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ABSTRACT
While Bayesian model selection is a useful tool to discriminate between competing cosmo-
logical models, it only gives a relative rather than an absolute measure of how good a model
is. Bayesian doubt introduces an unknown benchmark model against which the known models
are compared, thereby obtaining an absolute measure of model performance in a Bayesian
framework. We apply this new methodology to the problem of the dark energy equation of
state, comparing an absolute upper bound on the Bayesian evidence for a presently unknown
dark energy model against a collection of known models including a flat Lambda cold dark
matter (�CDM) scenario. We find a strong absolute upper bound to the Bayes factor B between
the unknown model and �CDM, giving B � 5. The posterior probability for doubt is found to
be less than 13 per cent (with a 1 per cent prior doubt) while the probability for �CDM rises
from an initial 25 per cent to almost 70 per cent in light of the data. We conclude that �CDM
remains a sufficient phenomenological description of currently available observations and that
there is little statistical room for model improvement.

Key words: methods: statistical – supernovae: type Ia – cosmological parameters – dark
energy.

1 IN T RO D U C T I O N

One of the most important questions in cosmology is to identify
the fundamental model underpinning the vast amount of observa-
tions nowadays available. The so-called ‘cosmological concordance
model’ is based on the cosmological principle (i.e. the Universe is
isotropic and homogeneous, at least on large enough scales) and on
the hot big bang scenario, complemented by an inflationary epoch.
This remarkably simple model is able to explain with only half a
dozen free parameter observations spanning a huge range of time-
and length-scales. Since both a cold dark matter (CDM) and a cos-
mological constant (�) component are required to fit the data, the
concordance model is often referred to as ‘the �CDM model’. It
is, however, important to keep in mind that at this stage the �CDM
model is not a model in the sense attributed to the word by particle
physicists, but rather a phenomenological scenario that appears to
be able to explain the vast majority of observations with a great
economy of free parameters.

In the classical approach to statistics, models (or hypotheses) can
never be proved true, only falsified. Popper (2002), for example,
argued that theories always remain ‘infinitely improbable’ regard-
less of the amount of evidence gathered in their favour. However,
in the context of Bayesian inference support can be accrued for a
model if the observed data verify predictions made by the model
but not by competing models (see Jaynes 2003). This is the sub-
ject of Bayesian model selection (see e.g. Trotta 2007; Trotta 2008
for applications to the cosmological context): given a set of com-
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peting models, the Bayes factor gives a measure of the relative
performance of each model in explaining the data. This programme
naturally prefers models that provide a good fit with the fewest num-
ber of free parameters, thus implementing a quantitative version of
Occam’s razor.

Although Bayesian model selection can identify the best model
in a given set of known models, it has no way of indicating whether
the absolute quality of the preferred model is high or low. However,
it seems desirable to be able to gauge the absolute performance of a
model in a Bayesian sense, rather than just its relative performance
with respect to known competitors. In particular, this seems crucial
for deciding whether the set of known models includes the true
model.

The purpose of this paper is to build on the notion of Bayesian
doubt introduced by Starkman, Trotta & Vaudrevange (2008) to de-
velop and apply a Bayesian technique for model discovery, focusing
in particular on the nature of dark energy. The structure of this paper
is as follows. In Section 2 we recall the notion of Bayesian doubt
and introduce a new procedure for estimating an upper bound for
the Bayes factor in favour of doubt. We next employ this procedure
in Section 3 to assess the state of our knowledge of the dark en-
ergy equation of state, focusing on the status of the current �CDM
concordance model. We present our results in terms of the posterior
probability for doubt and for �CDM in Section 4 and discuss our
conclusions in Section 5.

2 BAY ESI AN MODEL DI SCOV ERY

In this section we review the concept of Bayesian doubt and explain
how this can lead to model discovery.
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2.1 The notion of Bayesian doubt

Bayesian doubt, as introduced by Starkman et al. (2008), is an ex-
tension of Bayesian model selection. It seeks to determine a scale
quantifying the absolute quality of a model, as opposed to the rel-
ative performance of two models, given by their Bayes factor. The
key idea of Bayesian doubt is that the general statistical character-
istics of what would be recognized as a ‘good’ model are known,
even if the specifics of the model are not.

We begin by introducing a hypothetical unknown model X which
has the characteristics of what would be considered a good model,
to be defined below. This idealized good model then acts as a bench-
mark against which known models can be compared using standard
Bayesian model selection. Following Starkman et al. (2008), we de-
fine ‘doubt’, D, as the posterior probability of this unknown model:

D ≡ p(X|d) = p(d|X)p(X)

p(d)

=
(

1 +
∑

i p(d|Mi)p(Mi)

p(d|X)p(X)

)−1

(1)

where {Mi} (i = 1, . . . , N) is the set of N known models and d are
the data. In the above expression, p(X) is the prior probability for
the model X, in other words, the prior probability that our list of
known models does not contain the true model. p(Mi) is the prior
probability of model Mi and p(d|Mi) is the Bayesian evidence for
model Mi , given by

p(d|Mi) =
∫

dθip(d|θi,Mi)p(θi |Mi), (2)

where θ i are the parameters of model Mi . p(d|θi,Mi) is the likeli-
hood function for model Mi , and p(θi |Mi) is the prior probability
of the parameters of model Mi .

Once we have chosen the level of prior doubt by defining the
value of p(X), based on a principle of indifference we assume for
simplicity that the prior probabilities for the known N models are
all equal, i.e.

p(Mi) = 1

N
[1 − p(X)] . (3)

We single out the �CDM model as one of the set of known models,
and, looking ahead, refer to it as our baseline model. Therefore it is
useful to rewrite equation (1) as

D =
(

1 + 〈Bi�〉
BX�

(
1 − p(X)

p(X)

))−1

, (4)

where we have introduced the Bayes factor

Bij ≡ p(d|Mi)

p(d|Mj )
(5)

and the average Bayes factor between �CDM and each of the known
models

〈Bi�〉 ≡ 1

N

N∑
j=1

Bj�. (6)

(Note that the sum over models Mj includes j = � and therefore
〈Bi�〉 � 1/N.)

