357 research outputs found

    PACK CARBURIZING PADA SPROCKET SEPEDA MOTOR DENGAN MATERIAL BAJA KARBON RENDAH

    Get PDF
    High quality motorcycle sprocket with cheaper price has been achieved by giving additional processing to non original locally made sprocket such that it has an almost the same quality as the original Japanese made sprocket . The additional processing was pack carburizing which was done to the non-original sprocket, followed by quench hardening and tempering so that the quality of the non-original sprocket will be almost the same as the original sprocket. Pack carburizing was applied with active carbon as the carbon source and 10% BaCO3 as the energizer. This process was done at 950°C and one hour holding time. For heat treatment, the heating was done at 850°C for 15 minutes, followed by water quenching and tempering at 150°C for 30 minutes. The carburizing result indicated that there was a carbon penetration depth of about 1.05 mm. After tempering, an effective case depth of about 0.2 mm was achieved. The process variables for obtaining an effective case depth of original sprocket (0.2 mm) are selected by applying pack carburizing using active carbon granule with 10%wt BaCO3 as the carburizing medium, processed at 950°C for an hour, followed by water quenching from 850°C and tempering at 150°C for 30 minutes

    Investigating the effect of target of rapamycin kinase inhibition on the Chlamydomonas reinhardtii phosphoproteome: from known homologs to new targets

    Get PDF
    Recuperado de: https://www.biorxiv.org/content/10.1101/310102v1Target of rapamycin (TOR) kinase is a conserved regulator of cell growth whose activity is modulated in response to nutrients, energy and stress. Key proteins involved in the pathway are conserved in the model photosynthetic microalga Chlamydomonas reinhardtii, but the substrates of TOR kinase and downstream signaling network have not been elucidated. Our study provides a new resource for investigating the phosphorylation networks governed by the TOR kinase pathway in Chlamydomonas. We used quantitative phosphoproteomics to investigate the effects of inhibiting Chlamydomonas TOR kinase on dynamic protein phosphorylation. Wild-type and AZD-insensitive Chlamydomonas strains were treated with TOR-specific chemical inhibitors (rapamycin, AZD8055 and Torin1), after which differentially affected phosphosites were identified. Our quantitative phosphoproteomic dataset comprised 2547 unique phosphosites from 1432 different proteins. Inhibition of TOR kinase caused significant quantitative changes in phosphorylation at 258 phosphosites, from 219 unique phosphopeptides. Our results include Chlamydomonas homologs of TOR signaling-related proteins, including a site on RPS6 with a decrease in phosphorylation. Additionally, phosphosites on proteins involved in translation and carotenoid biosynthesis were identified. Follow-up experiments guided by these phosphoproteomic findings in lycopene beta/epsilon cyclase showed that carotenoid levels are affected by TORC1 inhibition and carotenoid production is under TOR control in algae.National Science Foundation CAREER MCB-155252

    Phosphorus Availability Regulates TORC1 Signaling via LST8 in Chlamydomonas

    Get PDF
    Target of rapamycin complex 1 (TORC1) is a central regulator of cell growth. It balances anabolic and catabolic processes in response to nutrients, growth factors, and energy availability. Nitrogen- and carbon-containing metabolites have been shown to activate TORC1 in yeast, animals, and plants. Here, we show that phosphorus (P) regulates TORC1 signaling in the model green alga Chlamydomonas (Chlamydomonas reinhardtii) via LST8, a conserved TORC1 subunit that interacts with the kinase domain of TOR. P starvation results in a sharp decrease in LST8 abundance and downregulation of TORC1 activity. A hypomorphic lst8 mutation resulted in decreased LST8 abundance, and it both reduced TORC1 signaling and altered the cellular response to P starvation. Additionally, we found that LST8 levels and TORC1 activity were not properly regulated in a mutant defective in the transcription factor PSR1, which is the major mediator of P deprivation responses in Chlamydomonas. Unlike wild-type cells, the psr1 mutant failed to downregulate LST8 abundance and TORC1 activity when under P limitation. These results identify PSR1 as an upstream regulator of TORC1 and demonstrate that TORC1 is a key component in P signaling in Chlamydomonas.España Ministerio de Economía y Competitividad (grants BFU2015-68216-P and PGC2018-099048- B-100 to J.L.C. and grant BIO2015-74432-JIN to M.E.P.-P.)National Science Foundation (CAREER award MCB-1552522 to L.M.H. and grant MCB-1616820 to J.G.U.)European Commission (grant number 750996

