185 research outputs found

    Experimental gold nephropathy in guinea pigs: Detection of autoantibodies to renal tubular antigens

    Get PDF
    Experimental gold nephropathy in guinea pigs: Detection of autoantibodies to renal tubular antigens. Renal tubular dysfunction was induced in Hartley guinea pigs by injection of sodium aurothiomalate (gold) as manifested by excretion of tubular basement membrane (TBM) antigen and renal tubular epithelial (RTE) antigen in urine and tubular proteinuria. Following the tubular dysfunction, autoimmune tubulointerstitial nephritis (TIN) and/or immune complex nephropathy (ICN) developed in a large proportion of animals. TIN was associated with anti-TBM antibodies, and the histological features were characterized by tubular lesions with interstitial mononuclear cell infiltration, destruction of tubules, and interstitial fibrosis. In ICN, the glomerular lesions consisted of partial thickening of capillary walls and mesangial cellularity, and granular immune deposits were seen in the mesangial area and on capillary walls. Furthermore, electron-dense deposits were demonstrated in the mesangial area and in the glomerular basement membrane (GBM) by electron microscopy. Anti-RTE antibodies were detected in the sera and eluates from the kidney of animals with ICN. RTE antigens were also detected in the glomerular deposits by indirect immunofluorescence using anti-guinea pig RTE antibody. These results suggest that TBM and RTE antigens released from renal tubules damaged by a direct toxic action of gold may lead to antibody formation against these antigens and induce TIN and/or ICN

    Detection of nephritogenic antigen from the Lewis rat renal tubular basement membrane

    Get PDF
    Detection of nephritogenic antigen from the Lewis rat renal tubular basement membrane. Immunopathogenicity of trypsin-solubilized or non-solubilized renal tubular basement membrane (TBM) of the Lewis (LEW) rat was investigated. Autoimmune tubulointerstitial nephritis (TIN) was induced in BALB/c mice by immunization with trypsin-solubilized LEW rat TBM, while immunization with non-solubilized TBM did not produce the disease. Based on this preliminary experiment we studied the characterization of immunogenic and nephritogenic TBM antigen of the LEW rat. TIN was characterized by severe mononuclear cell infiltrates with multi-nucleated giant cells in the interstitium, tubular destruction and intensive IgG and C3 deposits along the TBM. Anti-TBM antisera and eluate from the nephritic mouse kidneys reacted with the TBM of normal LEW rat kidney by immunofluorescence. LEW rat TBM was also detected immunofluorescently by using antisera from BALB/c mice immunized with autologous trypsin-solubilized TBM. A competitive inhibition test revealed a higher titer of anti-TBM antibody in the eluate than in the adsorption-treated antisera per μg IgG. Immunoblotting showed one reactive band with a molecular weight of 45,000 daltons, and the blotting patterns in tryptic TBM of the Brown Norway (BN) and LEW rats appeared similar. Amino acid analysis of nephritogenic LEW rat tryptic TBM showed that it contained no hydroxyproline and hydroxylysine, suggesting that this TBM preparation was not collagenous. These findings suggest that tryptic digestion contributes to the release of nephritogenic antigen from the LEW rat TBM and that this antigen system might participate in the immune system involved in the anti-TBM associated TIN that is well known to be induced by non-digested TBM of TBM antigen positive animals

    Role of IL-23 and Th17 Cells in Airway Inflammation in Asthma

    Get PDF
    Asthma is characterized by chronic airway inflammation with intense eosinophil and lymphocyte infiltration, mucus hyperproduction, and airway hyperresponsiveness. Accumulating evidence indicates that antigen-specific Th2 cells and their cytokines such as IL-4, IL-5, and IL-13 orchestrate these pathognomonic features of asthma. In addition, we and others have recently shown that IL-17-producing CD4+ T cells (Th17 cells) and IL-23, an IL-12-related cytokine that is essential for survival and functional maturation of Th17 cells, are involved in antigen-induced airway inflammation. In this review, our current understanding of the roles of IL-23 and Th17 cells in the pathogenesis of allergic airway inflammation will be summarized

    The Endogenous Th17 Response in NO<inf>2</inf>-Promoted Allergic Airway Disease Is Dispensable for Airway Hyperresponsiveness and Distinct from Th17 Adoptive Transfer

