
Visibly Linear Dynamic Logic∗

Alexander Weinert1 and Martin Zimmermann2

1 Reactive Systems Group, Saarland University, Saarbrücken, Germany
weinert@react.uni-saarland.de

2 Reactive Systems Group, Saarland University, Saarbrücken, Germany
zimmermann@react.uni-saarland.de

Abstract
We introduce Visibly Linear Dynamic Logic (VLDL), which extends Linear Temporal Logic (LTL)
by temporal operators that are guarded by visibly pushdown languages over finite words. In
VLDL one can, e.g., express that a function resets a variable to its original value after its execution,
even in the presence of an unbounded number of intermediate recursive calls. We prove that
VLDL describes exactly the ω-visibly pushdown languages. Thus it is strictly more expressive
than LTL and able to express recursive properties of programs with unbounded call stacks.

The main technical contribution of this work is a translation of VLDL into ω-visibly pushdown
automata of exponential size via one-way alternating jumping automata. This translation yields
exponential-time algorithms for satisfiability, validity, and model checking. We also show that
visibly pushdown games with VLDL winning conditions are solvable in triply-exponential time.
We prove all these problems to be complete for their respective complexity classes.
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1 Introduction

Linear Temporal Logic (LTL) [9] is widely used for the specification of non-terminating
systems. Its popularity is owed to its simple syntax and intuitive semantics, as well as to the
exponential compilation property, i.e., for each LTL formula there exists an equivalent Büchi
automaton of exponential size. Due to the latter property, there exist algorithms for model
checking in polynomial space and for solving infinite games in doubly-exponential time.

While LTL suffices to express properties of circuits and non-recursive programs with
bounded memory, its application to real-life programs is hindered by its inability to express
recursive properties. In fact, LTL is too weak to even express all ω-regular properties.
There are several approaches to address the latter shortcoming, by augmenting LTL, for
example, with regular expressions [7, 10], finite automata on infinite words [11], and right-
linear grammars [13]. We concentrate on the approach of Linear Dynamic Logic (LDL) [10],
which guards the globally- and eventually-operators of LTL with regular expressions. While
the LTL-formula Fψ simply means “either now, or at some point in the future, ψ holds”,
the corresponding LDL operator 〈r〉ψ means “There exists an infix matching the regular
expression r starting at the current position, and ψ holds true after that infix”.
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28:2 Visibly Linear Dynamic Logic

The logic LDL captures the ω-regular languages. In spite of its greater expressive power,
LDL still enjoys the exponential compilation property, hence there exist algorithms for
model checking and solving infinite games in polynomial space and doubly-exponential time,
respectively.

While the expressive power of LDL is sufficient for many specifications, it is still not
able to reason about recursive properties of systems. In order to address this shortcoming,
we replace the regular languages guarding the temporal operators with visibly pushdown
languages (VPLs) [2]. We consider VPLs specified by visibly pushdown automata (VPAs) [2]
in this work.

A VPA is a pushdown automaton that operates over a fixed partition of the input alphabet
into calls, returns and local actions. In contrast to traditional pushdown automata, VPAs
may only push symbols onto the stack when reading calls and may only pop symbols off the
stack when reading returns. Moreover, they may not even inspect the topmost symbol of the
stack when not reading returns. Thus, the height of the stack after reading a word is known
in advance for all VPAs using the same partition of the input alphabet. Due to this, VPAs
are closed under union and intersection, as well as complementation. The class of languages
accepted by VPAs is known as visibly pushdown languages.

The class of such languages over infinite words, i.e., ω-visibly pushdown languages, are
known to allow for the specification of many important properties in program verification
such as “there are infinitely many positions at which at most two functions are active”, which
expresses repeated returns to a main-loop, or “every time the program enters a module m
while p holds true, p holds true upon exiting m” [2]. The extension of VPAs to their variant
operating on infinite words is, however, not well-suited to the specification of such properties
in practice, as Boolean operations on such automata do not preserve the logical structure
of the original automata. By guarding its temporal operators with VPAs, VLDL allows for
modular specification of recursive properties while capturing ω-VPAs.

1.1 Our contributions
We introduce VLDL and study its expressiveness and algorithmic properties.

Firstly, we provide translations from VLDL to VPAs over infinite words, so-called ω-VPAs,
and vice versa. For the direction from logic to automata we translate VLDL formulas into
one-way alternating jumping automata (1-AJA), which are known to be translatable into
ω-VPAs of exponential size due to Bozzelli [4]. For the direction from automata to logic we
use a translation of ω-VPAs into deterministic parity stair automata (PSA) by Löding et
al. [8], which we then translate into VLDL formulas.

Secondly, we prove the satisfiability problem and the validity problem for VLDL to
be ExpTime-complete. Membership in ExpTime follows from the previously mentioned
constructions, while we show ExpTime-hardness of the problems by a reduction from the
word problem for polynomially space-bounded alternating Turing machines adapting a similar
reduction by Bouajjani et al. [3].

As a third result, we show that model checking visibly pushdown systems against VLDL
specifications is ExpTime-complete as well. Membership in ExpTime follows from ExpTime-
membership of the model checking problem for 1-AJAs against visibly pushdown systems.
ExpTime-hardness follows from ExpTime-hardness of the validity problem for VLDL.

