that y = r at the steady state (& = 0), the system equation Eq. with
control input Eq. becomes

0= (A— BK)z, + BNr

y=Crsy=r (4.10)
Rearranging the above equations against feedforward control gain N yields

1

N=-(C(A-BK)'B)" (4.11)
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Then designed set-point LQG can be expressed as a general 2-DOF control structure which
uses reference r and output y separately as shown in Fig. by the following state-space
form:

i=(A-BK-LC)i+| BN L | ' (4.12)

Y

uz—Kﬁ+[N'o} g (4.13)
Y
where K is the optimal control gain of the LQR and L is the Kalman filter gain. N is the
constant feedforward gain defined in Eq. .

The properties of the designed set-point LQG are examined by root-locus as shown in
Fig. 4.7, Tt can be seen that LQG consists of a lead-compensator to stabilize the unstable
pole and a notch-filter for the first bending mode to handle the unstable interaction. The
various control synthesis results are illustrated in Fig. [4.8] The sensitivity function is shown
in Fig. 4.8(a). Here, we can see that magnitude at the low-frequency is quite large, directly
proportional to disturbance attenuation and steady-state error performance. This is be-
cause set-point LQG does not possess an integral effect. The Nyquist diagram is illustrated
in Fig. m(b) Since we consider the unstable plant, the Nyquist plot of the closed-loop
system encircles -1 once. The gain reduction margin for the unstable pole is —6.66 dB,
and minimum phase margin is 26.6 deg. The large circle at the right side denotes the first
bending mode. Although the magnitude of the first bending mode is larger than 1, notch
filter turns bending modes away from —1. Fig. |4.8(c) represents the Nyquist plot of the
perturbed plants which sampled within given uncertainty range. Here, we can see that the
first bending mode invades the critical point —1, and destabilizes the closed-loop system.
This result can be interpreted as the inappropriateness of a notch filter to handle flexible
bending modes when large uncertainty is involved. The step response of the nominal plant
is shown in Fig. [4.8(d) and step responses of the uncertain plants are shown in Fig. 4.8{e).

The result of the mu-analysis is represented in Fig. (f) As expected, the closed-loop

¥ [, -1 =1
- I-'l__ll (=],
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Figure 4.9: LQI control structure

system is not robustly stable. Furthermore, since the set-point LQG does not possess an
integral effect, the closed-loop system will be fragile to disturbance such as wind gust and
DC gain uncertainty of the system. Therefore, LQG with an integral effect will be designed

in the next section.

4.2.2 Integral LQG

The structure of the LQG augmented with integral error control is shown in Fig. [£.9, This
control structure is referred as LQI in this paper. In order to derive the LQI control input,
T
we define the augmented states ¥ = [ i e ] , where e = r — y. Then dynamics of the
augmented state Z can be derived in the following state space form :
x 0 A e B
= + U (4.14)
é 0 -C x 0

i =A% + By (4.15)
Here, v = @ is obtained by optimal control theory as

y:u:—f(@:—[m K,} v (4.16)

(&
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Then the control input u can be obtained by integrating u
t
u:—Kxx—KI/ e dt (4.17)
0

The designed LQI can be expressed as a general 2-DOF control structure by the following

state-space form:

z A— BK, — L;C —BK; @
e 0 0 fotedt
0 L] T
+
I —I Y
T r
u:_[Kx KI] t +[0 0} (4.18)
Joedt Y

where L; is the Kalman filter gain. K, and K; are obtained by minimizing the following

cost function for regulating error:
PI, = / (e"Pe+ v Rv)dt (4.19)
0

The results of the control synthesis are illustrated in Fig. 4.10l The sensitivity func-
tion with integral effect is shown in Fig. [4.10(a). The Nyquist diagram is illustrated in
Fig. [4.10[(b). The gain reduction margin for the unstable pole is —5.6 dB, and minimum
phase margin is 23.4 deg. The result of the mu-analysis is represented in Fig. [4.10(c). The
designed LQI gives poor robust stability in the low-frequency region as well as the high-
frequency region where bending modes are excited. The step responses of the uncertain
plants diverge as shown in Fig. [4.10(d).

In order to improve the robustness of the LQI, control gains K, and K are adjusted
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by redefining the performance index as
P, = / (e"Pre+ " Py + v Ry) dt (4.20)
0

Here, regulation of y is added to improve robustness. P, P, and R are positive weighting
constants.

