1,737 research outputs found

    Should we doubt the cosmological constant?

    Get PDF
    While Bayesian model selection is a useful tool to discriminate between competing cosmological models, it only gives a relative rather than an absolute measure of how good a model is. Bayesian doubt introduces an unknown benchmark model against which the known models are compared, thereby obtaining an absolute measure of model performance in a Bayesian framework. We apply this new methodology to the problem of the dark energy equation of state, comparing an absolute upper bound on the Bayesian evidence for a presently unknown dark energy model against a collection of known models including a flat LambdaCDM scenario. We find a strong absolute upper bound to the Bayes factor B between the unknown model and LambdaCDM, giving B < 3. The posterior probability for doubt is found to be less than 6% (with a 1% prior doubt) while the probability for LambdaCDM rises from an initial 25% to just over 50% in light of the data. We conclude that LambdaCDM remains a sufficient phenomenological description of currently available observations and that there is little statistical room for model improvement.Comment: 10 pages, 2 figure

    Phonon-Assisted Two-Photon Interference from Remote Quantum Emitters

    Get PDF
    Photonic quantum technologies are on the verge offinding applications in everyday life with quantum cryptography andquantum simulators on the horizon. Extensive research has beencarried out to identify suitable quantum emitters and single epitaxialquantum dots have emerged as near-optimal sources of bright, on-demand, highly indistinguishable single photons and entangledphoton-pairs. In order to build up quantum networks, it is essentialto interface remote quantum emitters. However, this is still anoutstanding challenge, as the quantum states of dissimilar“artificialatoms”have to be prepared on-demand with highfidelity and thegenerated photons have to be made indistinguishable in all possibledegrees of freedom. Here, we overcome this major obstacle and show an unprecedented two-photon interference (visibility of 51±5%) from remote strain-tunable GaAs quantum dots emitting on-demand photon-pairs. We achieve this result by exploiting forthefirst time the full potential of a novel phonon-assisted two-photon excitation scheme, which allows for the generation ofhighly indistinguishable (visibility of 71±9%) entangled photon-pairs (fidelity of 90±2%), enables push-button biexciton statepreparation (fidelity of 80±2%) and outperforms conventional resonant two-photon excitation schemes in terms of robustnessagainst environmental decoherence. Our results mark an important milestone for the practical realization of quantum repeatersand complex multiphoton entanglement experiments involving dissimilar artificial atom

    Bayesian analysis of Friedmannless cosmologies

    Full text link
    Assuming only a homogeneous and isotropic universe and using both the 'Gold' Supernova Type Ia sample of Riess et al. and the results from the Supernova Legacy Survey, we calculate the Bayesian evidence of a range of different parameterizations of the deceleration parameter. We consider both spatially flat and curved models. Our results show that although there is strong evidence in the data for an accelerating universe, there is little evidence that the deceleration parameter varies with redshift.Comment: 7 pages, 3 figure

    Engineering of quantum dot photon sources via electro-elastic fields

    Full text link
    The possibility to generate and manipulate non-classical light using the tools of mature semiconductor technology carries great promise for the implementation of quantum communication science. This is indeed one of the main driving forces behind ongoing research on the study of semiconductor quantum dots. Often referred to as artificial atoms, quantum dots can generate single and entangled photons on demand and, unlike their natural counterpart, can be easily integrated into well-established optoelectronic devices. However, the inherent random nature of the quantum dot growth processes results in a lack of control of their emission properties. This represents a major roadblock towards the exploitation of these quantum emitters in the foreseen applications. This chapter describes a novel class of quantum dot devices that uses the combined action of strain and electric fields to reshape the emission properties of single quantum dots. The resulting electro-elastic fields allow for control of emission and binding energies, charge states, and energy level splittings and are suitable to correct for the quantum dot structural asymmetries that usually prevent these semiconductor nanostructures from emitting polarization-entangled photons. Key experiments in this field are presented and future directions are discussed.Comment: to appear as a book chapter in a compilation "Engineering the Atom-Photon Interaction" published by Springer in 2015, edited by A. Predojevic and M. W. Mitchel

    The tumor suppressor gene fat modulates the EGFR-mediated proliferation control in the imaginal tissues of Drosophila melanogaster