Finally, solving visibly pushdown games with VLDL winning conditions is proven to be
3ExpTime-complete. Membership in 3ExpTime follows from the exponential translation
of VLDL formulas into ω-VPAs and the membership of solving pushdown games against
ω-VPA winning conditions in 2ExpTime due to Löding et al. [8]. 3ExpTime-hardness is
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due to a reduction from solving pushdown games against LTL specifications, again due to
Löding et al. [8].

Our results show that VLDL allows for the concise specification of important properties
in a logic with intuitive semantics. In the case of satisfiability and model checking, the
complexity jumps from PSpace-completeness for LDL to ExpTime-completeness. For solving
infinite games, we gain an exponent moving from 2ExpTime-completeness to 3ExpTime-
completeness.

We choose VPAs for the specification of guards in order to simplify arguing about the
expressive power of VLDL. In order to simplify the modeling of ω-VPLs, other formalisms
that capture VPLs over finite words may be used. We discuss one such formalism in the
conclusion.

All proofs omitted due to space restrictions can be found in the full version [12].

1.2 Related Work

The need for specification languages able to express recursive properties has been identified
before and there exist other approaches to using visibly pushdown languages over infinite
words for specifications, most notably CaRet [1], and, more recently, VLTL [5]. While VLTL
captures the class of ω-visibly pushdown languages, CaRet captures only a strict subset of it.
For both logics there exist exponential translations into ω-VPAs. In this work, we provide
exponential translations from VLDL to ω-VPAs and vice versa. Hence, CaRet is strictly less
powerful than VLDL, but every CaRet formula can be translated into an equivalent VLDL
formula, albeit with a doubly-exponential blowup. Similarly, every VLTL formula can be
translated into an equivalent VLDL formula and vice versa, with doubly-exponential blowup
in both directions.

In contrast to VLTL, which introduces substitution operators to regular expressions
(replacing occurrences of local actions by well-matched words), VLDL instead extends the
concepts introduced for LTL and LDL with visibly pushdown automata. Hence, specifications
written in VLDL are modular and have an intuitive semantics, in particular for practitioners
already used to LTL.

Other logical characterizations of visibly pushdown languages include characterizations by
a fixed-point logic [4] and by monadic second order logic augmented with a binary matching
predicate (MSOµ) [2]. Even though these logics also capture the class of visibly pushdown
languages, they feature neither an intuitive syntax nor intuitive semantics and thus are less
applicable than VLDL in a practical setting.

2 Preliminaries

In this section we introduce the basic notions used in the remainder of this work. A pushdown
alphabet Σ̃ = (Σc,Σr,Σl) is a finite set Σ that is partitioned into calls Σc, returns Σr and
local actions Σl. We write w = w0 · · ·wn and α = α0α1α2 · · · for finite and infinite words,
respectively. The stack height sh(w) reached after reading w is defined inductively as
sh(ε) = 0, sh(wc) = sh(w) + 1 for c ∈ Σc, sh(wr) = max{0, sh(w) − 1} for r ∈ Σr, and
sh(wl) = sh(w) for l ∈ Σl. A call c ∈ Σc at some position k of a word w is matched if there
exists a k′ > k with wk′ ∈ Σr and sh(w0 · · ·wk) − 1 = sh(w0 · · ·wk′). The return at the
smallest such position k′ is the matching return of c. We define steps(α) := {k ∈ N | ∀k′ ≥
k. sh(α0 · · ·αk′) ≥ sh(α0 · · ·αk)} as the positions reaching a lower bound on the stack height.
Note that 0 ∈ steps(α) and that steps(α) is infinite for infinite words α.

FSTTCS 2016
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Visibly Pushdown Systems. A visibly pushdown system (VPS) S = (Q, Σ̃,Γ,∆) consists
of a finite set Q of states, a pushdown alphabet Σ̃, a stack alphabet Γ, which contains a
stack-bottom marker ⊥, and a transition relation

∆ ⊆ (Q× Σc ×Q× (Γ \ {⊥})) ∪ (Q× Σr × Γ×Q) ∪ (Q× Σl ×Q).

A configuration (q, γ) of S is a pair of a state q ∈ Q and a stack content γ ∈ Γc = (Γ\{⊥})∗ ·⊥.
The VPS S induces the configuration graphGS = (Q×Γc, E) with E ⊆ ((Q×Γc)×Σ×(Q×Γc))
and ((q, γ), a, (q′, γ′)) ∈ E if, and only if, either (i) a ∈ Σc, (q, a, q′, A) ∈ ∆, and Aγ = γ′, (ii)
a ∈ Σr, (q, a,⊥, q′) ∈ ∆, and γ = γ′ = ⊥, (iii) a ∈ Σr, (q, a,A, q′) ∈ ∆, A 6= ⊥, and γ = Aγ′,
or (iv) a ∈ Σl, (q, a, q′) ∈ ∆, and γ = γ′. For an edge e = ((q, γ), a, (q′, γ′)), a is the label
of e. A run π = (q0, γ0) · · · (qn, γn) of S on w = w0 · · ·wn−1 is a sequence of configurations
where ((qi, γi), wi, (qi+1, γi+1)) ∈ E in GS for all i ∈ [0;n− 1].

The VPS S is deterministic if for each vertex (q, γ) in GS and each a ∈ Σ there exists at
most one outgoing a-labeled edge from (q, γ). In figures, we write ↓A, ↑A and → to denote
pushing and popping A onto and off the stack, and local actions, respectively.

