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Corticospinal pathway and its function are essential in motor control and motor

rehabilitation. Multiple sclerosis (MS) causes damage to the brain and descending

connections, and often diminishes corticospinal function. In people with MS, neural

plasticity is available, although it does not necessarily remain stable over the course of

disease progress. Thus, inducing plasticity to the corticospinal pathway so as to improve

its function may lead to motor control improvements, which impact one’s mobility, health,

and wellness. In order to harness plasticity in people with MS, over the past two decades,

non-invasive brain stimulation techniques have been examined for addressing common

symptoms, such as cognitive deficits, fatigue, and spasticity. While these methods

appear promising, when it comes to motor rehabilitation, just inducing plasticity or having

a capacity for it does not guarantee generation of better motor functions. Targeting

plasticity to a key pathway, such as the corticospinal pathway, could change what

limits one’s motor control and improve function. One of such neural training methods is

operant conditioning of the motor-evoked potential that aims to train the behavior of the

corticospinal-motoneuron pathway. Through up-conditioning training, the person learns

to produce the rewarded neuronal behavior/state of increased corticospinal excitability,

and through iterative training, the rewarded behavior/state becomes one’s habitual, daily

motor behavior. This minireview introduces operant conditioning approach for people

with MS. Guiding beneficial CNS plasticity on top of continuous disease progress may

help to prolong the duration of maintained motor function and quality of life in people

living with MS.

Keywords: operant conditioning, motor-evoked potential, corticospinal excitability, foot drop, plasticity

INTRODUCTION

Over the past 15 years, the awareness of the importance of physical rehabilitation and exercise
has been steadily growing in the field of multiple sclerosis (MS)-related research (1–3). This trend
should continue, with ongoing development and testing of disease-modifying drugs (4), which
will lead to prolonging disease stability and creating greater opportunities for reducing motor
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impairments, improving mobility, and improving quality of
life in people with MS, as pointed out by Ploughman (3).
Although underlying mechanisms may not be fully understood
(5), mounting evidence indicates positive effects of exercise
on physical fitness, balance and mobility, cognitive function,
participation, and other outcomes (1, 6). A challenge is that a
person with MS may not be able to appreciate the greatness
of exercise, when reduced movement efficiency and impaired
mobility make it difficult for him/her to be engaged in physical
activity. Without changing what is available to execute essential
daily motor function such as gait, and without changing what is
limiting one’s function, movement dysfunction would continue
to limit mobility and quality of life in people with MS. While
disease progress continuously alters one’s physiology, it is
essential to guide the central nervous system (CNS) plasticity that
can help to prolong the duration of maintained motor function
and quality of life in people living with MS.

In this brief review, we will discuss the corticospinal plasticity
in people with MS and introduce operant conditioning approach
as a method to target plasticity in the corticospinal pathway for
improving motor function in people with MS.

CNS PLASTICITY IN PEOPLE WITH MS

MS is a chronic inflammatory, autoimmune disease of the
CNS. In persons with MS, neurological deficits are commonly
attributed to inflammatory demyelination in the CNS and
damage to the gray matter in cortical and subcortical structures,
with lesion patterns, locations, volumes, and their rates of
changes differing among subtypes of MS (7–10). In addition to
accumulating structural damage, the process of inflammation
itself affects synaptic transmission and plasticity (11). Elevation
in the level of inflammatory cytokines not only changes
glutamatergic and GABAergic transmissions, which lead to
synaptic hyperexcitability and excitotoxicity, but also affects
synaptic plasticity (11–14), which is essential for clinical and
functional recovery. Thus, from damage to the brain and the
descending pathways and from alteration in synaptic plasticity,
disruption of corticospinal function is a hard-to-avoid problem
in people with MS (15–17).

Transcranial magnetic stimulation (TMS), its motor-evoked
potential (MEP), and their associated measures, such as short-
and long-interval cortical inhibition (SICI and LICI), short-
interval cortical facilitation (SICF), and intracortical facilitation
(ICF), are useful tools for investigating cortical and corticospinal
plasticity (18–22). They are also useful in detecting and
predicting the progression of disability and recovery (15, 16, 23–
27). For instance, small MEPs with long latencies, high motor
thresholds, and prolonged cortical silent periods tend to correlate
with the Expanded Disability Status Scale (EDSS) scores (15–
17, 28–30). Silent period (SP) after MEP, known to reflect cortical
inhibition at least partly (31–37), is reduced in the relapsing or
progressive phases of MS (38, 39), whereas the SP is prolonged
in the remitting phase (38). In the stable phase of relapsing–
remitting MS individuals, SICI and ICF could be similar to those
of the control group (17). A common observation is that cortical

inhibition is reduced during the relapsing or progressive phase,
whereas the inhibition is clearly present during the stable or
remitting phase (11); the phase or state of disease appears to be
reflected in the measured cortical inhibition. In addition, how
these measures respond to plasticity-inducing neuromodulation
can suggest the availability of plasticity at the time of assessment
and help to predict recovery from relapse (11–13, 23, 40).

