32 research outputs found

    Identification of genetic variants associated with Huntington's disease progression: a genome-wide association study

    Get PDF
    Background Huntington's disease is caused by a CAG repeat expansion in the huntingtin gene, HTT. Age at onset has been used as a quantitative phenotype in genetic analysis looking for Huntington's disease modifiers, but is hard to define and not always available. Therefore, we aimed to generate a novel measure of disease progression and to identify genetic markers associated with this progression measure. Methods We generated a progression score on the basis of principal component analysis of prospectively acquired longitudinal changes in motor, cognitive, and imaging measures in the 218 indivduals in the TRACK-HD cohort of Huntington's disease gene mutation carriers (data collected 2008–11). We generated a parallel progression score using data from 1773 previously genotyped participants from the European Huntington's Disease Network REGISTRY study of Huntington's disease mutation carriers (data collected 2003–13). We did a genome-wide association analyses in terms of progression for 216 TRACK-HD participants and 1773 REGISTRY participants, then a meta-analysis of these results was undertaken. Findings Longitudinal motor, cognitive, and imaging scores were correlated with each other in TRACK-HD participants, justifying use of a single, cross-domain measure of disease progression in both studies. The TRACK-HD and REGISTRY progression measures were correlated with each other (r=0·674), and with age at onset (TRACK-HD, r=0·315; REGISTRY, r=0·234). The meta-analysis of progression in TRACK-HD and REGISTRY gave a genome-wide significant signal (p=1·12 × 10−10) on chromosome 5 spanning three genes: MSH3, DHFR, and MTRNR2L2. The genes in this locus were associated with progression in TRACK-HD (MSH3 p=2·94 × 10−8 DHFR p=8·37 × 10−7 MTRNR2L2 p=2·15 × 10−9) and to a lesser extent in REGISTRY (MSH3 p=9·36 × 10−4 DHFR p=8·45 × 10−4 MTRNR2L2 p=1·20 × 10−3). The lead single nucleotide polymorphism (SNP) in TRACK-HD (rs557874766) was genome-wide significant in the meta-analysis (p=1·58 × 10−8), and encodes an aminoacid change (Pro67Ala) in MSH3. In TRACK-HD, each copy of the minor allele at this SNP was associated with a 0·4 units per year (95% CI 0·16–0·66) reduction in the rate of change of the Unified Huntington's Disease Rating Scale (UHDRS) Total Motor Score, and a reduction of 0·12 units per year (95% CI 0·06–0·18) in the rate of change of UHDRS Total Functional Capacity score. These associations remained significant after adjusting for age of onset. Interpretation The multidomain progression measure in TRACK-HD was associated with a functional variant that was genome-wide significant in our meta-analysis. The association in only 216 participants implies that the progression measure is a sensitive reflection of disease burden, that the effect size at this locus is large, or both. Knockout of Msh3 reduces somatic expansion in Huntington's disease mouse models, suggesting this mechanism as an area for future therapeutic investigation

    Mitigation of NADPH Oxidase 2 Activity as a Strategy to Inhibit Peroxynitrite Formation

    No full text
    International audienceUsing a high-throughput screening (HTS)-compatible assays for superoxide and hydrogen peroxide, we identified potential inhibitors of NADPH oxidase (Nox2) isoform from a small library of bioactive compounds. By using multiple probes (hydroethidine, hydropropidine, Amplex Red, and coumarin boronate) with well-defined redox chemistry that form highly diagnostic marker products upon reaction with superoxide (O 2 • –), hydrogen peroxide (H 2 O 2), and peroxynitrite (ONOO –), the number of false positives was greatly decreased. Selected hits for Nox2 were further screened for their ability to inhibit ONOO – formation in activated macrophages. New diagnostic marker product for ONOO – is reported. We conclude that the newly developed HTS/ROS assays could also be used to identify potential inhibitors of ONOO – formed from Nox2-derived O 2 • – and nitric oxide synthase (NOS)-derived nitric oxide

    Carvedilol Phenocopies PGC-1α Overexpression to Alleviate Oxidative Stress, Mitochondrial Dysfunction and Prevent Doxorubicin-Induced Toxicity in Human iPSC-Derived Cardiomyocytes

    No full text
    Doxorubicin (DOX), one of the most effective and widely used anticancer drugs, has the major limitation of cancer treatment-related cardiotoxicity (CTRTOX) in the clinic. Reactive oxygen species (ROS) generation and mitochondrial dysfunction are well-known consequences of DOX-induced injury to cardiomyocytes. This study aimed to explore the mitochondrial functional consequences and associated mechanisms of pretreatment with carvedilol, a ß-blocking agent known to exert protection against DOX toxicity. When disease modeling was performed using cultured rat cardiac muscle cells (H9c2 cells) and human iPSC-derived cardiomyocytes (iPSC-CMs), we found that prophylactic carvedilol mitigated not only the DOX-induced suppression of mitochondrial function but that the mitochondrial functional readout of carvedilol-pretreated cells mimicked the readout of cells overexpressing the major regulator of mitochondrial biogenesis, PGC-1α. Carvedilol pretreatment reduces mitochondrial oxidants, decreases cell death in both H9c2 cells and human iPSC-CM and maintains the cellular ‘redox poise’ as determined by sustained expression of the redox sensor Keap1 and prevention of DOX-induced Nrf2 nuclear translocation. These results indicate that, in addition to the already known ROS-scavenging effects, carvedilol has a hitherto unrecognized pro-reducing property against the oxidizing conditions induced by DOX treatment, the sequalae of DOX-induced mitochondrial dysfunction and compromised cell viability. The novel findings of our preclinical studies suggest future trial design of carvedilol prophylaxis, such as prescreening for redox state, might be an alternative strategy for preventing oxidative stress writ large in lieu of the current lack of clinical evidence for ROS-scavenging agents

    Mitochondria-Targeted Analogues of Metformin Exhibit Enhanced Antiproliferative and Radiosensitizing Effects in Pancreatic Cancer Cells

    No full text
    International audienceMetformin (Met) is an approved antidiabetic drug currently being explored for repurposing in cancer treatment based on recent evidence of its apparent chemopreventive properties. Met is weakly cationic and targets the mitochondria to induce cytotoxic effects in tumor cells, albeit not very effectively. We hypothesized that increasing its mitochondria-targeting potential by attaching a positively charged lipophilic substituent would enhance the antitumor activity of Met. In pursuit of this question, we synthesized a set of mitochondria-targeted Met analogues (Mito-Mets) with varying alkyl chain lengths containing a triphenylphosphonium cation (TPP+). In particular, the analogue Mito-Met(10), synthesized by attaching TPP+ to Met via a 10-carbon aliphatic side chain, was nearly 1,000 times more efficacious than Met at inhibiting cell proliferation in pancreatic ductal adenocarcinoma (PDAC). Notably, in PDAC cells, Mito-Met(10) potently inhibited mitochondrial complex I, stimulating superoxide and AMPK activation, but had no effect in nontransformed control cells. Moreover, Mito-Met(10) potently triggered G(1) cell-cycle phase arrest in PDAC cells, enhanced their radiosensitivity, and more potently abrogated PDAC growth in preclinical mouse models, compared with Met. Collectively, our findings show how improving the mitochondrial targeting of Met enhances its anticancer activities, including aggressive cancers like PDAC in great need of more effective therapeutic options. (C) 2016 AACR
    corecore