(Büchi) Visibly Pushdown Automata. A visibly pushdown automaton (VPA) [2] is a six-
tuple A = (Q, Σ̃,Γ,∆, I, F ), where (Q, Σ̃,Γ,∆) is a VPS and I, F ⊆ Q are sets of initial
and final states. A run (q0, γ0)(q1, γ1)(q2, γ2) · · · of A is initial if (q0, γ0) = (qI ,⊥) for some
qI ∈ I. A finite run π = (q0, γ0) · · · (qn, γn) is accepting if qn ∈ F . A Büchi VPA (BVPA) is
syntactically identical to a VPA, but we only consider runs over infinite words. An infinite
run is Büchi-accepting if it visits states in F infinitely often. A (B)VPA A accepts a word w
(an infinite word α) if there exists an initial (Büchi-)accepting run of A on w (α). The family
of languages accepted by (B)VPA is denoted by (ω-)VPL.

3 Visibly Linear Dynamic Logic

We fix a finite set P of atomic propositions and a partition Σ̃ = (Σc,Σr,Σl) of 2P throughout
this work. The syntax of VLDL is defined by the grammar

ϕ := p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | 〈A〉ϕ | [A]ϕ,

where p ∈ P and A ranges over testing visibly pushdown automata (TVPA) over
Σ̃. A TVPA A = (Q, Σ̃,Γ,∆, I, F, t) consists of a VPA (Q, Σ̃,Γ,∆, I, F ) and a partial
function t mapping states to VLDL formulas over Σ̃.1 Such an automaton accepts an
infix αi · · ·αj of an infinite word α0α1α2 · · · if the embedded VPA has an initial accept-
ing run (qi, γi) · · · (qj+1, γj+1) on αi · · ·αj such that, if qi+k is marked with ϕ by t, then
αi+kαi+k+1αi+k+2 · · · satisfies ϕ.

We define the size of ϕ as the sum of the number of subformulas (including those contained
as tests in automata and their subformulas) and of the numbers of states of the automata
contained in ϕ. As shorthands, we use tt := p ∨ ¬p and ff := p ∧ ¬p for some atomic
proposition p. Even though the testing function t is defined as a partial function, we generally
assume it is total by setting t : q 7→ tt if q /∈ domain(t).

Let α = α0α1α2 · · · be an infinite word over 2P and let k ∈ N be a position in α. We
define the semantics of VLDL inductively via

1 Obviously, there are some restrictions on the nesting of tests into automata. More formally, we require
the subformula relation to be acyclic as usual.
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(α, k) |= p if, and only if, p ∈ αk,
(α, k) |= ¬ϕ if, and only if, (α, k) 6|= ϕ,
(α, k) |= ϕ0 ∧ ϕ1 if, and only if, (α, k) |= ϕ0 and (α, k) |= ϕ1, and dually for ϕ0 ∨ ϕ1,
(α, k) |= 〈A〉ϕ if, and only if, there exists l ≥ k s.t. (k, l) ∈ RA(α) and (α, l) |= ϕ,
(α, k) |= [A]ϕ if, and only if, for all l ≥ k, (k, l) ∈ RA(α) implies (α, l) |= ϕ,

where RA(α) contains all (k, l) such that A accepts αk · · ·αl−1. Formally, we define

RA(α) := {(k, l) ∈ N× N | ∃ init. acc. run (qk, σk) · · · (ql, σl) of A on αk · · ·αl−1

and ∀m ∈ {k, . . . , l}. (α,m) |= t(qm)}.

We write α |= ϕ as a shorthand for (α, 0) |= ϕ and say that α is a model of ϕ in this case.
The language of ϕ is defined as L(ϕ) := {α ∈ (2P )ω | α |= ϕ}. As usual, disjunction and
conjunction are dual, as well as the 〈A〉-operator and the [A ]-operator, which can be dualized
using De Morgan’s law and the logical identity [A ]ϕ ≡ ¬〈A〉¬ϕ, respectively. Note that the
latter identity only dualizes the temporal operator, but does not require complementation
of the automaton guarding the operator. We additionally allow the use of derived boolean
operators such as → and ↔, as they can easily be reduced to the basic operators ∧, ∨ and ¬.

The logic VLDL combines the expressive power of visibly pushdown automata with the
intuitive temporal operators of LDL. Thus, it allows for concise and intuitive specifications
of many important properties in program verification [2]. In particular, VLDL allows for the
specification of recursive properties, which makes it more expressive than both LDL [10] and
LTL [9]. In fact, we can embed LDL in VLDL in linear time.

I Lemma 1. For any LDL formula ψ over P we can effectively construct a VLDL formula ϕ
over Σ̃ := (∅, ∅, 2P ) in linear time such that L(ψ) = L(ϕ).

Proof. We define ϕ by structural induction over ψ. The only interesting case is ψ = 〈r〉ψ′,
since all other cases follow from closure properties and duality. We obtain the VLDL formula
ϕ′ over Σ̃ equivalent to ψ′ by induction and construct the finite automaton Ar from r using
the construction from [6]. The automaton Ar contains tests, but is not equipped with a
stack. Since Σ̃ = (∅, ∅, 2P ), we can interpret Ar as a TVPA without changing the language
it recognizes. We call the TVPA A′r and define ϕ = 〈A′r〉ϕ′. J

Since LTL can be in turn embedded in LDL in linear time, Lemma 1 directly implies
the embeddability of LTL in VLDL in linear time. Note that this proof motivates the use
of TVPAs instead of VPAs without tests as guards in order to obtain a concise formalism.
We later show that removing tests from these automata does not change the expressiveness
of VLDL. It is, however, open whether it is possible to translate even LTL formulas into
VLDL formulas without tests in polynomial time.

