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ABSTRACT: 

 

The problem of colour correction of underwater images concerns not only surveyors, who primarily use images for photogrammetric 

purposes, but also archaeologists, marine biologists, and many other domains experts whose aim is to study objects and lifeforms 

underwater. Different methods exist in the literature; some of them provide outstanding results but works involving physical models 

that take into account additional information and variables (light conditions, depths, camera to objects distances, water properties) that 

are not always available or can be measured using expensive equipment or calculated using more complicated models. Some other 

methods have the advantages of working with basically all kinds of dataset, but without considering any geometric information, 

therefore applying corrections that work only in very generic conditions that most of the time differs from the real-world applications. 

This paper presents an easy and fast method for restoring the colour information on images captured underwater. The compelling idea 

is to model light backscattering and absorption variation according to the distance of the surveyed object. This information is always 

obtainable in photogrammetric datasets, as the model utilises the scene's 3D geometry by creating and using SfM-MVS generated 

depth maps, which are crucial for implementing the proposed methodology. The results presented visually and quantitatively are 

promising since they are an excellent compromise to provide a straightforward and easily adaptable workflow to restore the colour 

information in underwater images 

 

 

1. INTRODUCTION 

Underwater images are often affected by inconsistency in 

radiometry. Due to the optical properties of water, when light 

propagates in a body of water, all (but significantly higher 

wavelengths) colours are affected by a degradation in intensity. 

This degradation changes based on the examined wavelength and 

mainly in function to the acquisition depth, the camera to object 

distance, and the water physical characteristics and conditions for 

a given site at the specific acquisition time frame. For different 

disciplines, such as (but not only) underwater archaeology and 

marine biology, domain experts and scientists aim to obtain 

images with consistent colour compared to the real object of the 

scenery. These needs fostered the research towards automatic or 

semi-automatic colour correction methods and algorithms for 

underwater images, mainly used in pre or post-processing phases 

of the photogrammetric process. Objects photographed 

underwater appear to have a false blue/green tone. That is a result 

of several effects that are caused due to the water where in the air 

these effects are not present. Water causes significant attenuation 

of light while it passes through it, making its intensity 

exponentially weaker the more it travels (Jaffe, 1990). The 

attenuation of light underwater is frequency-dependent meaning 

that red light is attenuated over much shorter distances than blue 

light as well as the backscattering of blue and green, resulting in 

a change in the observed colour of an object at different distances 

from the camera and light source (Bryson et al., 2016). In other 

works, many researchers have addressed this issue and have 

developed algorithms to counter this effect and restore the ‘true’ 

colour in Underwater (UW) images (Akkaynak and Treibitz, 
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2019; Bianco et al., 2015; Bryson et al., 2016, 2013; Roznere and 

Li, 2019; Wu et al., 2017). 

 

All the aforementioned studies and many more tried to resolve 

the issue of UW colour attenuation with the use of specific 

calibrated equipment and a-priori knowledge that occurred from 

measurements such as reflectance measurements in the surface, 

measurements for water attenuation coefficients, obtaining image 

intensity reference values using calibrated colour charts, 

spectrometers etc. But what happens when this kind of 

information and equipment is not available or when we deal with 

archive datasets? Some algorithms exist such as the gray world 

assumption, Lab, CLAHE, etc in order to correct the colours of 

UW imagery, all with pros and cons. The biggest disadvantage 

of these methods is that their performance is heavily dependent 

on the amount of colour that is present in the scenery, since they 

assume for the overall scene average colour. 

 

1.1 Optical properties of water 

As described by Wang et al., UW images always show a green-

bluish colour cast, which is driven by different red, green and 

blue light attenuation ratios (Wang et al., 2019). The water 

properties that control light attenuation of water and thus the 

scene appearance is dependent on scattering and absorption. 