Rather than looking at D directly, one can also consider the
relative change in doubt R, given by the ratio of posterior to prior
doubt:

R ≡ D
p(X)

=
(

p(X) + (1 − p(X))
〈Bi�〉
BX�

)−1

. (7)

A necessary condition for doubt to grow (R > 1) is

〈Bi�〉
BX�

� 1, (8)

i.e. that the Bayes factor between model X and �CDM be much
larger than the average Bayes factor between the known models and
�CDM.

However, for �CDM to be genuinely doubted it is not sufficient
that R > 1. One has also to require that the probability for �CDM
itself decreases, i.e. that p(�|d) < p(�). Applying again Bayes
theorem, one finds that the ratio of the posterior probability for
�CDM to its prior probability is given by

R� ≡ p(�|d)

p(�)
= ((1 − p(X))〈Bi�〉 + p(X)BX�)−1 . (9)

Hence to gather genuine doubt against �CDM we require that both
conditions R > 1 and R� < 1 be fulfilled.

2.2 Upper bound on the evidence of the unknown model

In order to apply Bayesian doubt to the problem of cosmological
model selection, it is necessary to estimate the evidence of the un-
known model, p(d|X). The approach suggested by Starkman et al.
(2008) was to calibrate the value of p(d|X) on simulated data sets
from the best among the known models. This has been shown to lead
to model discovery for a toy linear model. However, in the cosmo-
logical context it would be computationally very expensive to im-
plement, even given fast algorithms to compute the evidence, such
as MultiNest (Feroz, Hobson & Bridges 2009), Population Monte
Carlo (Kilbinger et al. 2010), a modification of the VEGAS algo-
rithm (Serra, Heavens & Melchiorri 2007) or the Savage–Dickey
density ratio (SDDR; Trotta 2007).

In this paper, we put forward a different, more economical ap-
proach, which aims at computing an absolute upper bound for
p(d|X). Since our aim is to investigate the dark energy sector, in
the following we focus on the dark energy equation of state, w(z).
We cannot, of course, compute the evidence for X explicitly since
its parametrization of w(z) is unspecified. Since the unknown model
X is to provide a benchmark value for the evidence of the known
models, it should be designed to provide a good fit to the avail-
able data, including cosmic microwave background (CMB), matter
power spectrum (mpk) and Type Ia supernovae (SNIa) observa-
tions. Therefore, the unknown model should have a high degree of
flexibility. At the same time, we do not wish to incur the Occam’s
razor penalty coming from the high number of free parameters usu-
ally associated with a very flexible model. This is because we are
seeking to build a phenomenological description for w(z) which, if
model X is to be a ‘good’ model, should arise from an underlying,
presently unknown theory with a small number of free parameters.

In order to have the advantages of a flexible (and therefore well-
fitting) unknown model (i.e. low χ 2/d.o.f.), without incurring a
penalty for having a large number of free parameters, we define the
evidence of the unknown model via the upper bound on the Bayes
factor between the �CDM baseline model and a stand-in model
with a very flexible w(z), i.e. a model that allows a large number
of degrees of freedom in the dark energy sector that will be used
as a substitute for an unknown physical model (see Section 3.2).
The absolute upper bound on the Bayes factor BX� between the
unknown model X and �CDM (denoted by a subscript �) is given
by (see Gordon & Trotta 2007 and references therein for details),

BX� < BX� = exp

(
−1

2

(
χ 2

X − χ 2
�

))
. (10)
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We have defined the best-fitting chi-squared as −2 the log-
likelihood at the best-fitting point, θ∗

i :

χ 2
i = −2 ln p(d|θi,Mi)

∣∣∣∣
θi=θ∗

i

, (11)

where i = X, �.
The bound of equation (10) arises by putting a posteriori the prior

probability for the parameters of the stand-in model into a delta-
function located at the observed maximum likelihood value, i.e. by
replacing p(θX|MX) in equation (2) with δ(θX − θ∗

X). While this
prior choice has no Bayesian justification (for it is inappropriate
to use a posteriori information to determine the prior), it does lead
to an absolute upper bound on the relative evidence between the
baseline �CDM model and the unknown model. In order to calcu-
late the absolute bound of equation (10), all that is needed is the
difference between the best-fitting log-likelihood (or chi-squared)
of the two models, �χ 2 ≡ χ 2

X −χ 2
�, which can be easily computed.

Since the �CDM model is nested within the unknown model (i.e.
the unknown model reverts to �CDM if the maximum likelihood
value from the data is such that w(z) = −1 at all redshifts for the
unknown model), it follows that �χ 2 � 0. Therefore it is clear that
by construction BX� > 1 always, i.e. that our unknown model is
always at least as good as �CDM.

By inspecting equation (10), one might be tempted to think that
this upper bound on the Bayes factor merely translates in Bayesian
terms the old goodness-of-fit χ 2 test. For if �CDM is a ‘bad’
model (on whatever scale one wishes to define this), the value
of χ 2

� will be large and thus the Bayes factor in favour of the
unknown model will be large, as well. Thus one might think that
equation (10) simply rephrases the well-known rule of thumb of
χ 2/d.o.f. ∼ 1. However, this is not the case, for the χ 2/d.o.f. ∼ 1
rule only applies asymptotically (for n → ∞ number of data points)
and only if the data points are independent, Gaussian distributed.
Those conditions are almost invariably not met in the cosmological
context. For instance, it is not even clear how one would define the
concept of degrees of freedom for the CMB data, given that the C�

values are not independent and are not Gaussian distributed. In the
case of SNIa observations, the χ 2/d.o.f. ∼ 1 criterion is satisfied
for �CDM by construction, for the value of the intrinsic dispersion
for the SNe is adjusted in such a way to require this to be the case,
see e.g. Kowalski et al. (2008). Therefore one cannot meaningfully
use this kind of absolute goodness-of-fit tests on such a data set.