I Example 2. Assume that we have a program that may call some module m and has the
observable atomic propositions P := {c, r, p, q}, where c and r denote calls to and returns
from m, and p and q are arbitrary propositions.

We now construct a formula that describes the condition “If p holds true immediately
after entering m, it shall hold immediately after the corresponding return from m as well” [1].
For the sake of readability, we assume that the program never emits both c and r in the
same step. Moreover, we assume that the program emits at least one atomic proposition in
each step. Since we want to count the calls and returns occurring in the program using the
stack, we pick the pushdown alphabet Σ̃ = (Σc,Σr,Σl) such that P ′ ⊆ P is in Σc if c ∈ P ′,
P ′ ∈ Σr if r ∈ P ′, but c /∈ P ′, and P ′ ∈ Σl otherwise.

FSTTCS 2016
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Ac
Σc, ↓A

Σr, ↑A
Σl,→

Σc, ↓A
Ar

Σc, ↓A
Σr, ↑A

Σl,→
Σr, ↑⊥

Figure 1 The automata Ac and Ar for Example 2.

Σc, ↓P
Σr, ↑P

Σc, ↓P
Σr, ↑P

Σl,→
Σpl ,→

Σpc , ↓ P̄ Σpr , ↑ P̄

Σpc , ↓P
Σpr , ↑P Σ¬pl ,→

Σ¬pc , ↓PΣ¬pr , ↑P

Σ¬pc , ↓ P̄
Σ¬pr , ↑ P̄

Figure 2 A BVPA A specifying the same language as ϕ from Example 2.

The formula ϕ := [Ac ](p→ 〈Ar〉p) then captures the condition, with Ac and Ar as shown
in Figure 1. The automaton Ac accepts all finite words ending with a call to m, whereas the
automaton Ar accepts all words ending with a single unmatched return.

Figure 2 shows a BVPA A describing the same specification as ϕ. Here, we use Σp
x =

{P ′ ∈ Σx | p ∈ P ′} and Σ¬px = {P ′ ∈ Σx | p /∈ P ′} for x ∈ {c, r, l}. In contrast to ϕ, which
uses only a single stack symbol, namely A, the BVPA A has to rely on the two stack symbols
P and P̄ to track whether or not p held true after entering the module m. Moreover, there
is no direct correlation between the logical structure of the specification and the structure of
the BVPA, which exemplifies the difficulty of maintaining specifications given as BVPAs.

In order to abstain from using automata, it would also be possible to formalize the
specification using a VLTL formula [5] that describes the same language as ϕ. One such
formula would be ψ := (α; tt)|α〉ff, where the visibly rational expression α is defined as

α := [(p ∪ q)∗c [(q�) ∪ (p�p)] r(p ∪ q)∗]	� x� (p ∪ q)∗

that uses the additional local action �. Again, the conditional nature of the specification
is lost in the translation to VLTL. Moreover, the temporal nature is not well visible in the
formal specification due to use of the non-standard future weak power operator ψ|α〉ψ.

In contrast to these two alternative formal specifications, VLDL offers a readable and
intuitive formalism that combines the well-known standard acceptors for visibly pushdown
languages with guarded versions of the widely used temporal operators of LTL and the
readability of classical logical operators.

4 VLDL Captures ω-VPL

In this section we show that VLDL characterizes ω-VPL. Recall that a language is in ω-VPL
if, and only if, there exists a BVPA recognizing it. We provide effective constructions for
transforming BVPAs into equivalent VLDL formulas and vice versa.

I Theorem 3. For any language of infinite words L ⊆ Σω there exists a BVPA A with
L(A) = L if, and only if, there exists a VLDL formula ϕ with L(ϕ) = L. There exist effective
translations for both directions.
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In Section 4.1 we show the construction of VLDL formulas from BVPAs via deterministic
parity stair automata. In Section 4.2 we construct one-way alternating jumping automata
from VLDL formulas. These automata are known to be translatable into equivalent BVPAs.
Both constructions incur an exponential blowup in size. In the construction of BVPAs from
VLDL formulas, this blowup is shown to be unavoidable. It remains open whether the blowup
can be avoided in the construction for the other direction.

4.1 From Stair Automata to VLDL
In this section we construct a VLDL formula of exponential size that is equivalent to a given
BVPA A. To this end, we first transform A into an equivalent deterministic parity stair
automaton (DPSA) [8] in order to simplify the translation. A PSA A = (Q, Σ̃,Γ,∆, I,Ω)
consists of a VPS S = (Q, Σ̃,Γ,∆), a set of initial states I, and a coloring Ω: Q→ N. The
automaton A is deterministic if S is deterministic and |I| = 1.