The synthesis results with redefined performance index Eq. are illustrated in
Fig. [.11] The sensitivity function is shown in Fig. [1.11a). Here we can see that the
slope of the gain curve at the crossover frequency (0 dB) is attenuated, which results in
enhancement of robustness. The Nyquist diagram is illustrated in Fig. [4.11j(b). The gain
reduction margin for the unstable pole is —6.86 dB and minimum phase margin is 25.3
deg. Fig. 4.11(c) represents the Nyquist plot of the perturbed plants sampled within the
given uncertainty range. Here, we can see that the first bending mode invades the critical
point —1, and destabilizes the closed-loop system. The step response of the nominal plant is
shown in Fig.4.11)(d). The speed of the response is reduced because the crossover frequency
of the sensitivity function has been decreased as shown in Fig. [4.11f(a). The step responses
of the uncertain plants are shown in Fig. |4.11{(e). Some perturbed plants are destabilized
by the first bending mode. The result of the mu-analysis is represented in Fig. 4.11(f). By
adjusting the performance index, robust stability is improved in the low-frequency region
but does not satisfy robust stability in the high-frequency region where the flexible bending
modes are excited.

As a summary, the robustness and margins of the closed-loop system are improved
by considering y in the cost function of LQI. The main change is the attenuation of the
gain slope around the crossover frequency of the sensitivity function. In this respect, the
slope of the gain curve around the crossover frequency is essential and milder slope is
desirable. Furthermore, since the flexible bending modes have large parametric uncertainty,
gain stabilization of the bending modes is desirable rather than phase stabilization. For this,

the control system should roll-off below natural frequency of the first bending mode.
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4.3 Robust controller design

In this section, a 2-DOF H, controller is designed. In order to achieve desirable behavior
of the closed-loop system, frequency-dependent weights, which are used to shape closed-
loop transfer functions, have to be well designed. For this, it is necessary to have an idea
of the desired closed-loop shape of the controlled system. First, we try to design a robust
controller with conventional weighting functions for shaping the sensitivity function and
the control bandwidth. Next, we modify weighting functions, by reflecting the desirable
closed-loop shape from the results of LQI, to achieve improved performance without loss

of robustness.

4.3.1 H,, control theory

A control system is robust if it remains stable in the presence of uncertainties. The small-

gain theorem plays an important role in the H,, control theory [44].

Theorem 1 (Small-gain theorem). Assume that two stable systems G1(s) and Ga(s) are

connected in a feedback loop, then the closed-lop system is input-output stable if

1G1(5)Ga(s)][oc <1 and ||G2(s)G1(s)lloe <1

H,, norm is convenient for representing unstructured uncertainty, and also it satisfies

the multiplicative property such as

1A(s) B(s)lloo < [|A(8)lloo - [B(5)[|o0

A linear system with uncertain dynamics can be represented as Fig. 4.12, Here, A is
unstructured uncertainty and assumed stable. M is the nominal closed-loop system with
the feedback controller K. Then, from the small-gain theorem and multiplicative property

of the H,, norm, the closed-loop system is robustly stable if and only if K stabilize the
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nominal plant and the following holds

IMA[lso < [[M]loo - [|A]loe <1
1

1Moo < 75—
JEAN[p™

(4.21)

(4.22)

For a control synthesis, the general framework takes the form of Fig. Closing the

feedback control loop, let the transfer function of the input w to the output z be T,,,. The

H, control problem is then to find a controller K that makes the closed loop system stable

and that minimize ||T%||oo-

mfénHTzw”oo

For analysis purpose, closed-loop M can be connected with given uncertainty as Fig.|4.14}

75
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Figure 4.14: Analysis framework

The structured singular value p is defined with structured uncertainty by

A 1
M) = IAneig{E(A) det(I — MA) =0} (424)

1 value can be interpretted as the inverse of the smallest magnitude of a destabilizing
perturbation of M [44]. Thus the structured singular value provides an indicator of how

much uncertainty can be tolerated before the system become unstable.

4.3.2 Two-degree-of freedom H,, controller

The 2-DOF structure for the synthesis of the H,, controller is shown in Fig. [4.15] The con-
T

troller K = [ K, K, } consists of a feedforward controller K, for shaping the command

to improve tracking performance and a feedback controller K, for stabilizing the uncertain

plant and disturbance rejection . The important transfer functions can be derived from

Fig. as follows:

v= (57 (Giffi)u) + (1= G<i>Ky<s>) ! (42
= (aem) (abem) (420

where G/(s) is the nominal plant of G, (Eq. (4.7)).
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Figure 4.15: 2-DOF H, control structure with model reference

The control error e = y — M(s)r can be rewritten as

G(s)K,(s) 1
— - M d 4.27
= (Zewem —10) r+ (awmm 420
From Eq. (4.27), K, is designed for adjusting the system poles and disturbance, and K,
is for improving tracking performance from r to e. As a result, the closed-loop transfer

T T
function matrix from external input w = [ r d } to z = [ 21 2y } can be derived as

2 W, (SGK, —M) W,S r
T.w = = (4.28)

22 W.SK, W.K,S d
where S is the sensitivity function defined as S = 1/(1 — G(s)K,(s)). W, and W, are
the frequency-dependent weighting functions to shape the closed-loop transfer functions of

T.., to satisfy complex objectives such as robust stability and tracking performance. After

weights are selected, the controller K is obtained such that ||7,,||c is minimized.