    Cell Size Checkpoint Control by the Retinoblastoma Tumor Suppressor Pathway

    Get PDF
    Size control is essential for all proliferating cells, and is thought to be regulated by checkpoints that couple cell size to cell cycle progression. The aberrant cell-size phenotypes caused by mutations in the retinoblastoma (RB) tumor suppressor pathway are consistent with a role in size checkpoint control, but indirect effects on size caused by altered cell cycle kinetics are difficult to rule out. The multiple fission cell cycle of the unicellular alga Chlamydomonas reinhardtii uncouples growth from division, allowing direct assessment of the relationship between size phenotypes and checkpoint function. Mutations in the C. reinhardtii RB homolog encoded by MAT3 cause supernumerous cell divisions and small cells, suggesting a role for MAT3 in size control. We identified suppressors of an mat3 null allele that had recessive mutations in DP1 or dominant mutations in E2F1, loci encoding homologs of a heterodimeric transcription factor that is targeted by RB-related proteins. Significantly, we determined that the dp1 and e2f1 phenotypes were caused by defects in size checkpoint control and were not due to a lengthened cell cycle. Despite their cell division defects, mat3, dp1, and e2f1 mutants showed almost no changes in periodic transcription of genes induced during S phase and mitosis, many of which are conserved targets of the RB pathway. Conversely, we found that regulation of cell size was unaffected when S phase and mitotic transcription were inhibited. Our data provide direct evidence that the RB pathway mediates cell size checkpoint control and suggest that such control is not directly coupled to the magnitude of periodic cell cycle transcription

    A new class of cyclin dependent kinase in chlamydomonas is required for coupling cell size to cell division

    Get PDF
    Citation: Li, Y., Liu, D., López-Paz, C., Olson, B. J. S. C., & Umen, J. G. (2016). A new class of cyclin dependent kinase in chlamydomonas is required for coupling cell size to cell division. eLife, 5(MARCH2016). doi:10.7554/eLife.10767Proliferating cells actively control their size by mechanisms that are poorly understood. The unicellular green alga Chlamydomonas reinhardtii divides by multiple fission, wherein a ‘counting’ mechanism couples mother cell-size to cell division number allowing production of uniform-sized daughters. We identified a sizer protein, CDKG1, that acts through the retinoblastoma (RB) tumor suppressor pathway as a D-cyclin-dependent RB kinase to regulate mitotic counting. Loss of CDKG1 leads to fewer mitotic divisions and large daughters, while mis-expression of CDKG1 causes supernumerous mitotic divisions and small daughters. The concentration of nuclear-localized CDKG1 in pre-mitotic cells is set by mother cell size, and its progressive dilution and degradation with each round of cell division may provide a link between mother cell-size and mitotic division number. Cell-size-dependent accumulation of limiting cell cycle regulators such as CDKG1 is a potentially general mechanism for size control. © Li et al