A run ρ of A on a word α is a run of the VPS S on α. Recall that a step is a po-
sition at which the stack height reaches a lower bound for the remainder of the word.
A stair automaton only evaluates the parity condition at the steps of the word. For-
mally, a run ρα = (q0, σ0)(q1, σ1)(q2, σ2) · · · on the word α induces a sequence of colors
Ω(ρα) := Ω(qk0)Ω(qk1)Ω(qk2) · · · , where k0 < k1 < k2 · · · is the ordered enumeration of the
steps of α. A DPSA A accepts an infinite word α if there exists an initial run ρ of A on α
such that the largest color appearing infinitely often in Ω(ρ) is even. The language L(A) of a
parity stair automaton A is the set of all words α that are accepted by A.

I Lemma 4 ([8]). For every BVPA A there exists an effectively constructible equivalent
DPSA Ast with |Ast | ∈ O(2|A|).

Since the stair automaton Ast equivalent to a BVPA A is deterministic, the acceptance
condition collapses to the requirement that the unique run of Ast on α must be accepting.
Another important observation is that every time Ast reaches a step of α, the stack may be
cleared. Since the topmost element of the stack will never be popped after reaching a step,
and since VPAs cannot inspect the top of the stack, neither this symbol, nor the ones below
it have any influence on the remainder of the run.

Thus, the formula equivalent to Ast has to specify the following constraints: There must
exist some state q of even color such that the stair automaton visits q at a step, afterwards
the automaton may never visit a higher color again at a step, and each visit to q at a step
must be followed by another visit to q at a step. All of these conditions can be specified by
VLDL formulas in a straightforward way, since Ast is deterministic and since there is only a
finite number of colors in Ast .

I Lemma 5. For each DPSA A there exists an effectively constructible equivalent VLDL
formula ϕA with |ϕA| ∈ O(|A|2).

Proof. We first construct a formula ϕst such that (α, k) |= ϕst if, and only if, k ∈ steps(α):
Let Ast be a VPA that accepts upon reading an unmatched return, constructed similarly
to Ar from Example 2. Then we can define ϕst := [Ast ]ff, i.e., we demand that the stack
height never drops below the current level by disallowing Ast to ever accept.

In the remainder of this proof, we write I′AF ′ to denote the TVPA that we obtain from
combining the VPS of A with the sets I ′ and F ′ of initial and final states. Additionally, we
require that I′AF ′ does not accept the empty word. This is trivially true if the intersection of
I ′ and F ′ is empty, and easily achieved by adding a new initial state if it is not. Furthermore,
we define Qeven := {q ∈ Q | Ω(q) is even} and Q>q := {q′ ∈ Q | Ω(q′) > Ω(q)}.

FSTTCS 2016
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Recall that A accepts a word α if the largest color seen infinitely often at a step during
the run of A on α is even. This is equivalent to the existence of a state q as described above.
These conditions are formalized as

ϕ1(q) := 〈IA{q}〉(ϕst ∧ [{q}AQ>q ]¬ϕst)

and

ϕ2(q) := [IA{q} ](ϕst → 〈{q}A{q}〉ϕst),

respectively. We obtain ϕA :=
∨
q∈Qeven

(ϕ1(q) ∧ ϕ2(q)).
The construction of ϕ2(q) relies heavily on the determinism of the DPSA A. If A were

not deterministic, the universal quantification over all runs ending in q at a step would also
capture eventually rejecting partial runs. Since there only exists a single run of A on the
input word, however, ϕA has the intended meaning. Furthermore, both ϕ1(q) and ϕ2(q)
use the observation that we are able to clear the stack every time that we reach a step.
Thus, although the stack contents are not carried over between the different automata, the
concatenation of the automata does not change the resulting run. Hence, we have α ∈ L(A)
if, and only if, (α, 0) |= ϕA and thus L(A) = L(ϕA). J

Combining Lemmas 4 and 5 yields that VLDL is at least as expressive as BVPA. The
construction inherits an exponential blowup from the construction of DPSAs from BVPAs.
This shows one direction of Theorem 3.

In the next section we show that each VLDL formula ϕ can be transformed into an
equivalent VPA with exponential blowup. Thus, the construction from the proof of Lemma 5
yields a normal form for VLDL formulas. In particular, formulas in this normal form only
use temporal operators up to nesting depth three.

I Proposition 6. Let ϕ be a VLDL formula. There exists an equivalent formula ϕ′ =∨n
i=1(〈Ai,1〉(ϕst∧ [Ai,2 ]¬ϕst)∧ [Ai,1 ](ϕst → 〈Ai,3〉ϕst)), for some n that is doubly-exponential

in |ϕ|, where all Ai,j share the same underlying VPS, ϕst is fixed over all ϕ, and neither
Ai,j nor ϕst contain tests.

Proposition 6 shows that tests are syntactic sugar but removing them incurs a doubly-
exponential blowup. It remains open whether this blowup can be avoided.

4.2 From VLDL to 1-AJA
We now construct, for a given VLDL formula ϕ, an equivalent BVPA Aϕ. A direct construc-
tion would incur a non-elementary blowup due to the unavoidable exponential blowup of
complementing BVPAs. Moreover, it would be difficult to handle runs of the VPAs over
finite words and their embedded tests, which run in parallel. Thus, we extend a construction
from [6], where a similar challenge was addressed using alternating automata. Instead
of alternating visibly pushdown automata, however, we use one-way alternating jumping
automata (1-AJA) [4], which can be translated into equivalent BVPAs of exponential size.