The availability of synaptic plasticity, also known as “plasticity
reserve” (11), can be measured in persons with MS by
applying plasticity-inducing neuromodulation techniques, such
as repetitive TMS (rTMS) at high (e.g., 20Hz) or low (e.g.,
1Hz) frequency, rTMS with intermittent or continuous theta
burst stimulation patterns (iTBS and cTBS) (11, 13, 14, 41, 42),
paired associative stimulation (PAS) with TMS, and peripheral
nerve stimulation (PNS) (12, 23, 43, 44). They can be used
to assess long-term potentiation (with high-frequency rTMS
and iTBS), long-term depression (with low-frequency rTMS
and cTBS), and spike-timing-dependent Hebbian-type plasticity
(with PAS) (11, 13, 42). For example, in individuals with primary
progressive MS, neither iTBS nor cTBS exert the expected
plasticity effects; in individuals in the relapsing phase of MS, iTBS
produces expected LTP effects, but cTBS fails to produce expected
LTD effects (42). This plasticity reserve may be an essential
mechanism of clinical symptom and disability progression in
MS; when plasticity reserve is exhausted and synaptic plasticity is
unavailable, surviving neurons would not be able to compensate
for neuronal loss (11).

Importantly, while people with MS can display plasticity
(43, 45–48), there is no guarantee that their plasticity adaptive
to progressive neuronal damage is beneficial; it may exaggerate
or lessen clinical symptoms (42). Thus, to guide the plasticity
in beneficial directions, a neurobehavioral training should be
incorporated into MS rehabilitation. For improving impaired
motor function in people with MS, it would be critically
important to induce and maintain beneficial plasticity in the
corticospinal pathway, as its function is the foundation of
voluntary and involuntary motor behaviors.

NEUROMODULATION FOR
REHABILITATION IN PEOPLE WITH MS

There are a wide variety of neurorehabilitation interventions
currently available or being tested for individuals with CNS
disorders, includingMS (https://clinicaltrials.gov). Many of those
expect to induce cortical and/or subcortical plasticity and may
improve sensorimotor function [e.g., (49–52)]. Of different
neuromodulation approaches, there have been growing interests
in non-invasive brain stimulation (NIBS); in particular, rTMS
and transcranial direct current stimulation (tDCS) have been
increasingly utilized for treating various MS symptoms (41,
53–59). Other neuromodulation methods, such as deep brain
stimulation and spinal cord stimulation, have been reviewed in
(60). As effects and mechanisms of rTMS and tDCS have been
thoroughly covered in recent reviews (54–56, 58), these methods
will not be further discussed in this minireview. However,
it is worth reiterating that studies of LTP or LTD-inducing
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rTMS (e.g., iTBS, low-frequency rTMS) and tDCS that affects
polarization of the stimulated cortical network have shown some
promising results; common MS symptoms, such as fatigue,
cognitive functions, pain, and spasticity, can be alleviated by these
methods (40, 41, 53, 54, 56–58, 61, 62).

When applying NIBS for improving impaired motor function,
consideration on how to guide the stimulation-induced plasticity
is critically important. Because NIBS-induced plasticity is rather
widespread and not pathway specific, without an additional
strategy to shape such plasticity into functionally beneficial
changes, many changes at many different sites could compensate
for each other, toward maintaining the state of neural network
at net change of zero [i.e., homeostatic plasticity (63–69)].
Thus, pairing two interventions, e.g., iTBS + exercise (70),
could be a logical NIBS application strategy for motor
rehabilitation. Task-specific PNS, such as FES for foot drop
(71–73), with which functional movement and phase-specific
PNS occur concurrently, uniquely emulates a neuromodulation
combination strategy, increases MEP amplitude, and improves
motor function in people with MS and other neuromuscular
disorders (49, 74).

