481 research outputs found

    Targeting bacterial cell division: A binding site-centered approach to the most promising inhibitors of the essential protein FtsZ

    Get PDF
    Binary fission is the most common mode of bacterial cell division and is mediated by a multiprotein complex denominated the divisome. The constriction of the Z-ring splits the mother bacterial cell into two daughter cells of the same size. The Z-ring is formed by the polymerization of FtsZ, a bacterial protein homologue of eukaryotic tubulin, and it represents the first step of bacterial cytokinesis. The high grade of conservation of FtsZ in most prokaryotic organisms and its relevance in orchestrating the whole division system make this protein a fascinating target in antibiotic research. Indeed, FtsZ inhibition results in the complete blockage of the division system and, consequently, in a bacteriostatic or a bactericidal effect. Since many papers and reviews already discussed the physiology of FtsZ and its auxiliary proteins, as well as the molecular mechanisms in which they are involved, here, we focus on the discussion of the most compelling FtsZ inhibitors, classified by their main protein binding sites and following a medicinal chemistry approach

    A selective alpha1D-adrenoreceptor antagonist inhibits human prostate cancer cell proliferation and motility "in vitro"

    Get PDF
    The progression of prostate cancer (PC) to a metastatic hormone refractory disease is the major contributor to the overall cancer mortality in men, mainly because the conventional therapies are generally ineffective at this stage. Thus, other therapeutic options are needed as alternatives or in addition to the classic approaches to prevent or delay tumor progression. Catecholamines participate to the control of prostate cell functions by the activation of alpha1-adrenoreceptors (alpha1-AR) and increased sympathetic activity has been linked to PC development and evolution. Molecular and pharmacological studies identified three alpha1-AR subtypes (A, B and D), which differ in tissue distribution, cell signaling, pharmacology and physiological role. Within the prostate, alpha1A-ARs mainly control stromal cell functions, while alpha1B- and alpha1D- subtypes seem to modulate glandular epithelial cell growth. The possible direct contribution of alpha1D-ARs in tumor biology is supported by their overexpression in PC. The studies here presented investigate the "in vitro" antitumor action of A175, a selective alpha1D-AR antagonist we have recently obtained by modifying the potent, but not subtype-selective alpha1-AR antagonist (S)-WB4101, in the hormone-refractory PC3 and DU145 PC cell lines. The results indicate that A175 has an alpha1D-AR-mediated significant and dose-dependent antiproliferative action that possibly involves the induction of G0/G1 cell cycle arrest, but not apoptosis. In addition, A175 reduces cell migration and adhesiveness to culture plates. In conclusion, our work clarified some cellular aspects promoted by alpha1D-AR activity modulation and supports a further pharmacological approach in the cure of hormone-refractory PC, by targeting specifically this AR subtype

    Key targets for multi-target ligands designed to combat neurodegeneration

    Get PDF
    This article is based upon work from COST Action CM1103 “Structure-based drug design for diagnosis and treatment of neurological diseases: dissecting and modulating complex function in the monoaminergic systems of the brain”, supported by COST (European Cooperation in Science and Technology). The authors thank the participants in COST Action for productive collaborations. M. Majekova acknowledges the support of VEGA 2/0033/14, and M. Medina the support of MINECO, Spain (BIO2013-42978-P)Growing evidence supports the view that neurodegenerative diseases have multiple and common mechanisms in their aetiologies. These multifactorial aspects have changed the broadly common assumption that selective drugs are superior to ‘dirty drugs’ for use in therapy. This drives the research in studies of novel compounds that might have multiple action mechanisms. In neurodegeneration, loss of neuronal signaling is a major cause of the symptoms, so preservation of neurotransmitters by inhibiting the breakdown enzymes is a first approach. Acetylcholinesterase (AChE) inhibitors are the drugs preferentially used in AD and that one of these, rivastigmine, is licensed also for PD. Several studies have shown that monoamine oxidase (MAO) B, located mainly in glial cells, increases with age and is elevated in Alzheimer (AD) and Parkinson’s Disease’s (PD). Deprenyl, a MAO B inhibitor, significantly delays the initiation of levodopa treatment in PD patients. These indications underline that AChE and MAO are considered a necessary part of multi-target designed ligands (MTDL). However, both of these targets are simply symptomatic treatment so if new drugs are to prevent degeneration rather than compensate for loss of neurotransmitters, then oxidative stress and mitochondrial events must also be targeted. MAO inhibitors can protect neurons from apoptosis by mechanisms unrelated to enzyme inhibition. Understanding the involvement of MAO and other proteins in the induction and regulation of the apoptosis in mitochondria will aid progress towards strategies to prevent the loss of neurons. In general, the oxidative stress observed both in PD and AD indicate that antioxidant properties are a desirable part of MTDL molecules. After two or more properties are incorporated into one molecule, the passage from a lead compound to a therapeutic tool is strictly linked to its pharmacokinetic and toxicity. In this context the interaction of any new molecules with cytochrome P450 and other xenobiotic metabolic processes is a crucial point. The present review covers the biochemistry of enzymes targeted in the design of drugs against neurodegeneration and the cytochrome P450-dependent metabolism of MTDLs.Publisher PDFPeer reviewe