4.3.3 Selection of weighting functions: W, and W,

The selection of weighting functions is the most important step in the robust controller
design process because the weighting functions define the desirable closed-loop behavior
in the robust control synthesis. Since performance objectives are mainly related to the

sensitivity function, the performance weight W, has to be designed to reflect performance

e "
"':I'H-_E _'H.I.- i '|_i
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requirements. For good tracking performance, the magnitude of the sensitivity transfer
function S has to be minimized. Since tracking performance and disturbance rejection are
important at low frequencies, the sensitivity function S is minimized in this range. To this

end, W, is usually defined as [45] 36]

S/MS + wp
W, =22 = 4.29
pl s+ Wyt ( )

where Mg, wg and eg are the lower bound of the maximum singular value, bandwidth and

steady-state error of S, respectively. Mg is related to classical margins by [44]

Mg 1
GM > PM > —.
— Mg—1’ — Mg

After fine tuning to satisfy the robust stability, we selected Mg = 3, ws = 0.8 rad/s and
es = 0.5. The resulting W), acts as a low-pass filter.
In order to attenuate the flexible bending modes in the high-frequency region, the control

sensitivity function K (s)S(s) is limited by using a high-pass filter defined as

Wi = (m>k (4.30)

5+ Wy /€y

Here, M,, w,, €, and k are lower bounds of the maximum singular value, bandwidth,
roll-off magnitude and roll-off rate of K(s)S(s), respectively. We chose M, = 10 to limit
low-frequency control gain, and w, = 25 to limit control bandwidth in the high-frequency
region where bending modes may be excited. The roll-off magnitude is defined as ¢, = 0.01.
In order to roll-off as fast as possible beyond the control bandwidth, we selected k = 3 for
Wi

As mentioned before, the robustness and margins of the closed-loop system can be
improved by considering y in the cost function of LQI. Such result can be reflected in the

robust control design by augmenting additional performance output z3 = y as shown in
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Figure 4.16: 2-DOF H, control structure augmented by z3

Fig. 4.16l Then the closed-loop transfer function matrix under consideration is changed to

2 W, (SGK, — M) w,S
r
Tz = ) = WuSKT WuKyS p (431)
23 WrSGK, WrS

where Wy is the weighting function for z3. The augmentation of y results in the increased
dimension of the transfer function and may lead to a more conservative controller due to
the definition of the H.,-norm.

Instead, we can reflect the effect of regulating y by defining the sensitivity weighting
function obtained from the analysis of the LQI, i.e., adding 3 in the cost function results in
attenuation of the slope around the crossover frequency of the sensitivity function. There-
fore, we designed another performance weighting function which has different slopes in the

low frequency region and around the crossover frequency as

5?24+ 3.511s + 0.5178

Wy =
P27 9 88452 + 2.027s + 0.01546

(4.32)

To limit control bandwidth, W, is designed as

ko
W = (s/ Ve T 2) (4.33)
S + Wy, 'ag/eu2

with the parameters M, = 10, w,, = 20, €,, = 0.01 and &y = 3. The designed weighting
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functions are represented in Fig.

The model reference is chosen as a second-order system:

Wy

52 + 20w, s + wp?’

M(s) =

We choose the damping of the model reference as ¢ = 0.9 and the natural frequency as

wy, = 2 rad/s.
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4.3.4 Synthesis results

The results of the designed robust controller with conventional weighting function set 1
(i.e. Wy and W,,;) are shown in Figs. and . The sensitivity function is shown in
Fig.|4.19(a). We can see that magnitude at the low-frequency is quite large, proportional to
the disturbance attenuation and the steady-state error performance. The Nyquist diagram
is illustrated in Fig. [4.19(b). The gain reduction margin for the unstable pole is —6.40
dB, and minimum phase margin is 27 deg. The circle left to the gain reduction margin
point is very small, which means the relatively poor performance of steady-state error and
disturbance rejection because the magnitude of the sensitivity function in the low frequency
is not small enough. The large circle in the right side denotes the first bending mode. Since
the robust control tries to roll-off beyond the control bandwidth, the Nyquist plot shows
that magnitudes of the bending modes from various perturbed closed-loop systems are
contained in the right side as shown in Fig. 4.19(c). The step response of the nominal plant
is shown in Fig. [4.19(d) and step responses of the uncertain plants are in Fig. {4.19(e).
Although all the sampled closed-loop systems are stable, there exists steady-state error as
explained before. The designed controller satisfies robust stability within given uncertainty
as shown in Fig. [4.19(f).