Another class of neuromodulation methods include
PAS (23, 43, 75–79) and operant conditioning of muscle
[electromyographic (EMG)]-evoked potentials (80–82), which
target plasticity in a specific pathway. Detailed mechanisms
of PAS approaches have been discussed in (75, 76, 78, 83, 84).
Briefly, with PAS protocols that induces spike-timing-dependent
plasticity (76–78), synaptic transmission can be potentiated
or depressed depending on the relative timing between the
presynaptic and postsynaptic spiking (77, 85, 86), and repeated
application of TMS-PNS PAS can potentiate corticospinal-
motoneuronal transmission and excitability in people with MS
(43, 45). A similar PAS concept can also be applied to cortical
neurons (79, 87, 88). Therapeutic potency of PAS in people with
MS is yet to be determined.

OPERANT CONDITIONING OF
EMG-EVOKED POTENTIALS

Operant conditioning is a method for modifying a behavior
based on the consequence of that behavior (89). Usually, when
a person acquires a new behavior through operant conditioning,
s/he does not need to discover the operant contingency through
trial and error. However, when this approach is applied to a
behavior of a neural pathway (e.g., a reflex), an individual must
go through a trial-and-error discovery phase, as s/he would
not have prior knowledge on how to control volitionally a
behavior or the excitability of that specific pathway. Thus, with
operant conditioning of an EMG-evoked potential that reflects
the behavior and/or excitability of a certain neural pathway, a
subject learns to produce a neuronal behavior that is rewarded
through trial and error, similarly between humans and animals
(89). Through repetition, the rewarded behavior can become a
habitual behavior (90). With operant conditioning of an EMG-
evoked potential, such as a reflex and an MEP, a subject is
rewarded only for increasing or decreasing a target pathway’s

excitability (81, 82). Thus, over time, it changes the pathway that
produces that response (82).

By changing the transmission of a key pathway with a
directional aim (up/down), operant conditioning of an EMG-
evoked potential seeks to improve the targeted pathway’s
function and enable more effective movements in which the
targeted pathway contributes (91, 92). An emerging theory is that
changing a key pathway leads to a cascade of wider beneficial
changes in the activity of other spinal and supraspinal pathways
(81, 93), impacting motor function recovery.

Much of the physiological and theoretical knowledge of
operant conditioning approach is based on a large number
of reflex conditioning studies (68, 82, 94). The most essential
includes the following. An operantly conditioned reflex behavior
rests on a hierarchy of plasticity from the brain to the spinal cord
(68, 82, 95, 96). The reward contingency produces plasticity in the
brain that induces and maintains the spinal cord plasticity that is
directly responsible for the conditioned reflex behavior (68, 82,
94). Among the major descending pathways, the corticospinal
tract is the only pathway essential for conditioning-induced
plasticity (97). Thus, when the corticospinal tract and its plasticity
are preserved at least partially, the targeted change can be induced
through conditioning (98), which then changes how that reflex
pathway functions in complex motion such as locomotion (80,
92, 99). These provide the foundation for currently emerging
clinical applications of MEP operant conditioning.

OPERANT CONDITIONING OF THE
MOTOR-EVOKED POTENTIALS

As in reflex operant conditioning (68, 81, 82, 100–102), operantly
up-conditioning the MEP can increase the corticospinal
excitability for the targeted muscle in people (91, 103). In the
first 100–1,000 up-conditioning trials, a person learns through
trial and error how to increase MEP size, and MEP size gradually
increases over the subsequent conditioning sessions (Figure 1).
Motivation is critical in operant conditioning (89, 90, 106, 107);
the person must value the positive feedback that s/he receives
from producing a larger MEP. Our studies suggest that in
individuals with CNS disorders, who take the conditioning trials
more seriously than those without CNS injury, MEP size is highly
likely to increase, and their MEP increase can persist at least a few
months after conditioning ends (103, 104).

Two key factors underline the therapeutic potency of MEP
conditioning. First, it targets plasticity to the corticospinal
pathway that produces an MEP in the targeted muscle. The
protocol prohibits change in the background EMG activity;
the individual is rewarded only for increasing the target
muscle’s MEP (i.e., for increasing corticospinal excitability
for the target muscle). This pathway specificity differentiates
MEP conditioning from EMG biofeedback training (108–112)
or muscle strength training (113–119), both of which are
not tailored for modulating or controlling the excitability or
behavior a specific pathway. While practice is essential in
improving motor performance, movement practice alone could
let an individual easily default to relying on what is readily
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FIGURE 1 | Operant conditioning of the tibialis anterior (TA) motor-evoked potential (MEP) in individuals with multiple sclerosis (MS) [modified from (104)]. (A) Visual

feedback screens for MEP control and MEP operant conditioning trials. In all trials, the number of the current trial within its block is displayed, and the background