A 1-AJA A = (Q, Σ̃, δ, I,Ω) consists of a finite state set Q, a visibly pushdown alpha-
bet Σ̃, a set I ⊆ Q of initial states, a transition function δ : Q× Σ → B+(CommsQ), with
CommsQ := {→,→a} × Q × Q, where B+(CommsQ) denotes the set of positive Boolean
formulas over CommsQ, and a coloring Ω: Q→ N. We define |A| = |Q|. Intuitively, when
the automaton is in state q at position k of the word α = α0α1α2 · · · it guesses a set of
commands R ⊆ CommsQ that is a model of δ(q, αk). It then spawns one copy of itself for
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c l c r r c c l r l l
q0 q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11
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α
q

γ

· · ·
· · ·

· · ·

Figure 3 Run of a VPA A on the word clcrrcclrll.

each command (d, q, q′) ∈ R and executes the command with that copy. If d =→a and if αk
is a matched call, the copy jumps to the position of the matching return of αk and transitions
to state q′. Otherwise the automaton advances to position k + 1 and transitions to state
q. All copies of A continue in parallel. A single copy of A is successful if the highest color
visited infinitely often is even. A 1-AJA accepts α if all of its copies are successful.

I Lemma 7 ([4]). For every 1-AJA A there exists an effectively constructible equivalent
BVPA Avp with |Avp| ∈ O(2|A|).

For a given VLDL formula ϕ we now inductively construct a 1-AJA that recognizes the
same language as ϕ. The main difficulty lies in the translation of formulas of the form 〈A〉ϕ,
since these require us to translate TVPAs over finite words into 1-AJAs over infinite words.
We do so by adapting the idea for the translation from BVPAs to 1-AJAs from [4] and by
combining it with the bottom-up translation from LDL into alternating automata in [6].

I Lemma 8. For any VLDL formula ϕ there exists an effectively constructible equivalent
1-AJA Aϕ with |Aϕ| ∈ O(|ϕ|2).

Proof. We construct the automaton inductively over the structure of ϕ. The case ϕ = p is
trivial. For Boolean operations, we obtain Aϕ by closure of 1-AJAs under these operations [4].
If ϕ = [A ]ϕ′ we use the identity [A]ϕ′ ≡ ¬〈A〉¬ϕ′ and construct A¬〈A〉¬ϕ′ instead.

We now consider ϕ = 〈A〉ϕ′, where A is some TVPA and sketch the construction of Aϕ.
By induction we obtain a 1-AJA A′ equivalent to ϕ′. Aϕ simulates a run of A on a prefix
of α and, upon acceptance, nondeterministically transitions into A′.

Consider an initial run of A on such a prefix w. Since w is finite, steps(w) is finite as well.
Hence, each stack height may only be encountered finitely often at a step. At the last visit
to a step of a given height, A either accepts, or it reads a call action. The symbol pushed
onto the stack in that case does not influence the remainder of the run. Such a run on the
word clcrrcclrll is shown in Figure 3, where c is a call, r is a return, and l is a local action.

The idea for the simulation of the run of A is to have a main copy of Aϕ that jumps
along the steps of the input word. When Aϕ encounters a call c ∈ Σc it guesses whether
or not A encounters the current stack height again. If it does, then Aϕ guesses q′, q′′ ∈ Q
and A ∈ Γ such that (q, c, q′, A) is a transition of A, it jumps to the matching return of c in
state q′′ and spawns a copy that verifies that A can go from the configuration (q′, A) to the
configuration (q′′,⊥). If A never returns to the current stack height, then Aϕ only guesses
q′ ∈ Q and A ∈ Γ such that (q, c, q′, A) is a transition of A, moves to state q′, and stores in
its state space that it may not read any returns anymore. This is repeated until the main
copy guesses that A′ accepts.

The run of such a 1-AJA corresponding to the run of A shown in Figure 3 is shown in
Figure 4. The gray line indicates the stack height, while the solid and dashed black paths
represent the run of the main automaton and of the verifying automata, respectively. Dotted
lines indicate spawning a verifying automaton. For readability, the figure does not include
copies of the automata that are spawned to verify that the tests of A hold true. States of
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Figure 4 Behavior of 1-AJA on the word clcrrcclrll.

the form (q, 0) denote the main copy of the automaton that has not yet ignored any call
actions, while states of the form (q, 1) denote copies that have done so. The states (q, q′, A)
denote verification copies that verify A’s capability to move from the configuration (q, A) to
the configuration (q′,⊥). The verification automata work similarly to the main automaton,
except that they assume that all pushed symbols to be eventually popped and reject if they
encounter an unmatched call. Details can be found in the full version [12]. J

By combining Lemmas 7 and 8 we see that BVPAs are at least as expressive as VLDL
formulas. This proves the direction from logic to automata of Theorem 3. The construction
via 1-AJAs yields automata of exponential size in the number of states. This blowup is
unavoidable, which can be shown by relying on the analogous lower bound for translating
LTL into Büchi automata, obtained by encoding an exponentially bounded counter in LTL.

I Lemma 9. There exists a pushdown alphabet Σ̃ such that for all n ∈ N there exists a
language Ln that is defined by a VLDL formula over Σ̃ of polynomial size in n, but every
BVPA over Σ̃ recognizing Ln has at least exponentially many states in n.

After having shown that VLDL has the same expressiveness as BVPAs, we now turn our
attention to several decision problems for this logic. Namely, we study the satisfiability and
the validity problem, as well as the model checking problem. Moreover, we consider the
problem of solving visibly pushdown games with VLDL winning conditions.