The synthesis results of the robust controller with improved weighting function set 2
(i.e. Wye and W,,9) are illustrated in Figs. and . The sensitivity function is shown
in Fig. 4.21|(a). We can see that magnitude at the low-frequency is improved. The Nyquist
diagram is illustrated in Fig. [4.21|(b). The gain reduction margin for the unstable pole is
—6.02 dB, and minimum phase margin is 25.7 deg. The circle left to the gain reduction
margin point is now large enough for the desired performance of steady-state error and
disturbance rejection. Also, the circles are on the right side, which says that the bending
modes also become smaller than before. This means that gain stabilization of the bending
modes is conducted as well as phase stabilization. In Fig. 4.21|c), the Nyquist plot shows

that the magnitudes of the bending modes from various perturbed closed-loop systems are
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contained in the small region away from the critical point. The step response of the nominal
plant is shown in Fig. [4.21)(d). The step responses of the uncertain plants are improved as

shown in Fig. 4.21|e) while maintaining robust stability as shown in Fig. 4.21{f).
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Figure 4.22: Two-loop control structure

4.3.5 Comparison study

In this section, a controller used in [36] is examined for comparison study. In [36], to
achieve sufficiently robust characteristic, a two-loop control structure is adopted as shown
in Fig. [£.22] The original, uncertain plant G is preliminarily stabilized by using a direct
output feedback controller K;gg. Then the standard H,, controller denoted as K is
applied to these pre-stabilized plant (G’) to improve robustness. This two-loop structure is
adopted by the fact that robust control is not always effective in unstable systems.

The above two-loop structure can be rearranged as 2-DOF control structure used in

this study by following process:

u= Krqc [Ke (r —y) — ]
= Kroa K (r—vy)— Krocy
= (KraKs)m — (Ko Ks + Kiga) y (4.34)

The two-loop controller consists of the feedforward controller KigeK~ and the feedback
controller K ga(Ks+1) as shown in Eq. . Therefore, it can be said that this two-loop
structure controller is a special case of 2-DOF structure controller.

There, the feedback controller can be divided into Kjoc and (K + 1). At first, the
robust controller K, is designed to stabilize uncertain flexible modes in the high-frequency

region. However K, effect is changed to the combination of Ky g¢ and (Ko + 1). As a

5 - 1
"':I'H-_E _'H.I.- ok |
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result, characteristic of K, in the high-frequency region such as roll-off effect vanished as
shown in Fig. 4.23] This makes the closed-loop system unstable when large uncertainty is
incorporated in the high-frequency region.

The result of the two-loop controller is shown in Fig. [£.24] Since the roll-off effect of
K vanished, the Nyquist plot of the uncertain plant is similar to LQG controller case. As
a result, The step response of the uncertain plant diverge, which does not satisfy robust
stability. The comparison result of step response is shown in Fig. 4.25. The response of
LQI is sluggish compared with 2-DOF H, and two-loop controller. The two-loop controller
response is similar to 2-DOF H, controller but oscillation occurs. This oscillation is caused
by the low gain margin and phase margin. The comparison of the gain margin and phase

margin are summarized in table
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Table 4.2: Comparison of GM and PM

Nominal case

Method  Gain reduction margin (dB) Gain margin (dB) Phase margin (Deg)

2-DOF H, -6.02 10.14 25.68
LQI -6.85 12.87 25.3
Two-loop -4.94 9.66 21.2

Worst case from 50 samples

Method  Gain reduction margin (dB) Gain margin (dB) Phase margin (Deg)

2-DOF H, -4.90 3.21 22.13
LQI -5.14 -1.54 21.45
Two-loop -3.24 -0.97 15.27
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4.4 Numerical simulation

Since the system parameters such as mass, thrust and aerodynamic properties vary depend-
ing on the time, gain scheduling is necessary to obtain satisfactory closed-loop performance.