Instead, the upper bound given by equation (10) does not require
any assumption about asymptotic behaviour, nor that the data are
Gaussian distributed, nor independent. One only needs to be able
to compute the log-likelihood at the best-fitting point, including
relevant correlations as necessary.

Finally, the upper bound of equation (10) could also be computed
using the highest best-fitting log-likelihood of all the known models,
at no extra computational cost. This would give the absolute upper
bound achievable among the class of known models. Although we
do not pursue this approach in this paper, we recommend includ-
ing in any Bayesian model comparison a model X with evidence
obtained via this procedure, for this will give an estimate of the
maximum possible level of doubt that can arise from the known
models with their assigned priors.

2.3 Behaviour of doubt and posterior probability for �CDM

In the following, we will adopt the absolute upper bound BX� of
equation (10) as an estimator for the Bayes factor of the unknown
model X, and explore the consequence in terms of doubt and in terms

Table 1. Empirical scale for evaluating the strength of evi-
dence from the Bayes factor Bij between two models (so-called
‘Jeffreys’ scale’). The right most column gives our convention for
denoting the different levels of evidence above these thresholds,
following Gordon & Trotta (2007).

|ln Bij| Odds Strength of evidence

<1.0 � 3: 1 Inconclusive
1.0 ∼3: 1 Weak evidence
2.5 ∼12: 1 Moderate evidence
5.0 ∼150: 1 Strong evidence

of the posterior probability for �CDM. It is clear from equations
(4) and (9) that for a given level of prior doubt p(X), the posterior
models’ probabilities are controlled uniquely by the two quantities
〈Bi�〉 and BX�. The result can be expected to fall within one of the
three scenarios below, which we will examine from two points of
view: using doubt D and using the upper bound to the Bayes factor
BX� as measures of doubt. While there is something to be said for
employing BX� (whose value can be translated into a strength of
evidence via the Jeffreys’ scale, given in Table 1) as a criterion for
goodness of fit, it turns out that doubt can shed some light on to
how large BX� should be to have genuine doubt without referring
to the (in some sense arbitrary calibrated) Jeffreys’ scale.

(i) Case 1: BX� � 1 and 〈Bi�〉 ∼ 1: in this case, the unknown
model has a much better evidence than �CDM, which in turn has
about the same evidence as the other known models. As the Bayes
factor BX� > 1, we should expect there to be a significant amount
of doubt, D ≈ 1. And indeed, from equation (1) the doubt is,
assuming p(X) � 1

D ≈
(

1 + 1

p(X)BX�

)−1

≈ 1, (12)

for p(X)BX� � 1. In other words, we are inclined to believe
that there is a better model that we have not yet thought of if the
Bayes factor between the unknown model and �CDM is sufficiently
large to override the smallness of the prior doubt, BX� > 1/p(X)
(note the independence of the Jeffreys’ scale). The change in the
probability for �CDM itself is given by, from equation (9),

R� ≈ (
1 + p(X)BX�

)−1
. (13)

While the doubt grows (D → 1) the probability for �CDM de-
clines, R� � 1. In this case, one is led to genuinely doubt �CDM.

(ii) Case 2: BX� � 1 and Bi� � 1(i 
= �): in this case, �CDM is
clearly the best of the known models, as the Bayes factors between
the known models and �CDM are all small. Again, as the Bayes
factor BX� � 1 favours the unknown model, we should be doubting
our list of models. As 〈Bi�〉 ≈ 1/N, we find

D ≈
(

1 + 1

Np(X)BX�

)−1

≈ 1 (14)

for p(X)BX� � 1/N . This seems to contradict the result of Case
1. However, as we noted above, the condition that D ≈ 1 is only
necessary but not sufficient for doubt to arise. We need to examine
the relative change in probability for �CDM which is given by

R� ≈
(

1

N
+ p(X)BX�

)−1

. (15)

Requiring R� < 1 leads to the stronger condition p(X)BX� � 1,
as in Case 1. If the latter condition is not fulfilled, doubt will grow
at the expense of the probability of the other known models, as
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Should we doubt the cosmological constant? 2491

the prior probability mass which was spread among the N known
models according to equation (3) gets redistributed between X and
�CDM.

(iii) Case 3: BX� ∼ 1: in this case, the upper bound on the
Bayes factor between the unknown model and �CDM is of order
unity. This means that we should have no reason to doubt our set of
models. The expression for doubt equation (1) simplifies to

D ≈
(

1 + 〈Bi�〉
p(X)

)−1

. (16)

In order to reach a high level of doubt D ≈ 1, we would need
〈Bi�〉/p(X) ≈ 0. Clearly, this is only the case if we allow for p(X)
� 〈Bi�〉 � 1/N, i.e. if we are starting off with a prior doubt which
is larger than the indifference prior on the known models, which is
usually not the case. Otherwise, if the Bayes factor BX� is larger
than the prior doubt p(X), we can regard our list of models as reason-
ably complete, and perform Bayesian model comparison among the
list of known models. Of course, this procedure must be repeated
once new data arrive (see Starkman, Trotta & Vaudrevange 2009 for
the procedure that this entails). Note that again we do not need to
refer to the Jeffreys’ scale, but need to compare the average Bayes
factor 〈Bi�〉 with our prior doubt p(X).