    Get PDF
    Severe, glucocorticoid-resistant asthma comprises 5-7% of patients with asthma. IL-17 is a biomarker of severe asthma, and the adoptive transfer of Th17 cells in mice is sufficient to induce glucocorticoid-resistant allergic airway disease. Nitrogen dioxide (NO2) is an environmental toxin that correlates with asthma severity, exacerbation, and risk of adverse outcomes. Mice that are allergically sensitized to the antigen ovalbumin by exposure to NO2 exhibit a mixed Th2/Th17 adaptive immune response and eosinophil and neutrophil recruitment to the airway following antigen challenge, a phenotype reminiscent of severe clinical asthma. Because IL-1 receptor (IL-1R) signaling is critical in the generation of the Th17 response in vivo, we hypothesized that the IL-1R/Th17 axis contributes to pulmonary inflammation and airway hyperresponsiveness (AHR) in NO2-promoted allergic airway disease and manifests in glucocorticoid-resistant cytokine production. IL-17A neutralization at the time of antigen challenge or genetic deficiency in IL-1R resulted in decreased neutrophil recruitment to the airway following antigen challenge but did not protect against the development of AHR. Instead, IL-1R-/- mice developed exacerbated AHR compared to WT mice. Lung cells from NO2-allergically inflamed mice that were treated in vitro with dexamethasone (Dex) during antigen restimulation exhibited reduced Th17 cytokine production, whereas Th17 cytokine production by lung cells from recipient mice of in vitro Th17-polarized OTII T-cells was resistant to Dex. These results demonstrate that the IL-1R/Th17 axis does not contribute to AHR development in NO2-promoted allergic airway disease, that Th17 adoptive transfer does not necessarily reflect an endogenously-generated Th17 response, and that functions of Th17 responses are contingent on the experimental conditions in which they are generated. © 2013 Martin et al

    Exacerbation of cigarette smoke-induced pulmonary inflammation by Staphylococcus aureus Enterotoxin B in mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cigarette smoke (CS) is a major risk factor for the development of COPD. CS exposure is associated with an increased risk of bacterial colonization and respiratory tract infection, because of suppressed antibacterial activities of the immune system and delayed clearance of microbial agents from the lungs. Colonization with <it>Staphylococcus aureus </it>results in release of virulent enterotoxins, with superantigen activity which causes T cell activation.</p> <p>Objective</p> <p>To study the effect of <it>Staphylococcus aureus </it>enterotoxin B (SEB) on CS-induced inflammation, in a mouse model of COPD.</p> <p>Methods</p> <p>C57/Bl6 mice were exposed to CS or air for 4 weeks (5 cigarettes/exposure, 4x/day, 5 days/week). Endonasal SEB (10 μg/ml) or saline was concomitantly applied starting from week 3, on alternate days. 24 h after the last CS and SEB exposure, mice were sacrificed and bronchoalveolar lavage (BAL) fluid and lung tissue were collected.</p> <p>Results</p> <p>Combined exposure to CS and SEB resulted in a raised number of lymphocytes and neutrophils in BAL, as well as increased numbers of CD8<sup>+ </sup>T lymphocytes and granulocytes in lung tissue, compared to sole CS or SEB exposure. Moreover, concomitant CS/SEB exposure induced both IL-13 mRNA expression in lungs and goblet cell hyperplasia in the airway wall. In addition, combined CS/SEB exposure stimulated the formation of dense, organized aggregates of B- and T- lymphocytes in lungs, as well as significant higher CXCL-13 (protein, mRNA) and CCL19 (mRNA) levels in lungs.</p> <p>Conclusions</p> <p>Combined CS and SEB exposure aggravates CS-induced inflammation in mice, suggesting that <it>Staphylococcus aureus </it>could influence the pathogenesis of COPD.</p