    Get PDF
    Molecules involved in cell adhesion can regulate both early signal transduction events, triggered by soluble factors, and downstream events involved in cell cycle progression. Correct integration of these signals allows appropriate cellular growth, differentiation and ultimately tissue morphogenesis, but incorrect interpretation contributes to pathologies such as tumor growth. The Fat cadherin is a tumor suppressor protein required in Drosophila for epithelial morphogenesis, proliferation control and epithelial planar polarization, and its loss results in a hyperplastic growth of imaginal tissues. While several molecular events have been characterized through which fat participates in the establishment of the epithelial planar polarity, little is known about mechanisms underlying fat-mediated control of cell proliferation. Here we provide evidence that fat specifically cooperates with the epidermal growth factor receptor (EGFR) pathway in controlling cell proliferation in developing imaginal epithelia. Hyperplastic larval and adult fat structures indeed undergo an amazing, synergistic enlargement following to EGFR oversignalling. We further show that such a strong functional interaction occurs downstream of MAPK activation through the transcriptional regulation of genes involved in the EGFR nuclear signalling. Considering that fat mutation shows di per se a hyperplastic phenotype, we suggest a model in which fat acts in parallel to EGFR pathway in transducing different cell communication signals: furthermore its function is requested downstream of MAPK for a correct rendering of the growth signals converging to the epidermal growth factor receptor. (C) 2004 Elsevier Ireland Ltd. All rights reserved

    Los significados y las prácticas en tres cooperativas agropecuarias de hoy

    Get PDF
    The agricultural cooperative movement in Argentina has experienced changes that need to be analyzed from cultural interpretations of relationships and social life of the cooperative members in their cooperatives. This paper explores the meanings and practices that are built on cooperatives. The construction of these objects of study is done on the basis of how articulate the conditions of existence of cooperatives and the discourse of the members producers on them. It appears that in general the members of agricultural cooperatives producing scholars argue that the cooperative promotes cooperative values, however the senses that give are different. Mostly partners with profitable agrarian structure itself and imagine a cooperative with differentiated service and corporate look, an image difficult to imagine from the cooperative principies because the emphasis is on the partner and not in the cooperative. For its part, the partners own no land and cost structure as a result of competition that consider experience, imagine the cooperative as a business enterprise, an image that emphasizes the cooperative, a cooperative must seduce the partner. This leaves the cooperative identity narrative which holds that builds cooperative partner rather than the reverse.El cooperativismo agropecuario en Argentina ha experimentado cambios que requieren ser analizados a partir de interpretaciones culturales de las relaciones y la vida social de los socios cooperativistas con sus cooperativas. El presente trabajo indaga los significados y prácticas que se construyen en las cooperativas sobre las cooperativas. La construcción de estos objetos de estudio se realiza atendiendo de manera articulada las condiciones de existencia de las cooperativas y el discurso de los socios - productores sobre ellas. Se observa que en general los socios productores de las cooperativas agropecuarias estudiadas sostienen que su cooperativa promueve los valores cooperativos, sin embargo los sentidos que le otorgan son diferentes.  Mayormente los socios con estructura agraria propia y rentable imaginan una cooperativa con atenciones diferenciadas y mirada empresarial, una imagen difícil de imaginar desde los principios cooperativos porque el énfasis está en el socio y no en la cooperativa. Por su parte, los socios sin estructura agraria propia y rentable, como consecuencia de la competencia que consideran que experimenta, imaginan la cooperativa como una empresa comercial; una imagen que pone énfasis en la cooperativa, una cooperativa que debe seducir al socio. Con esto abandona el relato identitario cooperativo que sostiene que el socio construye la cooperativa y no al revés

    Draft Genome Sequences of Three Novel Staphylococcus arlettae Strains Isolated from a Disused Biological Safety Cabinet

    Get PDF
    The genome sequences of three new strains of Staphylococcus arlettae named Bari1, Bari2, and Bari3 are presented. The strains exhibited tolerance to hexavalent chromium ions. An sprC gene encoding a putative chromium transporter was present in each of the three draft genome sequences

    What can(not) be measured with ton-scale dark matter direct detection experiments

    Full text link
    Direct searches for dark matter have prompted in recent years a great deal of excitement within the astroparticle physics community, but the compatibility between signal claims and null results of different experiments is far from being a settled issue. In this context, we study here the prospects for constraining the dark matter parameter space with the next generation of ton-scale detectors. Using realistic experimental capabilities for a wide range of targets (including fluorine, sodium, argon, germanium, iodine and xenon), the role of target complementarity is analysed in detail while including the impact of astrophysical uncertainties in a self-consistent manner. We show explicitly that a multi-target signal in future direct detection facilities can determine the sign of the ratio of scalar couplings fn/fpf_n/f_p, but not its scale. This implies that the scalar-proton cross-section is left essentially unconstrained if the assumption fpfnf_p\sim f_n is relaxed. Instead, we find that both the axial-proton cross-section and the ratio of axial couplings an/apa_n/a_p can be measured with fair accuracy if multi-ton instruments using sodium and iodine will eventually come online. Moreover, it turns out that future direct detection data can easily discriminate between elastic and inelastic scatterings. Finally, we argue that, with weak assumptions regarding the WIMP couplings and the astrophysics, only the dark matter mass and the inelastic parameter (i.e. mass splitting) may be inferred from the recoil spectra -- specifically, we anticipate an accuracy of tens of GeV (tens of keV) in the measurement of the dark matter mass (inelastic parameter).Comment: 31 pages, 7 figures, 7 table
    corecore