Context. Photon orbital angular momentum (POAM) is normally invoked in a
quantum mechanical context. It can, however, also be adapted to the classical
regime, which includes observational astronomy.
Aims. I explain why POAM quantities are excellent metrics for describing the
end-to-end behavior of astronomical systems. To demonstrate their utility, I
calculate POAM probabilities and torques from holography measurements of EVLA
antenna surfaces.
Methods. With previously defined concepts and calculi, I present generic
expressions for POAM spectra, total POAM, torque spectra, and total torque in
the image plane. I extend these functional forms to describe the specific POAM
behavior of single telescopes and interferometers.
Results. POAM probabilities of spatially uncorrelated astronomical sources
are symmetric in quantum number. Such objects have zero intrinsic total POAM on
the celestial sphere, which means that the total POAM in the image plane is
identical to the total torque induced by aberrations within propagation media &
instrumentation. The total torque can be divided into source- independent and
dependent components, and the latter can be written in terms of three
illustrative forms. For interferometers, complications arise from discrete
sampling of synthesized apertures, but they can be overcome. POAM also
manifests itself in the apodization of each telescope in an array. Holography
of EVLA antennas observing a point source indicate that ~ 10% of photons in the
n = 0 state are torqued to n != 0 states.
Conclusions. POAM quantities represent excellent metrics for characterizing
instruments because they are used to simultaneously describe amplitude and
phase aberrations. In contrast, Zernike polynomials are just solutions of a
differential equation that happen to ~ correspond to specific types of
aberrations and are typically employed to fit only phases