In summary, we are led to doubt the current baseline �CDM
model only if the rule of thumb

p(X)BX� � 1 (17)

is satisfied, which corresponds to either Case 1 or Case 2 when the
condition for R� < 1 is also fulfilled. If equation (17) is satisfied,
we are guaranteed that doubt will grow and at the same time the
probability for the �CDM model will decrease, thus signaling the
opportunity for model discovery. All this is accomplished without
referring to Jeffreys’ scale.

3 A P P L I C AT I O N O F D O U B T TO T H E DA R K
E N E R G Y E QUAT I O N O F STAT E

3.1 The known models

We take the flat �CDM model as our baseline model, described by
the usual six-parameter set θ = {As, nS, ωb, ωc,
�,H0}, where As

is the amplitude of scalar fluctuations, nS is the spectral index, ωb

the physical baryon density, ωc the cold dark matter density, 
� the
density parameter for the cosmological constant and H0 the Hubble
constant today. We assume purely adiabatic fluctuations throughout
this paper.

We define the other models in the known models list by increasing
the complexity of the baseline model in successive steps. First, we
add only a non-zero curvature parameter, 
κ 
= 0, with a flat prior in
the range −1.0 � 
κ � 1.0. This is the ‘astronomer’s prior’, adopted
and justified in Vardanyan, Trotta & Silk (2009). Alternatively,
another model is obtained by adding only an effective equation of
state parameter for dark energy, w 
= −1, with a flat prior in the
range −1.3 � w � −0.33 while keeping 
κ = 0 fixed. This choice
of the prior range is motivated by the fact that w must be <−1/3 to
achieve an accelerated expansion. Also, while current data strongly
constrain models with a phantom equation of state (w < −1), it
seems too harsh to completely exclude this class of models from
the prior, and therefore we extend the lower range somewhat into the
phantom domain. We emphasize that this is a somewhat subjective
choice – other equally motivated choices are possible, and indeed
would effectively constitute a new choice of model. We comment in

Section 4.2 how our conclusions would change if one were to add
further possibilities (including different choices for the prior on w)
to the list of known models. Finally, a fourth model with eight free
parameters is obtained by adding both 
κ 
= 0 and w 
= −1 with
the above priors to the �CDM baseline model.

It is also possible to estimate analytically how our results would
change under a modification of the prior ranges defined above for

κ and w. This is useful to assess the robustness of our conclusions
under a reasonable change of prior. As the �CDM model is nested
within the three models with 
κ and/or w free, the Bayes factor
between �CDM and each of the more complex models is given by
the SDDR formula (see Trotta 2007 for details):

B�j = p(θ = θ0|d,Mj )

p(θ = θ0|Mj )
, (18)

where θ is either 
κ or w and θ 0 is the value of the extra parameters
for which the more complex model reverts to �CDM, i.e. θ 0 = 0
for θ = 
κ and θ 0 = −1 for θ = w. From the SDDR expression, it is
clear that the Bayes factor is directly proportional to the prior width
on the extra parameter, as for a flat prior p(θ = θ0|Mj ) = 1/�θ ,
and �θ is the chosen prior range in the variable considered (
κ

or w). Therefore, under a change of the prior range (provided the
support of the likelihood function is well within the prior), the log of
the Bayes factor scales proportionally to the log of the prior width,
with a larger range for the extra parameters favouring the �CDM
model due to the Occam’s razor effect. As a consequence, to achieve
a significant shift (say, �ln B ∼ 2.5) on the Jeffreys’ scale the prior
range would have to be rescaled by a factor exp (2.5) ∼ 12, which
is clearly unreasonable for both 
κ and w. Therefore we expect our
results to be fairly robust with respect to reasonable changes in the
prior ranges chosen.

One could in principle further increase the complexity of the
known models, e.g. by adopting more complex descriptions for
w(z), such as the so-called Chevallier–Polarski–Linder (CPL)
parametrization in terms of the parameters (w0, wa). However,
those models have in general a lower evidence than �CDM, as
they are penalized for their wasted parameter space, see e.g. Liddle
et al. (2006b) and Kilbinger et al. (2010). As a consequence, they
are expected not to contribute significantly to 〈Bi�〉, and therefore
their influence on posterior doubt would be minor, see Section 4.2
for details. One could also add to the list alternative explanations
for the apparent acceleration of the Universe, such as for example
modified gravity models, provided one can compute their evidence
numerically (Heavens, Kitching & Verde 2007). As the main goal
of this paper is to introduce the methodology related to Bayesian
doubt, we however restrict our considerations to the four models
listed above.

Finally, in this work we do not address the problem of the fine
tuning of the value of the cosmological constant itself. All models
we consider here suffer equally from the fine-tuning problem, i.e.
the fact that the measured value of the cosmological constant is
some 120 orders of magnitude smaller than the ‘natural’ scale set
by the Planck mass if � arises from quantum fluctuations of the
vacuum. Anthropic reasoning in the context of the Multiverse has
been invoked to explain the smallness of the cosmological constant,
and while Bayesian reasoning could be brought to bear on the
effectiveness of such an ‘explanation’, we shall not consider this
aspect further in this paper.

3.2 Parametrization of the unknown model

Our discussion so far has been completely general, sidestepping
the crucial issue of how to evaluate equation (10) for the unknown
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model. In order to make further progress, we have to make some
assumptions regarding the class of alternative models the unknown
model X is supposed to come from.