    ANALISIS PENGERASAN PERMUKAAN DAN STRUKTUR MIKRO BAJA AISI 1045 MELALUI PROSES NITRIDASI MENGGUNAKAN MEDIA UREA

    Get PDF
    ABSTRAKNitridasi bertujuan untuk mengeraskan permukaan baja yang bertujuan untuk meningkatkan sifat kimia dan mekanik.Nitridasi yang dilakukan adalah nitridasi padat menggunakan urea sebagai alternatif sumber Nitrogen yang akan berdifusi denganpermukaan logam dan membentuk nitrida besiFe4N. Dalam penelitian ini, pengujian dilakukan terhadap tiga sampel baja denganstandar AISI 1045. Dalam penelitian ini yang menjadi variabel adalah suhu nitridasi, yaitu 460oC, 510oC dan 560oC denganholding time dalam tungku, selama 4 jam. Hasil sampel yang telah dinitridasi selanjutnya dilakukan pengujian yang meliputipengujian kekerasan permukaan, distribusi kekerasan dan observasi struktur mikro. Dari hasil pengujian yang dilakukan, makadidapatkan kekerasan tertinggi dari ketiga sampel adalah sampel 1 yang dilakukan nitridasi pada suhu 460oC dengan hargakekerasan permukaan rata-rata 440,5 HVN kemudian posisi berikutnya berada pada sampel 2 yang dilakukan pada suhu 510oCdengan harga kekerasan permukaan 355,34 HVN, sedangkan sampel 3 yang dilakukan pada suhu 560oC dengan kekerasanpermukaan 265,62. Dengan hasil ini pengerasan permukaan baja AISI 1045 dengan menggunakan media urea sebagai sumbernitrogen dapat meningkatkan kekerasan permukaan baja tersebut.Keywords: Nitridasi, Nitrogen, Nitrida besiFe4N, Struktur mikro,AISI 104

    The Chlamydomonas genome project: A decade on

    Get PDF
    The green alga Chlamydomonas reinhardtii is a popular unicellular organism for studying photosynthesis, cilia biogenesis, and micronutrient homeostasis. Ten years since its genome project was initiated an iterative process of improvements to the genome and gene predictions has propelled this organism to the forefront of the omics era. Housed at Phytozome, the plant genomics portal of the Joint Genome Institute (JGI), the most up-to-date genomic data include a genome arranged on chromosomes and high-quality gene models with alternative splice forms supported by an abundance of whole transcriptome sequencing (RNA-Seq) data. We present here the past, present, and future of Chlamydomonas genomics. Specifically, we detail progress on genome assembly and gene model refinement, discuss resources for gene annotations, functional predictions, and locus ID mapping between versions and, importantly, outline a standardized framework for naming genes

    Synergism between Inositol Polyphosphates and TOR Kinase Signaling in Nutrient Sensing, Growth Control, and Lipid Metabolism in Chlamydomonas

    Get PDF
    The networks that govern carbon metabolism and control intracellular carbon partitioning in photosynthetic cells are poorly understood. Target of Rapamycin (TOR) kinase is a conserved growth regulator that integrates nutrient signals and modulates cell growth in eukaryotes, though the TOR signaling pathway in plants and algae has yet to be completely elucidated. We screened the unicellular green alga Chlamydomonas reinhardtii using insertional mutagenesis to find mutants that conferred hypersensitivity to the TOR inhibitor rapamycin. We characterized one mutant, vip1-1, that is predicted to encode a conserved inositol hexakisphosphate kinase from the VIP family that pyrophosphorylates phytic acid (InsP6) to produce the low abundance signaling molecules InsP7 and InsP8. Unexpectedly, the rapamycin hypersensitive growth arrest of vip1-1 cells was dependent on the presence of external acetate, which normally has a growth-stimulatory effect on Chlamydomonas. vip1-1 mutants also constitutively overaccumulated triacylglycerols (TAGs) in a manner that was synergistic with other TAG inducing stimuli such as starvation. vip1-1 cells had reduced InsP7 and InsP8, both of which are dynamically modulated in wild-type cells by TOR kinase activity and the presence of acetate. Our data uncover an interaction between the TOR kinase and inositol polyphosphate signaling systems that we propose governs carbon metabolism and intracellular pathways that lead to storage lipid accumulationPeer reviewe

    The Arabidopsis translocator protein (AtTSPO) is regulated at multiple levels in response to salt stress and perturbations in tetrapyrrole metabolism