    PROVA DI COLTIVAZIONE BIOLOGICA DI ANTICHI MAIS PIEMONTESI DESTINATI ALL'ALIMENTAZIONE UMANA

    Get PDF
    La ricerca sul territorio di varietà locali di mais ha permesso di individuare sette ecotipi caratteristici della nostra regione: Pignoletto Rosso, Pignoletto Giallo, Ottofile Giallo, Ottofile Bianco, Ottofile Rosso, Nostrano dell’Isola, Ostenga. Al fine di definire le caratteristiche agronomiche e l’attitudine a determinate trasformazioni per uso alimentare, verificare i livelli produttivi e la possibilità di coltivazione in agricoltura biologica, sono stati allestiti campi di confronto delle varietà piemontesi in diversi siti a vocazione maidicola. Inoltre sono state eseguite analisi qualitative delle produzioni ottenute, prove di trasformazione e verifica del livello di gradimento da parte dei consumatori

    Two patients with history of STEC-HUS, posttransplant recurrence and complement gene mutations

    Get PDF
    Hemolytic uremic syndrome (HUS) is a disease of microangiopathic hemolytic anemia, thrombocytopenia and acute renal failure. About 90% of cases are secondary to infections by Escherichia coli strains producing Shiga-like toxins (STEC-HUS), while 10% are associated with mutations in genes encoding proteins of complement system (aHUS). We describe two patients with a clinical history of STEC-HUS, who developed end-stage renal disease (ESRD) soon after disease onset. They received a kidney transplant but lost the graft for HUS recurrence, a complication more commonly observed in aHUS. Before planning a second renal transplantation, the two patients underwent genetic screening for aHUS-associated mutations that revealed the presence of a heterozygous CFI mutation in patient #1 and a heterozygous MCP mutation in patient #2, and also in her mother who donated the kidney. This finding argues that the two cases originally diagnosed as STEC-HUS had indeed aHUS triggered by STEC infection on a genetic background of impaired complement regulation. Complement gene sequencing should be performed before kidney transplantation in patients who developed ESRD following STEC-HUS since they may be undiagnosed cases of aHUS, at risk of posttransplant recurrence. Furthermore, genetic analysis of donors is mandatory before living-related transplantation to exclude carriers of HUS-predisposing mutations. Two patients with a clinical history of D+ hemolytic uremic syndrome associated with Shiga-toxin-producing 0157:H7 E. coli and recurrence in the kidney graft carry heterozygous mutations in the genes encoding complement factor I (patient 1) and membrane cofactor protein (patient 2). © Copyright 2013 The American Society of Transplantation and the American Society of Transplant Surgeons

    Functionalized mesoporous silica nanoparticles for oral delivery of budesonide

    Get PDF
    Non-functionalized and amino-functionalized mesoporous silica nanoparticle were loaded with anti-inflammatory drug budesonide and additionally post-coated with bioadhesive polymer (carbopol). TEM images showed spherical shape of the nanoparticles and slightly higher polydispersity after coating with carbopol. Nitrogen physisorption and thermogravimetic analysis revealed that more efficient loading and incorporation into the pores of nanoparticles was achieved with the amino-functionalized silica carrier. Infrared spectra indicated that the post-coating of these nanoparticles with carbopol led to the formation of bond between amino groups of the functionalized carrier and carboxyl groups of carbopol. The combination of amino-functionalization of the carrier with the post-coating of the nanoparticles sustained budesonide release. Further, an in vitro model of inflammatory bowel disease showed that the cytoprotective effect of budesonide loaded in the post-coated silica nanoparticles on damaged HT-29 cells was more pronounced compared to the cytoprotection obtained with pure budesonide
    • 

    corecore