    Interleukin-17 regulation: an attractive therapeutic approach for asthma

    Get PDF
    Interleukin (IL)-17 is recognized to play a critical role in numerous immune and inflammatory responses by regulating the expression of various inflammatory mediators, which include cytokines, chemokines, and adhesion molecules. There is growing evidence that IL-17 is involved in the pathogenesis of asthma. IL-17 orchestrates the neutrophilic influx into the airways and also enhances T-helper 2 (Th2) cell-mediated eosinophilic airway inflammation in asthma. Recent studies have demonstrated that not only inhibitor of IL-17 per se but also diverse regulators of IL-17 expression reduce antigen-induced airway inflammation, bronchial hyperresponsiveness, and Th2 cytokine levels in animal models of asthma. This review will summarize the role of IL-17 in the context of allergic airway inflammation and discuss the therapeutic potential of various strategies targeting IL-17 for asthma

    Anti-Malarial Drug Artesunate Attenuates Experimental Allergic Asthma via Inhibition of the Phosphoinositide 3-Kinase/Akt Pathway

    Get PDF
    , and has been shown to inhibit PI3K/Akt activity. We hypothesized that artesunate may attenuate allergic asthma via inhibition of the PI3K/Akt signaling pathway.Female BALB/c mice sensitized and challenged with ovalbumin (OVA) developed airway inflammation. Bronchoalveolar lavage fluid was assessed for total and differential cell counts, and cytokine and chemokine levels. Lung tissues were examined for cell infiltration and mucus hypersecretion, and the expression of inflammatory biomarkers. Airway hyperresponsiveness was monitored by direct airway resistance analysis. Artesunate dose-dependently inhibited OVA-induced increases in total and eosinophil counts, IL-4, IL-5, IL-13 and eotaxin levels in bronchoalveolar lavage fluid. It attenuated OVA-induced lung tissue eosinophilia and airway mucus production, mRNA expression of E-selectin, IL-17, IL-33 and Muc5ac in lung tissues, and airway hyperresponsiveness to methacholine. In normal human bronchial epithelial cells, artesunate blocked epidermal growth factor-induced phosphorylation of Akt and its downstream substrates tuberin, p70S6 kinase and 4E-binding protein 1, and transactivation of NF-κB. Similarly, artesunate blocked the phosphorylation of Akt and its downstream substrates in lung tissues from OVA-challenged mice. Anti-inflammatory effect of artesunate was further confirmed in a house dust mite mouse asthma model.Artesunate ameliorates experimental allergic airway inflammation probably via negative regulation of PI3K/Akt pathway and the downstream NF-κB activity. These findings provide a novel therapeutic value for artesunate in the treatment of allergic asthma

    Haemophilus influenzae Infection Drives IL-17-Mediated Neutrophilic Allergic Airways Disease

    Get PDF
    A subset of patients with stable asthma has prominent neutrophilic and reduced eosinophilic inflammation, which is associated with attenuated airways hyper-responsiveness (AHR). Haemophilus influenzae has been isolated from the airways of neutrophilic asthmatics; however, the nature of the association between infection and the development of neutrophilic asthma is not understood. Our aim was to investigate the effects of H. influenzae respiratory infection on the development of hallmark features of asthma in a mouse model of allergic airways disease (AAD). BALB/c mice were intraperitoneally sensitized to ovalbumin (OVA) and intranasally challenged with OVA 12–15 days later to induce AAD. Mice were infected with non-typeable H. influenzae during or 10 days after sensitization, and the effects of infection on the development of key features of AAD were assessed on day 16. T-helper 17 cells were enumerated by fluorescent-activated cell sorting and depleted with anti-IL-17 neutralizing antibody. We show that infection in AAD significantly reduced eosinophilic inflammation, OVA-induced IL-5, IL-13 and IFN-γ responses and AHR; however, infection increased airway neutrophil influx in response to OVA challenge. Augmented neutrophilic inflammation correlated with increased IL-17 responses and IL-17 expressing macrophages and neutrophils (early, innate) and T lymphocytes (late, adaptive) in the lung. Significantly, depletion of IL-17 completely abrogated infection-induced neutrophilic inflammation during AAD. In conclusion, H. influenzae infection synergizes with AAD to induce Th17 immune responses that drive the development of neutrophilic and suppress eosinophilic inflammation during AAD. This results in a phenotype that is similar to neutrophilic asthma. Infection-induced neutrophilic inflammation in AAD is mediated by IL-17 responses
    corecore