As we are interested in the dark energy sector, we will assume
that the phenomenology of model X is such that it only leads to
modifications to the right-hand side of Einstein equations. In other
words, we do not investigate models that modify general relativ-
ity except for those whose only impact is a change in the effective
energy–momentum tensor. Under this assumption, a model X is fully
specified once we give its redshift-dependent equation of state of
dark energy w(z). Note that we also implicitly assume that the Uni-
verse is well described by a Friedmann–Robertson–Walker (FRW)
isotropic cosmology. If one wished to include a more general class
of alternative models from which to draw X, one could do so by
parametrizing their phenomenology in a suitable way. One could
define even more general classes of alternative models, for example
by fitting parametrized functions to the observations. However, we
do not pursue this approach here, because such a modelling of the
data would be devoid of any physical insight and would achieve
a purely descriptive fit to the observations. To see why this is not
desirable, one only has to push this approach to its extreme conse-
quences: given any data collection, there is always a ‘model’ that
fits the data perfectly. This model is obtained by simply choosing
the value of the ‘theory’ to be identical to the observed value for
each of the observations. Of course, nobody would ever consider
such a model to be a valid scientific theory, because we demand
that the latter should have explanatory power, not be a simple de-
scription of the data. Therefore, it seems sensible to require from
the outset that our unknown model X be part of a class of physical
theories, with phenomenological parameters that are linked with the
physical framework of the class of models considered (here, FRW
isotropic Universes with time-varying dark energy equation of state
and otherwise standard cosmology).

Therefore we are left with the task of parametrizing w(z) as a
function of redshift, and then use its functional form to compute the
�χ 2 between the unknown model and the �CDM baseline model.
To this purpose, we employ the parametrized post-Friedman (PPF)
prescription developed by Hu & Sawicki (2007) and Hu (2008).
The PPF prescription was originally introduced to describe the be-
haviour of theories of modified gravity in a metric framework that
describes leading order deviations from general relativity (subject
to certain assumptions). However, it was also found be well suited
for describing the evolution of dark energy models that cross the
so-called ‘phantom divide’, w = −1. Crossing this phantom divide
in models with fixed sound speed would lead to divergences in the
pressure perturbations. Hence models that are phenomenologically
described by a time-varying w(z) that crosses w = −1 must be de-
scribed microphysically by a theory of scalar fields with a varying
speed of sound, e.g. DGP-type models.

3.3 Numerical implementation and data sets

Below, we investigate the behaviour of doubt for different combi-
nations of cosmological data sets. In particular, we are interested
in studying doubt as the constraining power of the combined data
increases.

We modified the COSMOMC (Lewis & Bridle 2002) parameter es-
timation package to sample the additional parameters wi ≡ w(zi),
where zi are uniformly spaced at n = 10 redshift value, ranging
from z = 0, . . . , 1.5. Fang et al. (2008b) and Fang, Hu & Lewis
(2008a) wrote a plugin to CAMB (Lewis, Challinor & Lasenby 2000)
that implements the PPF prescription and is freely available for

download,1 which we adopted for this work. The PPF module uses
cubic splines to interpolate w between these points, and assumes
w(z > 1.5) ≡ w(z = 1.5).

We adopted the 307 SNeIa from the ‘Union’ data set compiled
by Kowalski et al. (2008). The CMB data and likelihood used were
the Wilkinson Microwave Anisotropy Probe (WMAP) 5-yr data set
(Dunkley et al. 2009). Tegmark et al. (2006) provided the data and
likelihood code for the mpk using Sloan Digital Sky Survey (SDSS)
Data Release (DR)4. The evidence for the known models is com-
puted using the publicly available MULTINEST code (Feroz & Hobson
2008; Trotta et al. 2008; Feroz et al. 2009), which implements
the nested sampling algorithm, employed as an add-in sampler to
COSMOMC (Lewis & Bridle 2002) and CAMB (Lewis et al. 2000).

The gist of nested sampling is that the multidimensional evi-
dence integral of equation (2) is recast into a 1D integral. This is
accomplished by defining the prior volume x as dx ≡ p(θ )dθ so that

x(λ) =
∫
L(θ)>λ

p(θ ) dθ, (19)

where the integral is over the parameter space enclosed by the iso-
likelihood contour L(θ ) = λ. So x(λ) gives the volume of parameter
space above a certain level λ of the likelihood. Then the Bayesian
evidence, equation (2), can be written as

p(d) =
∫ 1

0
L(x) dx, (20)

where L(x) is the inverse of equation (19). Samples from L(X)
can be obtained by drawing uniformly samples from the likelihood
volume within the isocontour surface defined by λ. The 1D integral
of equation (20) can be obtained by simple quadrature, thus

p(d) ≈
∑

i

L(xi)Wi, (21)

where the weights are Wi = (1/2)(xi−1 − xi+1). The standard devia-
tion on the value of the log-evidence can be estimated as (H/nlive)1/2,
where H is the negative relative entropy and nlive is the number of
live points adopted, which in our case is nlive = 4000 (see Feroz &
Hobson 2008 for details).

The best-fitting χ 2 required to evaluate equation (10) is obtained
by performing a Metropolis–Hastings Markov chain Monte Carlo
(MCMC) reconstruction of the posterior of the 16-parameter model
comprising the �CDM parameters θ and the above 10-parameter
description of w(z). We gather a total of 5 × 105 samples in eight
parallel chains and verify that the Gelman & Rubin mixing criterion
(Gelman & Rubin 1992) is satisfied (i.e. R � 0.1, where R is the
interchain variance divided by the intrachain variance).

MCMC is rather geared towards exploring the bulk of the pos-
terior probability density, and is not particularly optimized to look
for the absolute best-fitting value. This is especially true for high-
dimensional parameter spaces. Therefore, we expect that the best-
fitting χ 2 values recovered via MCMC for the 16D model X are
going to be systematically higher than the true best fit. In order to
estimate and correct for this numerical bias, we sampled via MCMC
a 16D Gaussian of unit variance, recovered the best-fitting χ 2 and
compared it with the true best-fitting value, repeating the procedure
5000 times. This gives an estimate of the numerical bias, under the
assumption (which is valid locally) that the posterior distribution
of model X is close to Gaussian in the immediate vicinity of the
best fit. We found that the MCMC systematically overestimates the
best-fitting χ 2 value by 0.94 ± 0.14, and therefore subtracted this

1 http://camb.info/ppf/
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Table 2. In the first three columns, we report the Bayes factors between the known models and �CDM for different combinations of data sets, where
ln Bj� < 0 favours �CDM. The fourth columns gives �χ2 = χ2

X −χ2
�, the improvement in the best-fitting log-likelihood obtained by using model X (specified

in the text) over �CDM. The last column gives the corresponding absolute upper bound to the Bayes factor between model X and �CDM. The table shows
only statistical errors. There is a further systematic error from the assumed number of bins for w(z) in the unknown model. This is estimated to be ±0.5 for
�χ2, which translates into a 25 per cent systematic uncertainty in BX� (on top of the statistical uncertainty given in the table).