Attenuation coefficients control how the light decays 

exponentially as a function of the distance that it travels 

(Bekerman et al., 2020). Pure waters are optically clear mediums 

with no suspended particles; only the interaction of light with 

molecules and ions causes light to be absorbed in pure water 
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(Morel, 1974). Short visible wavelengths, such as blue, are 

absorbed first, followed by green and then red. As a result, just 

1% of the light reaching the water's surface reaches a depth of 

100 meters. (Menna et al., 2018). 

 

This research aims to understand how the intensity of absorbed 

light for the three RGB channels changes based on the camera to 

object distance variation. Based on that, a quick and fast method 

for restoring most of the true colours of the scene will be 

proposed based on a mathematical model that describes how the 

colour intensity is absorbed and backscattered, with the final aim 

of restoring the true information. The model utilises the camera 

to object distance for every pixel of the image that yields this 

information, in contrast to image enhancement methods like Lab 

or CLAHE algorithms. The camera to object distances are 

obtained from SfM-MVS derived depth maps of the images. 

 

2. RELATED WORK 

Various image enhancement and restoration methods have been 

proposed in the past decade. This section will give an overview 

of such methods and their relevance to our work. 

 

A crucial topic that has kept scientists engaged over the years is 

the absorption and scattering coefficients of water. Jerlov 

classified waters into three distinct oceanic kinds and five unique 

coastal kinds in 1951(Jerlov et al., 1951). Following Jerlov’s 

contributions, various methodologies  aim to determine the 

inherent optical properties of Jerlov water types (Akkaynak et al., 

2017; Solonenko and Mobley, 2015).  

 

A mathematical model for spectral analysis of water 

characteristics was proposed in 2014, instead of a colour 

correction technique in the RGB space (Blasinski et al., 2014). 

Akkaynak et al., (2017) utilized natural water bodies and 

categorized them to determine the positions of all physically 

important RGB attenuation coefficients for UW imaging. The 

authors here showcased that the range of wideband attenuation 

coefficients in the ocean is restricted and demonstrated that the 

normal transition from wavelength-dependent attenuation β(λ) to 

wideband attenuation β(c) is more complex than initially was 

demonstrated by standard image formation models. 

 

Ancuti et al., (2012) suggested a simple fusion-based approach 

for enhancing UW photos using a single input while blending 

multiple well-known filters. As the authors support, this method 

successfully improved UW footage of dynamic situations. 

 

A first proposal for colour correction of UW images by using the 

lαβ colour space is presented in (Bianco et al., 2015). To increase 

image contrast, chromatic components' distributions are white 

balanced, and histogram cut-off and stretching of the luminance 

component are done. Their results show that this pipeline is 

thriving under the assumption of a grey world and homogeneous 

lighting of the scene. These assumptions are acceptable only for 

close-range acquisition in a downward direction, such as seabed 

mapping or UW photography and under situations with slight 

light changes. 

 

Bryson et al., (2013) proposed an automated method for 

rectifying colour discrepancy in UW photos gathered from 

diverse angles while building 3D structure-from-motion derived 

models. This contribution aimed to image large scale biological 

environments, which prohibited the use of colour charts due to 

the sensitivity of marine ecosystems to seabed disturbances. The 

authors deployed a "gray-world" colour distribution to focus on 

colour constancy. This means that surface reflectance has a gray-

scale distribution that is independent of scene geometry. The 

same authors in 2016 proposed a formation model for calculating 

the true colour of scenery taken from an UW automated vehicle 

with strobes. This methodology required a unique setup of 

camera and strobes which subsequently allowed for the creation 

and proposal of a unique image formation model that considered 

this setup to provide the necessary colour restoration to the 

images. 

 

Akkaynak and Treibitz, (2018) modified the current UW image 

formation model. They derived the physically valid space of 

backscatter using oceanographic measurements, demonstrating 

that the wideband coefficients of backscatter differ from those of 

direct transmission, even though the current model portrays them 

as the same. As a result, they proposed a revised UW image 

formation model that takes these deviations into account and 

validated it using in situ UW experiments. The same authors 

implemented their work in (Akkaynak and Treibitz, 2019) 

creating the Sea-thru pipeline for colour reconstruction. While 

the revised model is physically more accurate, it contains more 

parameters that make it challenging to use. This methodology 

explains how to estimate these parameters for improved scene 

recovery. 