A linear time varying system can be represented as parameter dependent system:

& = A(p)z + B(p)u

y=C(p)z+ D(p)u (4.35)

where p = (p1(t), pa(t),...,ps(t)) is the scheduling parameter vector. By assuming that
the system matrices of Eq. (4.35)) are affine in p, the matrices of the state-space can be

represented by affine functions of the parameters as

A(p) = AO +P1A1 +-- +psAs
B(p) = By +p1 By + - - - + ps B,
C(p) = Co+pi1Ci + -+ psC

D(p) :D0+p1D1+"'+pst

where A;, B;, C;, D; are constant matrices that do not depend on the parameters.
An affine parameter-dependent system can be converted to an equivalent polytopic

system as
q
S(p) =S+ S+ .. +0gS, Y =1 a>0
i=1

In the above expression Sy, S, ..., .S, are the vertex systems

S; = L i=1,...q (4.36)
C; D,
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and oy, ..., a, are called the polytopic coordinates of S(p). In this way, the polytopic system
S(p) is a convex combination of the system matrices Sy, Ss, ..., S,.

Following above assumptions, the robust controllers are designed at each linearized
design point in the corresponding moment of time. The parameter-dependent controller
can be represented as

K(p) = i = Ag(p)zk + Bi(p)y (437)

u = Ck(p)xr + Dr(p)u

whose system matrix has the polytopic representation

A B I Ari Bri 1
) Belp) | _ S|l TP Y a=1, (4.38)
Cr(p) Dk(p) i—1 Cri Dy i1

where Ay, Bii, Cki, Dy, are the controller system marices designed at each linearization
point 7.

To implement the proposed controller to the launch vehicle dynamics, nine controllers
are designed at every fifteen seconds (from 0 to 125 sec). The state-space matrices of
the controller at the corresponding flight time are obtained by convex interpolation of
the controller set. The singular value plot of the gain-scheduled controller is shown in
Fig.[4.26] The result shows that gain-scheduled controller with the vertex representation has
smooth singular value through entire operation time. The 6-DOF simulation is conducted
to demonstrate gain-scheduled robust controller. The guidance commands are generated
before the flight by using sequential VMC. The closed-loop system with the designed robust
controller follows the reference input satisfactorily as shown in Fig. [£.27]
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Figure 4.27: 6-DOF simulation results




Conclusions

This dissertation proposes a rapid and reliable optimal trajectory generation method and
a non-conservative robust controller for the unstable and flexible launch vehicle. The main

results of this study are summarized as follows:

e A rapid and reliable optimal trajectory generation method for a launch vehicle is pro-
posed through the utilization of the virtual motion camouflage (VMC). VMC uses
a so-called prey motion and reference point to construct a subspace in which the
solution trajectory is generated. By the virtue of this subspace search, the overall
dimension of the optimization problem is reduced. In practice, this reduction in di-
mension decreases the computational time significantly compared to traditional direct
input programming. Also, in the VMC approach, specific optimal parameters are cal-
culated rather than optimized to satisfy the equality boundary conditions. The fact
that no equality constraints are involved in the optimization also makes the conver-
gence easier. In contrast with the indirect method, the parameters to be optimized
in the VMC approaches are physically meaningful and defining a reasonable initial

guess is not difficult.
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e An interactive optimization algorithm is proposed to find a feasible solution easier
by adding the constraint correction step. Since the VMC is a subspace problem, the
feasible solution may not exist when subspace is not properly constructed. To address
this problem, the quadratic programming is formulated to find a direction along
which the parameters defining the subspace can be improved. Via a computationally
fast quadratic programming, specific parameters (prey and reference point) can be
refined quickly and sequentially. As a result, the proposed interactive optimization is

insensitive to initial guess of the optimization parameters.

A non-conservative 2-DOF H, controller for the unstable and flexible launch vehicle
is designed. The objective of the robust control is to provide sufficient margins for
the launch vehicle dynamics and to enhance the speed of the closed-loop response.
The key of the control design is to overcome conservativeness of the robust control. It
is found that 2-DOF control structure which uses feedforward and feedback control
together is suitable and adequate for this kind of system. The baseline controllers
are designed using the optimal control such as set-point LQG and LQI prior to ro-
bust control. In order to see which shape of the sensitivity function is desirable, the
different performance indices are defined when designing baseline controllers. After
implementation and analysis of the baseline controllers, a non-conventional sensitiv-
ity weighting function is devised that has different slopes in the low frequency and
around crossover frequency, which results in improvement of the performance with-
out loss of robustness. This result cannot be accomplished using typical weighting

functions such as low-pass filter types, as shown in the simulation.

Overall, the integration of the proposed trajectory generation algorithm and the ro-
bust controller provides complete guidance and control for a flexible launch vehicle

during ascent phase flight.
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