−1.3 < w < −0.3 w = −1.0 −1.3 < w < −0.3 ‘Unknown’ model X 〈Bi�〉 BX�


κ = 0.0 −1.0 < 
κ < 1.0 −1.0 < 
κ < 1.0
ln Bj� ln Bj� ln Bj� �χ2 ln BX�

CMB only −0.30 ± 0.09 −2.25 ± 0.09 −2.79 ± 0.09 −1.02 ± 0.2 0.51 ± 0.2 0.48 ± 0.02 1.67 ± 0.2
CMB+SN −0.85 ± 0.09 −2.52 ± 0.09 −3.33 ± 0.09 −3.05 ± 0.2 1.53 ± 0.2 0.39 ± 0.01 4.60 ± 0.7
CMB+mpk −0.98 ± 0.08 −3.79 ± 0.08 −4.39 ± 0.08 −0.84 ± 0.2 0.42 ± 0.1 0.35 ± 0.01 1.52 ± 0.2
CMB+SN+mpk −0.96 ± 0.09 −3.73 ± 0.09 −4.43 ± 0.09 −3.38 ± 0.3 1.69 ± 0.2 0.35 ± 0.01 5.42 ± 1.0

estimate from the recovered χ 2 best-fitting value for model X. The
total error on the best-fitting χ 2 is computed by adding in quadrature
the above error and the interchain variance of the recovered χ 2 for
each of our eight chains. We also verified that the numerical bias
in recovering the best-fitting χ 2 for a 6D parameter space (such as
�CDM) is negligible in comparison.2 There is also a source of sys-
tematic error coming form our choice of adopting a 10-bin model
for w. We have verified that the best-fitting χ 2 changes by no more
than 0.5 units if we halve or double the number of w bins for the X
model, and we therefore add this systematic error to the statistical
one.

4 R ESULTS A N D DISCUSSION

We now proceed to evaluate the doubt and the posterior probability
of �CDM for various combinations of cosmological data sets.

4.1 Model comparison outcome including doubt

In Table 2, we present the estimated upper limit on the Bayes
factor between �CDM and model X as well as the Bayes factors
with respect to �CDM for the other known models. Among the
known models, we confirm what many others have shown – that
�CDM is the best-fitting known model, or at least that no other
model is demonstrably better. Thus, we find an inconclusive model
comparison result (according to the Jeffreys’ scale, Table 1) when
comparing �CDM and a model with a free (but constant) w. We
also find moderate evidence (ln B ∼ 2.5) against spatially curved
models when compared to a flat �CDM, in agreement with the
more detailed findings of Vardanyan et al. (2009). Finally, there is
moderate (tending to strong) evidence against the most complex of
the known models – one exhibiting both w 
= −1 and 
κ 
= 0. This
is in good agreement with the results of previous more thorough
analyses, e.g. Liddle, Mukherjee & Parkinson (2006a), Liddle et al.
(2006b), Li, Li & Zhang (2010) and Kilbinger et al. (2010). From
this, ordinary Bayesian model comparison concludes that �CDM
is still the best of the known models (at least for the limited range
of alternative models considered here).

Most importantly, in the table, we report the improvement in
the best-fitting log-likelihood obtained over �CDM by using X,

2 In principle, one might use a numerical maximization method to search
for the extremum of the likelihood. However, in general likelihood surfaces
might not be very smooth, making this option not very feasible, see also
the comments on the corresponding mode of COSMOMC at http://cosmologist.
info/cosmomc/readme.html.

and use this to compute an absolute upper bound to the Bayes
factor via equation (10). We notice that the improvement in the
best fit is fairly modest for all the data sets considered, supportive
of the general sentiment in the community that �CDM is in good
agreement with available observations and that therefore there is
little room for statistical improvement of the quality of fit. This
is in part because it is very hard to improve the quality of fit by
changing w(z) – observables are usually a double integral of w(z),
and therefore insensitive to features in the equation of state (see
e.g Huterer & Turner 1999; Maor, Brustein & Steinhardt 2001;
Clarkson 2009). As a consequence, even a highly flexible w(z)
model such as the one we used here to describe X will lead to
only small observable departures from the standard cosmological
constant scenario. However, we do observe a stronger improvement
in the best-fitting χ 2 using the X model for combinations of data
sets including the SN data. This means that the fit of SN data can be
slightly improved by our doubt model. It is important to keep in mind
that such statements depend strongly on the statistics one employs to
examine the models. For example, the standard likelihood function
for CMB data is insensitive to most of the reported anomalies in the
low-� CMB (Bennett et al. 2010; Copi et al. 2010). Also, fluctuations
in the best-fitting χ 2 at the level observed here in the SN data can
easily be ascribed to systematic discrepancies between the data and
the model being fitted to them, in the form of e.g. evolution of the
Phillips correction parameters (Kessler et al. 2010).