 

3. MATERIALS AND METHODS 

In the framework of this research, a compact underwater camera 

(Olympus Stylus TG-6) and a couple of colour calibration charts 

(ColorChecker® Classic | X-Rite) mounted on a PVC 

parallelepiped structure have been used (Figure 1). 

 

 
Figure 1. Sensor and equipment used in the framework of this 

research. 

 

3.1 In Situ Tests 

In order to investigate how different wavelengths, degrade in 

intensity, two tests have been performed related to acquiring 

RAW images at varying camera-to-object distance. The test has 

been carried out by acquiring multiple images of a selected object 

at a specific depth and performing a photogrammetric 

acquisition, placing inside the surveyed scene a 40 cm side L-

shaped scale bar and the employed structure (without the camera) 

with the outer calibration chart exposed. In this way, it was 

possible to obtain depth maps (and therefore the related COD 

distance) for each of the acquired images. Additionally, for both 

sites, images of the colour chart were acquired in varying depths 

(one image every ~ 0,5 m) while descending and ascending from 

and to the surface. This was possible due to the setup that was 

mentioned above. 

 

The tests mentioned earlier have been performed in two different 

sites in Cyprus. Test site 1 is the Green Bay diving site (Protaras). 
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The test here was performed at a maximum depth of 10 m. Here 

a photogrammetric acquisition of one of the several stone 

sculptures located around the diving site was performed. Test site 

2 is the Lady Thetis Shipwreck diving site (Limassol). The test 

here was performed at a maximum depth of 13m. Here a 

photogrammetric acquisition of the shipwreck's upper deck's 

metal roof was performed. 

 

The eight primary colour patches from the colour chart (cyan, 

magenta, yellow, red, green, blue, black, white) have been 

selected. For each channel (red, green, and blue), and based on 

the change of underwater depth (test A) and of camera-to-object 

distance (test B), absorption diagrams have been created for the 

test performed in the two test sites. The intensity value reported 

on each diagram has been obtained by applying a median filter to 

a sample area for each patch and normalising the resulting value 

(0-65535 to 0-1 value). 

 

3.2 Data Utilization for Colour Correction Method 

Initially, multiple images in varying depths were captured and we 

tried to model the absorption based on the depth. Unfortunately, 

this test was not successful. The main reason was that it wasn’t 

possible to satisfactorily fit any of the tested functions and match 

the last image captured at the seabed. The functions tested, in 

both experiments were polynomial 1st, 2nd, 3rd and 4th order, 

exponential 1st and 2nd order. Hence it was decided to not utilize 

any of the dataset collected from this test on either site. Instead, 

we decided to focus on the camera to object distance related 

datasets and colour corrections. 

 

Since UW image acquisition for 3D reconstruction is done 

exclusively at constant depth with the camera to object distance 

being the varying constant, we decided to focus on a colour 

correction method utilizing the data collected at the seafloor since 

they comply with the standard UW image acquisition for 3D 

reconstruction approach.  

 

3.3 Photogrammetric Workflow 

For the processing, the RAW images were transformed into 16-

bit uncompressed TIFF images in order to process them while 

keeping the raw information recorded by the camera, undistorted. 

Multiple tests were done in order to finalize a proper fitting 

function to model the colour absorption and the backscattering in 

UW images. These tests were performed on the data that were 

suited for photogrammetric 3D reconstruction. In the Protaras 

site, the dataset contained images of a statue captured in varying 

distances and angles, while for the 2nd site in Limassol, the 

dataset contained images of the shipwreck’s upper deck’s metal 

roof, suited for photogrammetric 3D reconstruction. The Xrite 

colour chart was visible alongside the aforementioned scale bar 

in both datasets.  