5 Satisfiability and Validity are ExpTime-complete

We say that a VLDL formula ϕ is satisfiable if it has a model. Dually, we say that ϕ is valid
if all words are models of ϕ. Instances of the satisfiability and validity problem consist of a
VLDL formula ϕ and ask whether ϕ is satisfiable and valid, respectively. Both problems are
decidable in exponential time. We also show both problems to be ExpTime-hard.

I Theorem 10. The satisfiability and the validity problem for VLDL are ExpTime-complete.

Proof. Due to duality, we only show ExpTime-completeness of the satisfiability problem.
Membership follows from the 1-AJA-emptiness-problem being in ExpTime [4] and Lemma 8.

We show ExpTime-hardness by a polynomial-time reduction from the word problem
for polynomially space-bounded alternating Turing machines. Our proof is based on the
reduction of this problem to the problem of model checking pushdown systems against LTL
specifications from the full version of [3]. In that reduction, a run of an alternating Turing
machine is encoded as a pair of a pushdown system, which checks the general format of the
encoding using its stack, and an LTL specification, which checks additional properties without
using a stack. We adapt this proof by checking the properties asserted by the pushdown
system with a visibly pushdown automaton. Also, we encode the specification of the general
format in a VLDL formula. Technical details can be found in the full version [12]. J
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6 Model Checking is ExpTime-complete

We now consider the model checking problem for VLDL. An instance of the model checking
problem consists of a VPS S, an initial state qI of S, and a VLDL formula ϕ and asks
whether traces(S, qI) ⊆ L(ϕ) holds true, where traces(S, qI) denotes the set obtained by
mapping each run of S starting in qI to its sequence of labels. This problem is decidable in
exponential time due to Lemma 8 and an exponential-time model checking algorithm for
1-AJAs [4]. Moreover, the problem is ExpTime-hard, as it subsumes the validity problem.

I Theorem 11. Model checking VLDL specifications against VPS’s is ExpTime-complete.

Proof. Membership in ExpTime follows from Lemma 8 and the membership of the problem
of checking visibly pushdown systems against 1-AJA specifications in ExpTime [4]. Moreover,
since the validity problem for VLDL is ExpTime-hard and since validity of ϕ is equivalent to
traces(Suniv) ⊆ ϕ, where Suniv with traces(Suniv) = Σω is effectively constructible in constant
time, the model checking problem for VLDL is ExpTime-hard as well. J

7 Solving VLDL Games is 3ExpTime-complete

In this section we investigate visibly pushdown games with winning conditions given by VLDL
formulas. We consider games with two players, called Player 0 and Player 1, respectively.

A two-player game with VLDL winning condition G = (V0, V1,Σ, E, vI , `, ϕ) consists of
two disjoint, at most countably infinite sets V0 and V1 of vertices, where we define V := V0∪V1,
a finite alphabet Σ, an initial state vI ∈ V , a set of edges E ⊆ V × V , a labeling ` : V → Σ,
and a VLDL formula ϕ over some partition of Σ, called the winning condition.

A play π = v0v1v2 · · · of G is an infinite sequence of vertices of G with (vi, vi+1) ∈ E for
all i ≥ 0. The play π is initial if v0 = vI . It is winning for Player 0 if `(v1)`(v2)`(v3) · · · 2 is
a model of ϕ. Otherwise π is winning for Player 1.

A strategy for Player i is a function σ : V ∗Vi → V , such that (v, σ(w · v)) ∈ E for all
v ∈ Vi, w ∈ V ∗. We call a play π = v0v1v2 · · · consistent with σ if σ(π′) = vn+1 for all finite
prefixes π′ = v0 · · · vn of π with vn ∈ Vi. A strategy σ is winning for Player i if all initial
plays that are consistent with σ are winning for that player. We say that Player i wins G if
she has a winning strategy. If either player wins G, we say that G is determined.

A visibly pushdown game (VPG) with a VLDL winning condition H = (S, Q0, Q1, qI , ϕ)
consists of a VPS S = (Q, Σ̃,Γ,∆), a partition of Q into Q0 and Q1, an initial state
qI ∈ Q, and a VLDL formula ϕ over Σ̃. The VPG H then defines the two-player game
GH = (V0, V1,Σ, E, vI , `, ϕ) with Vi := Qi×((Γ\{⊥})∗ ·⊥)×Σ, vI = (qI ,⊥, a) for some a ∈ Σ
(recall that the trace disregards the label of the initial vertex), ((q, γ, a), (q′, γ′, a′)) ∈ E

if there is an a′-labeled edge from (q, γ) to (q, γ′) in the configuration graph GS , and
` : (q, γ, a) 7→ a. Solving a VPG H means deciding whether Player 0 wins GH.

I Proposition 12. VPGs with VLDL winning conditions are determined.

Proof. Since each VLDL formula defines a language in ω-VPL due to Theorem 3, each VPG
with VLDL winning condition is equivalent to a VPG with an ω-VPL winning condition.
These are known to be determined [8]. J

2 Note that the sequence of labels trace omits the label of the first vertex for technical reasons.
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(i)
q q′,## q′,# q′

a, ↑A l,→ l,→

(ii)
q q′, B# q′,# q′

a, ↑A c, ↓B l,→

(iii)
q q′, BC q′, B q′

a, ↑A c, ↓C c, ↓B

Figure 5 Construction of a VPG from a pushdown game for transitions of the forms
(i) (q, a, A, q′, ε), (ii) (q, a, A, q′, B), and (iii) (q, a, A, q′, BC).