The interesting consequence from the point of view of doubt is
that this translates into strong upper limits for the Bayes factor be-
tween model X and �CDM (third from last column of Table 2). We
find that the upper limit on the Bayes factor BX� (last column of
Table 2) for all the data combinations is less than ∼5, just above
the ‘weak evidence’ threshold (see Table 1). From our discussion
in Section 2.2, this means that the necessary condition for doubt
to grow, p(X)BX� � 1, is not met for any reasonable doubt prior
choice. We remind the reader at this point that our unknown model
X has been designed in such a way as to exhibit the maximum
possible evidence against �CDM. Therefore, if even such a model
cannot achieve a significant level of evidence against �CDM, one
can safely conclude that no other reasonable model will. Of course
this conclusion depends both on the set of observations we have con-
sidered and on the particular likelihood function we have ascribed
to that data. New statistical treatments can bring to light anoma-
lies in the existing data, while new observations might contain new
unexpected features.

Our results in terms of posterior probability for doubt and for the
�CDM model are shown in Table 3, for two different assumptions
regarding the level of prior doubt, p(X) = 10−2 and p(X) = 10−6.
These two choices are representative of a range that we think might
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Table 3. First two columns: posterior doubt for different data sets combinations and two prior doubt assumptions. Last column: posterior
probability for the �CDM model when allowing for the possibility of a 1 per cent prior doubt on the completeness of our list of known
models.

Doubt D Posterior for �CDM, p(�|d)
Prior doubt: p(X) = 10−2 Prior doubt: p(X) = 10−6 [with p(X) = 10−2 and p(�) ≈ 0.25]

CMB only (3.41 ± 0.3) × 10−2 (3.49 ± 0.3) × 10−6 0.51 ± 0.02
CMB+SN (10.8 ± 1.0) × 10−2 (11.9 ± 1.2) × 10−6 0.58 ± 0.02
CMB+mpk (4.18 ± 0.4) × 10−2 (4.32 ± 0.4) × 10−6 0.68 ± 0.01
CMB+SN+mpk (13.4 ± 1.6) × 10−2 (15.3 ± 2.1) × 10−6 0.61 ± 0.02

bracket reasonable prior expectations: a prior doubt of 1 per cent is
certainly not too large, while leaving a little space for updating our
models beliefs in the light of data. A prior doubt of 10−6 reflects the
fact that surely we have to allow for a one-in-a-million chance that
our current list of known models might be incomplete, and that the
true underlying dark energy model might still be undiscovered.

Table 3 contains the level of doubt, which is updated from the
prior by using the results of Table 2 for the models’ evidence. We
find an increase in doubt by a factor of 3–15, depending on the data
combination used. As noted above, data sets including the SNe show
a more marked improvement in the level of doubt. This, however,
is largely a consequence of the doubt model acquiring some of the
probability mass of the known models other than �CDM, as dis-
cussed under Case 3 in Section 2.2. Indeed, the posterior probability
of �CDM is observed to increase (last column of Table 3), from the
initial prior value p(�) ≈ 0.25 to almost 70 per cent for the most
constraining data combination. This result is almost independent of
the choice of prior doubt. The behaviour of the posterior probability
for doubt and �CDM for a prior choice p(X) = 10−2 is shown in
Fig. 1, as a function of the data sets employed.

Our rationale for introducing a small prior doubt, p(X) � 1, is to
leave the door open to doubt, rather than to consider the case where
doubt starts off with a probability comparable to the known models.
After all, our method already gives to the unknown model a strong
advantage, by removing by construction any Occam’s razor penalty
from its evidence and giving it the maximum evidence the data can
possibly allow a posteriori.

However, in order to assess the robustness of our conclusions, it
is interesting to consider the extreme case when the prior doubt is
set equal to the prior probability of the known models, i.e.

p(X) = p(Mj ) = 1

N + 1
. (22)

The resulting posterior probability for doubt and �CDM are given
in Table 4. Despite the fact that this is an extremely favourable
choice for doubt, we can see that the posterior doubt grows only
by a factor of ∼2–4, while the probability of �CDM stays roughly
constant, or increases somewhat. We conclude that even in this
extreme case doubt cannot be genuinely favoured, for the condition
R� < 1 is not satisfied.

4.2 Impact of the addition of further known models

We now proceed to estimate the robustness of our findings with
respect to expanding the set of known models. As has been men-
tioned above, the list of three alternative known models to �CDM
we adopted in this work is far from complete. However, even if a
larger number of models N were included in the known models list,
it is reasonable to assume that the value of the average evidence
between the known models and �CDM would scale approximately
as ∝1/N, for there is no other known model that presently can
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Figure 1. Posterior probability for doubt for the �CDM model as a function
of different combinations of data sets, for two choices of (a small) prior
doubt. The probability of �CDM increases from the initial 25 per cent to
almost 70 per cent. The probability of doubt increases from the initial 1 per
cent (10−6) to just over 13 per cent (15 × 10−6), mostly as a consequence
of acquiring probability from the other three known models considered in
the analysis. This increase in doubt is driven largely by the SN data. The
fact that the probability for �CDM increases, as well, signals that �CDM
remains the most valid statistical description of the data.

achieve a substantially higher evidence than �CDM (if this was the
case, then this other best model would take the place of �CDM and
become our baseline model which we seek to doubt – or rather the
dominant model in our list of models where we intend to compute
the doubt for the whole list). By equating equations (4) and (9) we
can solve for the value of �χ 2 required for the posterior on doubt
to be equal to the posterior of �CDM. This gives the approximate
condition [assuming that 〈Bi�〉 ≈ 1/N and that p(X) � 1]

�χ 2 ≈ 2 ln(Np(X)). (23)

So the value of �χ 2 required for posterior doubt to reach the pos-
terior for �CDM scales logarithmically with the number of known
models. Assuming a prior doubt p(X) = 10−2 one obtains the
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Table 4. Posterior doubt and posterior probability for �CDM for the case where doubt is given
the same prior probability as the known models, i.e. p(X) = 1/(N + 1). Even in this extremely
favourable case for doubt, the posterior probability for �CDM does not decrease, showing that
�CDM cannot be genuinely doubted.