 

The two datasets were photogrammetrically processed using 

Agisoft Metashape to extract the depth maps for the image 

frames. The 40 cm scale bar was used to bring the 3D models into 

proper scaling and for the depth maps to provide the proper 

camera to object distances for each image pixel.  

 

4. FUNCTION FITTING FOR COLOUR CORRECTION 

BASED ON THE COLLECTED DATASETS 

After the photogrammetric processing, the intensity values for 

the eight primary colour patches of the Xrite colour chart were 

extracted alongside their respective camera to object distances. 

This was done for all the images that the colour chart was clearly 

visible in order to ensure the proper acquisition of the colour 

intensities. For the intensities, instead of extracting the values 

given from 1 single pixel on the colour cell, it was decided to 

extract the median value from a 20 by 20 pixel box inside the 

colour cell. This ensured that possible noise was neutralized and 

did not affect the experiment in the later stages.  

 

In Figure 2 we see that when the camera to object distance 

increases the red colour image intensity values of the eight 

primary Xrite colour patches decay almost exponentially. In 

contrast the decay is smoother as expected for green and blue. 

This is also showed when the Limassol site dataset is evaluated 

(Figure 3). 

 

 
Figure 2. The diagram shows the value of the intensity 

absorption of Red, Green and Blue colour channels (top to 

bottom), for each of the eight main colour patches (Red, Green, 

Blue, Cyan, Magenta, Yellow, Black, White), based on camera 

to object distances for Protaras test site. 

 

 
Figure 3. The diagram shows the value of the intensity 

absorption of Red, Green and Blue colour channels (top to 

bottom), for each of the eight main colour patches (Red, Green, 

Blue, Cyan, Magenta, Yellow, Black, White), based on camera 

to object distances for Limassol test site. 

 

4.1 Absorption and Backscattering  

Observing the derived graphs, it is noticeable how different the 

colour decay is for the various colour patches. For example, we 

notice that the colour intensity values of the green and blue 

patches for their respective channels are decaying based on the 
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camera to object distance. On the other hand, when we observe 

how the black patch behaves, we notice that for green and blue, 

the values are increasing. This observation led to breaking down 

the modelling into two parts. To properly model and correct the 

colour distortion in the acquired images, the proposed method 

introduces a model that includes both absorption and 

backscattering. This idea is also supported by the fact that various 

image formation models that exist in the literature (Akkaynak 

and Treibitz, 2019, 2018; Bryson et al., 2016) account for both 

absorption and backscattering with the latter being an additive 

element to the former. 

 

Having that in mind we proceeded by modelling backscattering 

and absorption. To do so we decided to use the data from the two 

neutral patches, white and black. More specifically, the colour 

values based on the camera to object distances of Red, Green and 

Blue for the white and black colour patches were plotted (Figure 

4). Using linear regression, fitting functions were introduced in 

order to model the absorption and backscattering.  

 

 
Figure 4. For Protaras dataset: from top to bottom is the colour 

value behaviour for Red, Green and Blue channels as the 

camera to object distance increases for the white and black 

colour patch respectively.  

 

Having observed the above, multiple tests were implemented to 

introduce the best fitting function for the data. Multiple fitting 

functions were tested such us polynomial of various degrees, 

exponential of 1st and 2nd degree and trigonometric functions. 

Based on the various tests, the backscattering is best modelled as 

a 2nd degree polynomial for blue and green where the 

backscattering for red is negligible thus it can be considered 0. 

Regarding the absorption, the best fitting function that can be 

modelled is either a 2nd degree polynomial or a 2nd degree 

exponential fitting. For both datasets 2nd degree exponential 

fitting was used for the absorption where 2nd degree polynomial 

fitting was used for the backscattering since they provided the 

best visual results. Figure 5 shows the results of the proposed 

method and the results provided by CLAHE and Lab algorithms. 

 

 
Figure 5. Correction results for Protaras Dataset: a) original 

image, b) Lab, c) CLAHE, d) proposed method (2nd degree 

polynomial for the back scattering was used and 2nd degree 

exponential for the absorption). 

