35 research outputs found

    First Steps Toward a Multiparty State

    Full text link

    Energies of knot diagrams

    Full text link
    We introduce and begin the study of new knot energies defined on knot diagrams. Physically, they model the internal energy of thin metallic solid tori squeezed between two parallel planes. Thus the knots considered can perform the second and third Reidemeister moves, but not the first one. The energy functionals considered are the sum of two terms, the uniformization term (which tends to make the curvature of the knot uniform) and the resistance term (which, in particular, forbids crossing changes). We define an infinite family of uniformization functionals, depending on an arbitrary smooth function ff and study the simplest nontrivial case f(x)=x2f(x)=x^2, obtaining neat normal forms (corresponding to minima of the functional) by making use of the Gauss representation of immersed curves, of the phase space of the pendulum, and of elliptic functions

    Partial Perception and Approximate Understanding

    Get PDF
    What is discussed in the present paper is the assumption concerning a human narrowed sense of perception of external world and, resulting from this, a basically approximate nature of concepts that are to portray it. Apart from the perceptual vagueness, other types of vagueness are also discussed, involving both the nature of things, indeterminacy of linguistic expressions and psycho-sociological conditioning of discourse actions in one language and in translational contexts. The second part of the paper discusses the concept of conceptual and linguistic resemblance (similarity, equivalence) and discourse approximating strategies and proposes a Resemblance Matrix, presenting ways used to narrow the approximation gap between the interacting parties in monolingual and translational discourses

    How to think about informal proofs

    Get PDF
    This document is the Accepted Manuscript version of the following article: Brendan Larvor, ‘How to think about informal proofs’, Synthese, Vol. 187(2): 715-730, first published online 9 September 2011. The final publication is available at Springer via doi:10.1007/s11229-011-0007-5It is argued in this study that (i) progress in the philosophy of mathematical practice requires a general positive account of informal proof; (ii) the best candidate is to think of informal proofs as arguments that depend on their matter as well as their logical form; (iii) articulating the dependency of informal inferences on their content requires a redefinition of logic as the general study of inferential actions; (iv) it is a decisive advantage of this conception of logic that it accommodates the many mathematical proofs that include actions on objects other than propositions; (v) this conception of logic permits the articulation of project-sized tasks for the philosophy of mathematical practice, thereby supplying a partial characterisation of normal research in the fieldPeer reviewedFinal Accepted Versio

    Descriptive Topological Spaces for Performing Visual Search

    Get PDF
    Accepted versionThis article presents an approach to performing the task of visual search in the context of descriptive topological spaces. The presented algorithm forms the basis of a descriptive visual search system (DVSS) that is based on the guided search model (GSM) that is motivated by human visual search. This model, in turn, consists of the bottom-up and top-down attention models and is implemented within the DVSS in three distinct stages. First, the bottom-up activation process is used to generate saliency maps and to identify salient objects. Second, perceptual objects, defined in the context of descriptive topological spaces, are identified and associated with feature vectors obtained from a VGG deep learning convolutional neural network. Lastly, the top-down activation process makes decisions on whether the object of interest is present in a given image through the use of descriptive patterns within the context of a descriptive topological space. The presented approach is tested with images from the ImageNet ILSVRC2012 and SIMPLIcity datasets. The contribution of this article is a descriptive pattern-based visual search algorithm."This research has been supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant 418413, and the Faculty of Graduate Studies at the University of Winnipeg."https://link.springer.com/chapter/10.1007/978-3-662-58768-3_

    Nodi (Noeuds)

    No full text

    Geometries

    No full text
    The book is an innovative modern exposition of geometry, or rather, of geometries; it is the first textbook in which Felix Klein's Erlangen Program (the action of transformation groups) is systematically used as the basis for defining various geometries. The course of study presented is dedicated to the proposition that all geometries are created equal--although some, of course, remain more equal than others. The author concentrates on several of the more distinguished and beautiful ones, which include what he terms "toy geometries", the geometries of Platonic bodies, discrete geometries, and classical continuous geometries. The text is based on first-year semester course lectures delivered at the Independent University of Moscow in 2003 and 2006. It is by no means a formal algebraic or analytic treatment of geometric topics, but rather, a highly visual exposition containing upwards of 200 illustrations. The reader is expected to possess a familiarity with elementary Euclidean geometry, albeit those lacking this knowledge may refer to a compendium in Chapter 0. Per the author's predilection, the book contains very little regarding the axiomatic approach to geometry (save for a single chapter on the history of non-Euclidean geometry), but two Appendices provide a detailed treatment of Euclid's and Hilbert's axiomatics. Perhaps the most important aspect of this course is the problems, which appear at the end of each chapter and are supplemented with answers at the conclusion of the text. By analyzing and solving these problems, the reader will become capable of thinking and working geometrically, much more so than by simply learning the theory. Ultimately, the author makes the distinction between concrete mathematical objects called "geometries" and the singular "geometry", which he understands as a way of thinking about mathematics. Although the book does not address branches of mathematics and mathematical physics such as Riemannian and Kähler manifolds or, say, differentiable manifolds and conformal field theories, the ideology of category language and transformation groups on which the book is based prepares the reader for the study of, and eventually, research in these important and rapidly developing areas of contemporary mathematics
    corecore