Doubt D Posterior for �CDM, p(�|d)
Prior doubt: p(X) = 0.2 [with p(X) = 0.2 and p(�) = 0.2]

CMB only 0.46 ± 0.02 0.28 ± 0.02
CMB+SN 0.75 ± 0.02 0.16 ± 0.02
CMB+mpk 0.52 ± 0.03 0.34 ± 0.03
CMB+SN+mpk 0.79 ± 0.02 0.15 ± 0.02

Table 5. Improvement in the χ2 of �CDM required for the unknown model
X to have the same a posteriori probability as �CDM. First two columns: as
a function of the number of known models, N, assuming a fixed prior doubt
p(X) = 10−2. Last two columns: assuming a fixed fractional prior doubt,
p(X) = p(�)/f , and as a function of f . It is assumed that the evidence of the
known models is much smaller than the evidence for �CDM.

Known models Required �χ2 for p(X|d) = p(�|d)
N p(X) = 10−2 f p(X) = p(�)/f

4 −6.4 4 −5.5
10 −4.6 10 −9.2
20 −3.2 102 −18.4
50 −1.4 103 −27.6
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Figure 2. Posterior for doubt (dashed lines) and for �CDM (solid lines)
as a function of −�χ2 = χ2

� − χ2
X assuming a fixed prior doubt p(X) =

10−2. Different curves are for different numbers of known models, N =
1, 4, 10 and 20 (from thin to thick), assuming that 〈Bi�〉 ≈ 1/N.

values of �χ 2 listed in the first column of Table 5 as a function
of N. As more known doubts are put on the table, it becomes eas-
ier to doubt �CDM. From this scaling, it would appear that the
improvement of �χ 2 = −3.4 for model X reported in Table 2 for
the data combination cmb+SN+mpk would lead to a larger prob-
ability of doubt than for �CDM if we had assumed a list of N �
20 known models, rather than just three. As illustrated in Fig. 2,
this effect is, however, a consequence of our choice of spreading
the level of prior probabilities among the N known models, while
assuming a fixed p(X), see equation (3). As N increases, the prior

for �CDM decreases while the prior doubt is kept constant. As a
consequence, it becomes easier for the former to ‘catch up’ with the
latter.

In order to avoid this spurious effect, one could choose to set the
prior doubt as a fraction 1/f (f > 1) of the prior probability for
�CDM, i.e. to require that the relative probability between X and
� is constant a priori, independent of the number of known models.
We thus replace the prescription of equation (3) by

p(�) = 1

N
(1 − p(X)) (24)

p(X) = p(�)

f
= (Nf + 1)−1 (25)

and by equating the posterior doubt with the posterior for �CDM
we obtain the following requirement for the �χ 2:

�χ 2 = −4 ln f . (26)

This is now independent of the number of known models N and it
only depends logarithmically on the prior doubt fraction, f . From
the last two columns of Table 5 we can see that even if doubt started
off a factor of just f = 4 less probable than �CDM, a �χ 2 = −5.5
would be required in order for the unknown model X to become
as probable as �CDM. Increasing the prior gap between doubt and
�CDM (i.e. increasing f ) only makes the requirements on the χ 2

improvement more taxing.
In summary, once the effect of adding extra models to the known

models’ list is corrected for by introducing the fractional prior doubt
f , we find that the improvement in the χ 2 found for various combi-
nations of data sets is insufficient to doubt �CDM. If the unknown
model starts off being a factor of 4 less probable than �CDM, one
would need an improvement in the χ 2 of about 5 units to reverse
the situation in the posterior, which is quite a bit larger than the
maximum χ 2 improvement observed from the data.

5 C O N C L U S I O N S

The aim of this paper was to extend the application of Bayesian
model selection to define an absolute scale of goodness of fit for
models, rather than just a relative one, such as the Jeffreys’ scale.
We showed how the notion of doubt can be used to evaluate the
evidence in favour of a missing ‘ideal’ unknown model in the list
of known cosmological models. We demonstrated how a useful
absolute upper bound to the Bayesian evidence of an unknown
model can be derived and how this can be implemented in the
context of Bayesian model comparison.

Doubt can be incorporated in the framework of model comparison
to help us decide whether our currently ‘best’ model is statistically
adequate for the data at hand. Kunz, Trotta & Parkinson (2006) in-
troduced the notion of Bayesian complexity to decide whether the
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available models are overcomplex with respect to the constraining
power of the data. Bayesian doubt can act as a useful complement
to Bayesian complexity, giving an indication of whether the current
models are statistically insufficient to describe the data. Used in
conjunction, doubt and complexity can thus extend the power and
domain of applicability of Bayesian model comparison. Of course
statistical considerations should never replace proper physical in-
sight: all of our arguments are restricted to the statistical aspects
of data modelling. But for the problem of dark energy, where most
‘models’ are of a phenomenological kind, it seems to us that a
rigorous statistical framework can help deciding whether new the-
oretical explorations might be fruitful. Other domains where we
expect doubt to be useful include the description of the spectral
distribution of CMB anisotropies and the problem of anomalous
alignments between multipoles in the CMB (Tegmark, de Oliveira-
Costa & Hamilton 2003; Schwarz et al. 2004; Land & Magueijo
2005).

We have applied this methodology to the problem of dark energy,
adopting a list of known models including possible extensions of the
dark energy sector and non-zero curvature of the Universe. In princi-
ple, many more models could be added to the list of known models.
However we argued that our results are robust against adding further
models to the list of known models. We found that current CMB,
mpk and SNIa data do not require the introduction of an alterna-
tive model to the baseline flat �CDM model. The upper bound of
the Bayesian evidence for a presently unknown dark energy model
against �CDM gives only weak evidence in favour of the unknown
model. Since this is an absolute upper bound, we conclude that
�CDM remains a sufficient phenomenological description of cur-
rently available observations.
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