 

In Figure 5 Lab and the proposed method show the most visually 

pleasing results. However, the proposed method provides results 

only in the areas of the image where there is 3D information or 

in other words where we have obtained the camera to object 

distances. In our method after the colour correction, a white 

balancing based on the white patch of the colour checker is 

applied. Although we could argue that Lab gives somewhat of an 

acceptable result, the problem is that it does not take into 

consideration any geometry related information. The result may 

differ significantly if for the same dataset Lab is applied on 

multiple images. CLAHE on the other hand did not manage to 

improve the colours of the scene. The only noticeable difference 

is a contrast change.  

 

The corresponding results for the Limassol dataset are presented 

in Figure 6 & Figure 7. The behaviour although was expected to 

be similar, it appears to be very different regarding the blue 

colour absorption on the white patch. Instead of the colour 

intensity reducing, we observe that as the COD changes, the blue 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B2-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-959-2022 | © Author(s) 2022. CC BY 4.0 License.

 
962



 

intensity stays equal to 1. This can be explained by the shear 

dominance of blue colour at that particular depth (13-15m) where 

the dataset was captured.  

 

 
Figure 6. For Limassol dataset: from top to bottom is the colour 

value behaviour for Red, Green and Blue channels as the 

camera to object distance increases for the white and black 

colour patch respectively. 

 

The modelling for absorption and backscattering remained the 

same for the Limassol dataset, meaning that backscattering was 

modelled as a 2nd degree polynomial where absorption was 

modelled as a 2nd degree exponential function. 

 

Figure 7 shows the results provided by the proposed method, Lab 

and CLAHE algorithms correction and the original image. 

Overall, the visual result of Lab and CLAHE is similar to the one 

provided for Protaras image dataset. Regarding the proposed 

method, visually the colours of the scene are improved but some 

noise is present around the poles of the frame. This noise is by-

product of the depth map of the image since the SfM-MVS 

derived models include noise which is transferred into the depth 

maps.  

 

 
Figure 7. Correction results for Limassol Dataset: a) original 

image, b) Lab, c) CLAHE, d) proposed method (2nd degree 

polynomial for the back scattering was used and 2nd degree 

exponential for the absorption). 

 

 

5. RESULTS 

Having tested the above on various images, the results vary 

depending on the images and more specifically, the camera to 

object distances. In particular, the colour reconstruction suffers 

more visually in images where the object was further away from 

the camera. The following figure shows the results of various 

images when the proposed method is applied and when lab and 

CLAHE colour corrections. Results on the various images are 

shown in Figure 8 & Figure 9 below. 
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Figure 8: From Left to right the results provided by our algorithm, Lab, CLAHE, and the original images. Images from Protaras 

dataset 

 

 
Figure 9: From Left to right the results provided by our algorithm, Lab, CLAHE, and the original images. Images from Limassol 

dataset 
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Based on the figures above, the visual result on the produced 

images differs from image to image. Those differences are 

primarily due to the camera-to-object distances. From what was 

evaluated, images taken 3-5m away of the objects are shown 

more red, since the model that is applied, primarily tries to 

compensate for the lack of red. Since it is distance dependent it 

can overcompensate in some areas of the image. This effect 

appears in dark and shadowed areas of the image where the 

objects appear to have a reddish tone. The results produced for 

the two datasets differ due to the different environment, depth, 

seabed characteristics, and water particles. These differences 

were expected and the goal was to see and evaluate how 

impactful the algorithm could be and if the model could restore 

the missing colour information to a satisfying degree.  

