40 research outputs found

    Optimal Antenna Allocation in MIMO Radars with Collocated Antennas

    Full text link
    This paper concerns with the sensor management problem in collocated Multiple-Input Multiple-Output (MIMO) radars. After deriving the Cramer-Rao Lower Bound (CRLB) as a performance measure, the antenna allocation problem is formulated as a standard Semi-definite Programming (SDP) for the single-target case. In addition, for multiple unresolved target scenarios, a sampling-based algorithm is proposed to deal with the non-convexity of the cost function. Simulations confirm the superiority of the localization results under the optimal structure.Comment: Submitted to IEEE Transactions on Aerospace and Electronic System

    Energy Efficient Sensor Scheduling with a Mobile Sink Node for the Target Tracking Application

    Get PDF
    Measurement losses adversely affect the performance of target tracking. The sensor network's life span depends on how efficiently the sensor nodes consume energy. In this paper, we focus on minimizing the total energy consumed by the sensor nodes whilst avoiding measurement losses. Since transmitting data over a long distance consumes a significant amount of energy, a mobile sink node collects the measurements and transmits them to the base station. We assume that the default transmission range of the activated sensor node is limited and it can be increased to maximum range only if the mobile sink node is out-side the default transmission range. Moreover, the active sensor node can be changed after a certain time period. The problem is to select an optimal sensor sequence which minimizes the total energy consumed by the sensor nodes. In this paper, we consider two different problems depend on the mobile sink node's path. First, we assume that the mobile sink node's position is known for the entire time horizon and use the dynamic programming technique to solve the problem. Second, the position of the sink node is varied over time according to a known Markov chain, and the problem is solved by stochastic dynamic programming. We also present sub-optimal methods to solve our problem. A numerical example is presented in order to discuss the proposed methods' performanc

    Ground Target Tracking Using an Airborne Angle-Only Sensor with Terrain Uncertainty and Sensor Biases

    No full text
    Airborne angle-only sensors can be used to track stationary or mobile ground targets. In order to make the problem observable in 3-dimensions (3-D), the height of the target (i.e., the height of the terrain) from the sea-level is needed to be known. In most of the existing works, the terrain height is assumed to be known accurately. However, the terrain height is usually obtained from Digital Terrain Elevation Data (DTED), which has different resolution levels. Ignoring the terrain height uncertainty in a tracking algorithm will lead to a bias in the estimated states. In addition to the terrain uncertainty, another common source of uncertainty in angle-only sensors is the sensor biases. Both these uncertainties must be handled properly to obtain better tracking accuracy. In this paper, we propose algorithms to estimate the sensor biases with the target(s) of opportunity and algorithms to track targets with terrain and sensor bias uncertainties. Sensor bias uncertainties can be reduced by estimating the biases using the measurements from the target(s) of opportunity with known horizontal positions. This step can be an optional step in an angle-only tracking problem. In this work, we have proposed algorithms to pick optimal targets of opportunity to obtain better bias estimation and algorithms to estimate the biases with the selected target(s) of opportunity. Finally, we provide a filtering framework to track the targets with terrain and bias uncertainties. The Posterior Cramer–Rao Lower Bound (PCRLB), which provides the lower bound on achievable estimation error, is derived for the single target filtering with an angle-only sensor with terrain uncertainty and measurement biases. The effectiveness of the proposed algorithms is verified by Monte Carlo simulations. The simulation results show that sensor biases can be estimated accurately using the target(s) of opportunity and the tracking accuracies of the targets can be improved significantly using the proposed algorithms when the terrain and bias uncertainties are present

    IMM forward filtering and backward smoothing for maneuvering target tracking

    No full text
    The interacting multiple model (IMM) estimator has been proven to be effective in tracking agile targets. Smoothing or retrodiction, which uses measurements beyond the current estimation time, provides better estimates of target states. Various methods have been proposed for multiple model (MM) smoothing in the literature. A new smoothing method is presented here which involves forward filtering followed by backward smoothing while maintaining the fundamental spirit of the IMM. The forward filtering is performed using the standard IMM recursion, while the backward smoothing is performed using a novel interacting smoothing recursion. This backward recursion mimics the IMM estimator in the backward direction, where each mode-conditioned smoother uses standard Kalman smoothing recursion. The resulting algorithm provides improved but delayed estimates of target states. Simulation studies are performed to demonstrate the improved performance with a maneuvering target scenario. Results of the new method are compared with existing methods, namely, the augmented state IMM filter and the generalized pseudo-Bayesian estimator of order 2 smoothing. Specifically, the proposed IMM smoother operates just like the IMM estimator, which approximates N-2 state transitions using N filters, where N is the number of motion models. In contrast, previous approaches require N-2 smoothers or an augmented state

    Nonparametric Spatio-Temporal Joint Probabilistic Data Association Coupled Filter and Interfering Extended Target Tracking

    No full text
    Extended target tracking estimates the centroid and shape of the target in space and time. In various situations where extended target tracking is applicable, the presence of multiple targets can lead to interference, particularly when they maneuver behind one another in a sensor like a camera. Nonetheless, when dealing with multiple extended targets, there’s a tendency for them to share similar shapes within a group, which can enhance their detectability. For instance, the coordinated movement of a cluster of aerial vehicles might cause radar misdetections during their convergence or divergence. Similarly, in the context of a self-driving car, lane markings might split or converge, resulting in inaccurate lane tracking detections. A well-known joint probabilistic data association coupled (JPDAC) filter can address this problem in only a single-point target tracking. A variation of JPDACF was developed by introducing a nonparametric Spatio-Temporal Joint Probabilistic Data Association Coupled Filter (ST-JPDACF) to address the problem for extended targets. Using different kernel functions, we manage the dependency of measurements in space (inside a frame) and time (between frames). Kernel functions are able to be learned using a limited number of training data. This extension can be used for tracking the shape and dynamics of nonparametric dependent extended targets in clutter when targets share measurements. The proposed algorithm was applied to lane tracking and compared with other well-known supervised methods in an interfering case, yielding promising results

    Multiple Detection-Aided Low-Observable Track Initialization Using ML-PDA

    No full text
    corecore