We show that solving VPGs with winning conditions specified in VLDL is harder than
solving VPGs with winning conditions specified by BVPAs, i.e., they can be solved in triply
exponential time. Moreover, they are complete for this complexity class.

I Theorem 13. Solving VPGs with VLDL winning conditions is 3ExpTime-complete.

Proof. We solve VPGs with VLDL winning conditions by constructing a BVPA Aϕ from the
winning condition ϕ and by then solving the visibly pushdown game with a BVPA winning
condition [8]. This approach takes triply-exponential time in |ϕ| and exponential time in |S|.

We show 3ExpTime-hardness of the problem by a reduction from solving pushdown
games with LTL winning conditions, which is known to be 3ExpTime-complete [8]. Instead
of, e.g., popping one symbol off the stack and pushing two others onto it, the resulting VPG
splits these operations into individual pop- and push-operations, which are then carried out
sequentially. The actions that still have to be carried out can be tracked using additional
vertices. Since each stack operation can be split into at most three individual operations,
this incurs only a linear blowup in the size of both the game and the winning condition.

A pushdown game with an LTL winning condition H = (S, VI , VO, ψ) is defined similarly
to a VPG, except for the relaxation that S may now be a traditional pushdown system
instead of a visibly pushdown system. Specifically, we have ∆ ⊆ (Q × Γ × Σ × Q × Γ≤2),
where Γ≤2 denotes the set of all words over Γ of at most two letters. Stack symbols are
popped off the stack using transitions of the form (q, A, a, q′, ε), the top of the stack can be
tested and changed with transitions of the form (q, A, a, q′, B), and pushes are realized with
transitions of the form (q, A, a, q′, BC). Additionally, the winning condition is given as an
LTL formula instead of a VLDL formula. The two-player game GH is defined analogously to
the visibly pushdown game.

Since the pushdown game admits transitions such as (q, A, a, q′, BC), which pop A off
the stack and push B and C onto it, we need to split such transitions into several transitions
in the visibly pushdown game. We modify the original game such that every transition of
the original game is modeled by three transitions in the visibly pushdown game, up to two of
which may be dummy actions that do not change the stack. As each transition may perform
at most three operations on the stack, we can keep track of the list of changes still to be
performed in the state space. We perform these actions using dummy letters c and l, which
we add to Σ and read while performing the required actions on the stack. We choose the
vertices V ′X = VX ∪ (VX × (Γ ∪ {#})≤2) and the alphabet Σ̃ = ({c},Σ, {l}).

We transform H as shown in Figure 5 and obtain the VPG H′. Moreover, we transform
the winning condition ψ of H into ψ′ by inductively replacing each occurrence of Xψ by X3ψ′

and each occurrence of ψ1Uψ2 by (ψ′1 ∨ c ∨ l)U(ψ′2 ∧ ¬c ∧ ¬l). We subsequently translate
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Figure 6 Formalisms capturing (subsets of) ω-VPL and translations between them.

the resulting LTL formula ψ′ into an equivalent VLDL formula ϕ using Lemma 1. The
input player wins H′ with the winning condition ϕ if and only he wins H with the winning
condition ψ. Hence, solving VPGs with VLDL winning conditions is 3ExpTime-hard. J

8 Conclusion

We have introduced Visibly Linear Dynamic Logic (VLDL) which strengthens Linear Dynamic
Logic (LDL) by replacing the regular languages used as guards in the latter logic with visibly
pushdown languages. VLDL captures precisely the class of ω-visibly pushdown languages. We
have provided effective translations from VLDL to BVPA and vice versa with an exponential
blowup in size in both directions. From automata to logic, this blowup cannot be avoided
while it remains open whether or not it can be avoided in the other direction.

Figure 6 gives an overview over the known formalisms that capture ω-VPL and the
translations between them. Our constructions are marked by solid lines, all others by dotted
lines. All constructions are annotated with the blowup they incur.

In particular, there exist translations between VLTL and VLDL via BVPAs that incur a
doubly-exponential blowup in both directions, as shown in Figure 6. In spite of this blowup the
satisfiability problem and the model checking problem for both logics are ExpTime-complete.
It remains open whether there exist efficient translations between the two logics.

We showed the satisfiability and the emptiness problem for VLDL, as well as model
checking visibly pushdown systems against VLDL specifications, to be ExpTime-complete.
Also, we proved that solving visibly pushdown games with VLDL winning conditions is
3ExpTime-complete.

Extending VLDL by replacing the guards with a more expressive family of languages
quickly yields undecidable decision problems. In fact, using deterministic pushdown languages
as guards already renders all decision problems discussed in this work undecidable [12].

In contrast to LDL [10] and VLTL [5], VLDL uses automata to define guards instead of
regular or visibly rational expressions. We are currently investigating a variant of VLDL
where the VPAs guarding the temporal operators are replaced by visibly rational expressions
(with tests), which is closer in spirit to LDL.

Acknowledgments. The authors would like to thank Laura Bozzelli for providing the full
version of [4] and Christof Löding for pointing out the 3ExpTime-hardness of solving infinite
games for visibly pushdown games against LTL specifications.
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