 

Additionally, compared with the image enhancement algorithms 

applied to the images (CLAHE & LAB), the proposed model 

manages to relieve the scene off the fog effect that is caused due 

to backscattering. This is the major primary benefit of algorithms 

utilising scene geometry over common standard enhancement 

tools. Since there is information about the scene geometry, it can 

be utilized in order to compensate and remove backscattering and 

thus the fog effect on the images. Furthermore, the colour 

restoration of both CLAHE and LAB fails in both sites due to the 

lack of enough light on the scene. Such algorithms require a 

significant amount of light to be present in order to efficiently 

restore the colour information of UW images and this is usually 

done using strobes that are mounted on the cameras. In this study 

that was not the case since the goal was the development of an 

algorithm that can restore the colour of the scene where only 

natural light is present as it is the case with shallow depths. 

 

As it is demonstrated, the results of the proposed algorithm are 

visually pleasing and promising, since the applied model in each 

case managed to restore the majority of the missing colour 

information of the scene. Unfortunately, if we look closely, we 

observe that the tones of certain colour patches are not fully 

restored. For example, the red patch is shown to be darker than it 

is outside of water. This could be considered a weakness of the 

model.  

 

To further evaluate the algorithm's performance besides the 

qualitative results and the visuals of the images, various 

quantitative metrics were applied for several images to determine 

the algorithm's effectiveness. These particular images contain the 

colour patches, but they were not used to fit the model thus they 

could be used for evaluation later on. The first measure of the 

evaluation was the use of the fitting score 𝑅2(Eq1). This is a 

coefficient used to evaluate a model in cases where a percentage 

of the dataset is used for training and the rest has been used for 

testing. This fitting score is mainly used to evaluate ML 

algorithms but can be used for simple regression models such as 

the proposed one. The coefficient’s best possible score is 1 and it 

also can be negative (Pedregosa et al., 2011). 𝐼𝑡𝑟𝑢𝑒 is the ground 

truth colour value of a colour patch for a particular colour 

channel. In these cases, as true values we used the colour 

intensities from the colour patch shown in an image captured in 

land before the dive. 𝐼𝑝𝑟𝑒𝑑 is the predicted colour value after the 

implementation of the algorithm in that particular colour patch.  

𝐼𝑡𝑟𝑢𝑒.𝑚𝑒𝑎𝑛 is the mean colour value from all 24 patches for a 

particular colour channel. Unfortunately, since this metric does 

not have a fixed coefficient range, we decided to modify it to have 

a more comprehensive range of values. The modified metric 

𝑅2
𝑚𝑜𝑑 is shown below (Eq2). This modification does not include 

𝐼𝑡𝑟𝑢𝑒.𝑚𝑒𝑎𝑛 and that allows the coefficient range to change from 0 

to 1 with the former being the worst possible value where the 

latter is the best. Another metric used for evaluation was metric 

D. N is the number of colour patches which in our case was 24. 

This metric is produced by subtracting the minimized sum of 

squared residuals from 1 as is shown (Eq3) and the best possible 

value can be 1. Finally, as an additional evaluation metric we 

adopted the mean Euclidean distance produced taking into 

account all 24 colour patches for all 3 colour channels together. 

For this metric, the closer the value is to 0, the better the 

evaluation is.  The results of these quantitative metrics are shown 

below in Table 1. 

 

𝑅2 = 1 −
∑(𝐼𝑡𝑟𝑢𝑒−𝐼𝑝𝑟𝑒𝑑)

2

∑(𝐼𝑡𝑟𝑢𝑒−𝐼𝑡𝑟𝑢𝑒.𝑚𝑒𝑎𝑛)2
    (1) 

 

𝑅2
𝑚𝑜𝑑 = 1 −

∑(𝐼𝑡𝑟𝑢𝑒−𝐼𝑝𝑟𝑒𝑑)
2

∑(𝐼𝑡𝑟𝑢𝑒)2     (2) 

 

𝐷 = 1 − √∑(𝐼𝑡𝑟𝑢𝑒−𝐼𝑝𝑟𝑒𝑑)
2

𝑁
    (3) 

 

𝐸𝑢𝑐𝑙𝐷 =
∑(√(𝐼𝑡𝑟𝑢𝑒−𝐼𝑝𝑟𝑒𝑑)