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The translocator protein 18 kDa (TSPO), previously known as the peripheral-type benzodiazepine receptor (PBR), is important for many cellular functions in mammals and bacteria, such as steroid biosynthesis, cellular respiration, cell proliferation, apoptosis, immunomodulation, transport of porphyrins and anions. <it>Arabidopsis thaliana </it>contains a single <it>TSPO/PBR</it>-related gene with a 40 amino acid N-terminal extension compared to its homologs in bacteria or mammals suggesting it might be chloroplast or mitochondrial localized.</p> <p>Results</p> <p>To test if the TSPO N-terminal extension targets it to organelles, we fused three potential translational start sites in the <it>TSPO </it>cDNA to the N-terminus of GFP (<it>At</it>TSPO:eGFP). The location of the <it>At</it>TSPO:eGFP fusion protein was found to depend on the translational start position and the conditions under which plants were grown. Full-length <it>At</it>TSPO:eGFP fusion protein was found in the endoplasmic reticulum and in vesicles of unknown identity when plants were grown in standard conditions. However, full length <it>At</it>TSPO:eGFP localized to chloroplasts when grown in the presence of 150 mM NaCl, conditions of salt stress. In contrast, when <it>At</it>TSPO:eGFP was truncated to the second or third start codon at amino acid position 21 or 42, the fusion protein co-localized with a mitochondrial marker in standard conditions. Using promoter <it>GUS </it>fusions, qRT-PCR, fluorescent protein tagging, and chloroplast fractionation approaches, we demonstrate that <it>At</it>TSPO levels are regulated at the transcriptional, post-transcriptional and post-translational levels in response to abiotic stress conditions. Salt-responsive genes are increased in a <it>tspo-1 knock-down </it>mutant compared to wild type under conditions of salt stress, while they are decreased when <it>At</it>TSPO is overexpressed. Mutations in tetrapyrrole biosynthesis genes and the application of chlorophyll or carotenoid biosynthesis inhibitors also affect <it>AtTSPO </it>expression.</p> <p>Conclusion</p> <p>Our data suggest that AtTSPO plays a role in the response of <it>Arabidopsis </it>to high salt stress. Salt stress leads to re-localization of the AtTSPO from the ER to chloroplasts through its N-terminal extension. In addition, our results show that <it>AtTSPO </it>is regulated at the transcriptional level in tetrapyrrole biosynthetic mutants. Thus, we propose that <it>At</it>TSPO may play a role in transporting tetrapyrrole intermediates during salt stress and other conditions in which tetrapyrrole metabolism is compromised.</p

    Can filter-feeding fishes improve water quality in lakes?

    Get PDF
    Summary 1. In this paper we examine the potential of a cichlid fish species (Sarotherodon galilaeus) to both maintain positive growth rates through filter-feeding on phytoplankton and improve water quality in Lake Kinneret through suppression of dinoflagellate (Peridinium gatunense) blooms. 2. Seasonal plankton consumption by S. galilaeus from Lake Kinneret was examined experimentally by monitoring changes in plankton assemblages during 24 h in 5-m 3 mesocosms containing varying densities of fish. Taxon-specific grazing rates ranged from 0 to 17 mg g fish day -1 , with mean total consumption of 1.6% fish body weight per day. During the spring bloom of P. gatunense, S. galilaeus consumed mostly (94%) netphytoplankton ( ‡20 lm). The remaining 6% consisted mostly of nanophytoplankton (&lt;20 lm). During the summer and fall, net-and nanophytoplankton accounted for 54 and 42%, respectively, of the diet of S. galilaeus. Zooplankton and flagellated and ciliated protozoans made up the remaining 4%. 3. Simulations using a fish bioenergetics model indicated that consumption rates (C) were near maximum in spring (90% C max ), while consumption was reduced in summerfall (59% C max ). Sarotherodon galilaeus obtains sufficient energy through filter-feeding yearround, although most growth ( ‡60 %) occurs during the spring P. gatunense bloom. 4. Despite efficient feeding on P. gatunense and nanophytoplankton by S. galilaeus, estimates of instantaneous plankton mortality caused by ingestion were two orders of magnitude lower than maximum potential plankton growth rates. Thus the potential for the S. galilaeus population in Lake Kinneret to positively affect water quality through algal suppression is low
    corecore