𝑅

2
+(𝐼𝑡𝑟𝑢𝑒−𝐼𝑝𝑟𝑒𝑑)

𝐺

2
+(𝐼𝑡𝑟𝑢𝑒−𝐼𝑝𝑟𝑒𝑑)

𝐵

2
)

𝑁
     (4) 

 

 

Protaras IMGP1 IMGP2 IMGP3 IMGP4 

R2R 0,3632 0,4791 0,462 0,7064 

R2G 0,7874 0,8553 0,8566 0,6515 

R2B 0,7824 0,8515 0,8485 0,677 

R2R_m 0,8366 0,827 0,8274 0,9024 

R2G_m 0,9225 0,9595 0,9313 0,9118 

R2B_m 0,9203 0,9543 0,9369 0,8959 

DR 0,7783 0,7718 0,7721 0,8287 

DG 0,8786 0,9122 0,8857 0,8704 

DB 0,8678 0,8999 0,8824 0,8489 

EuclD 0,2704 0,2432 0,2416 0,2597 

Limassol IMGL1 IMGL2 IMGL3 IMGL4 

R2R -0,5189 -0,8347 0,1493 0,0483 

R2G 0,6005 0,5791 0,7718 0,7366 

R2B 0,5051 0,5137 0,5683 0,648 

R2R_m 0,7034 0,6241 0,8406 0,8223 

R2G_m 0,9596 0,9539 0,977 0,9764 

R2B_m 0,9666 0,9636 0,9637 0,9731 

DR 0,6337 0,5875 0,7315 0,7164 

DG 0,8572 0,8473 0,8921 0,8908 

DB 0,8575 0,8514 0,8516 0,8722 

EuclD 0,3932 0,4147 0,296 0,3024 

Table 1. The various quantitative metric coefficients 

Observing Table 1, we realize the variation between the values 

of each metric used as well as their consistency for specific 

colour channels in almost all the images. For instance, metric R2 

presents the lowest values for almost all the images but especially 

images that the colour chart is further away from the camera 

(IMGL1 & IMGL2).  Additionally, we observe that all metrics 

related with the red channel are at their best value for images that 

the colour chart is closest to the camera (IMGP4 & IMGL4). 

Overall, the colour channel that appears to be the least reliably 

restored based on the metrics, is red which was expected since it 

is the colour that suffers the most from UW attenuation. 

Furthermore, the metrics appear overall to be worse for the 

images of the Limassol dataset. That can indicate the impact of 
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the depth but can also be simply due to the different and thus 

worse environmental water conditions of the site.  

 

6. CONCLUSIONS 

This paper presented a fast method for restoring the colour 

information on images captured underwater. The model utilizes 

the scenes 3D geometry with the creation and use of SfM-MVS 

generated depth maps which is crucial for implementing the 

proposed methodology. The results presented visually and 

quantitatively are promising, since no other algorithm can be 

implemented in such a straightforward manner to restore the 

colour information. Of course, more accurate algorithms that 

utilize the scene’s geometry exist in the literature. However, the 

disadvantage is that they need additional information regarding 

the physical water properties that can be measured using 

expensive equipment or calculated using more complicated 

physical models.  

 

It must be specified that the model cannot be reused for different 

datasets meaning that for every new dataset, the presence of 

colour charts is mandatory to fit the model and evaluate it using 

the metrics shown in Section 5. Furthermore, different datasets 

are affected by different light and water conditions which makes 

the reusability of the model not ideal.  Additionally, the model 

needs 3D information in order to work. The algorithm is not a 

simple image enhancement, but a 3D based image colour 

restoration algorithm.  

 

The work presented in this paper only utilized a 2nd degree 

polynomial fitting for the backscattering and a 2nd degree 

exponential fitting for the absorption as they provided the best 

visual results for these particular datasets. That does not mean 

that these are the only fitting functions that can be used. The 

fitting can be modified to provide the best possible results 

depending on the dataset. 
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