(Continued)
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FIGURE 1 | electromyographic (EMG) panel shows the correct range (shaded) and the current value (green vertical bar, updated every 200ms). If TA EMG activity

stays in the correct range for at least 2 s and at least 5.5 s has passed since the last trial, an MEP is elicited. In control trials (left), the MEP panel is not shown. In

conditioning trials (right), the shading in the MEP panel indicates the rewarded MEP range for up-conditioning. The dark horizontal line is the average MEP size of the

baseline sessions, and the vertical bar is the MEP size, calculated in the MEP interval of that specific individual [e.g., 45–70ms after transcranial magnetic stimulation

(TMS)], for the most recent trial. The vertical bar appears 200ms after TMS. If that MEP size reaches into the shaded area, the bar is green, and the trial is a success.

If it falls below the shaded area, the bar is red, and the trial is a not a success. The running success rate for the current block is shown at the bottom. (B) Examples of

TA MEP in a 56-year-old woman with MS (Expanded Disability Status Scale 4.0* at baseline). Peristimulus EMG sweeps from the fourth baseline session (top) and the

24th conditioning session (bottom). For each part, 75 sweeps are superimposed. A green shaded band indicates the time window for her MEP size calculation.

Arrowheads indicate the time of TMS. (C) Mean MEP size (i.e., the mean of 225 control MEP trials in baseline sessions or 225 conditioned MEP trials in conditioning

sessions) in 6 baseline and 24 conditioning sessions that occurred at a rate of 3 sessions/week. Over the course of conditioning, her MEP size increased

progressively; the final MEP size was 175% of the baseline value. (D) Rectified locomotor EMG activity in soleus and TA bilaterally before (dashed black) and after

(solid red) conditioning. The step cycle, from foot contact to the end of swing phase, is divided into 12 equal bins. After TA MEP up-conditioning, swing phase TA

burst increased in the conditioned leg, which helped this individual regain ankle dorsiflexion and eliminated foot drop. The swing phase burst was also increased in the

contralateral TA. All panels have been adapted from (104) with permission. *EDSS 4.0 (105): Fully ambulatory without aid, self-sufficient, up and about some 12 h a

day despite relatively severe disability consisting of one FS grade 4 (others 0 or 1), or combination of lesser grades exceeding limits of previous steps; able to walk

without aid or rest some 500m.

available (e.g., trying to rely on the hip flexors, instead of
improving corticospinal drive to the impaired ankle dorsiflexors),
leaving a key pathway unchanged. BecauseMEP up-conditioning
increases the excitability of the corticospinal pathway for the
target muscle, it affects motor skills, such as locomotion, to which
the pathway contributes. Thus, with the ankle dorsiflexor tibialis
anterior (TA) MEP up-conditioning (Figure 1), locomotion can
be improved in people suffering from foot drop (weak ankle
dorsiflexion) (91, 104).

Second, by improving the function of a key pathway,
corticospinal pathway, MEP conditioning can trigger further
beneficial changes in the activity of other CNS pathways (80, 81,
93, 120), changing what is possible/available in one’s recovery
path. By targeting the weakened corticospinal drive to the TA and
ameliorating the locomotor impediment of foot drop, TA MEP
conditioning can enable more effective execution of locomotion;
this would then induce wider beneficial plasticity. Increased
corticospinal drive to the conditioned TA (49) can explain
increases in TA MEP and TA burst amplitude during the swing
phase of locomotion observed in people with MS and SCI (91,
104) but cannot explain widespread bilateral improvements in
locomotor EMG activity (91, 104) (Figure 1). These wider effects
of MEP conditioning are similar to those of the soleus H-reflex
down-conditioning, with which proximal and distal leg muscles’
locomotor EMG improved bilaterally in people with SCI (92).
How an operant-conditioning acquired new skill of changing
a specific pathway’s excitability would trigger a widespread
adaptive plasticity in many spinal/supraspinal pathways has been
addressed in a theory of system function known as the negotiated
equilibrium model (68, 93).

EFFECTS OF MEP CONDITIONING AND
CORTICOSPINAL PLASTICITY IN PEOPLE
WITH MS

Among people with foot drop due to MS or SCI, locomotor
TA activity improved and walking speed increased while MEP
increased (91, 103, 104). Conditioning-induced MEP increase
was often accompanied by systematic decrease in SP duration
(103, 104). SP is known to reflect cortical inhibition at least

partly (31–37), and different neural circuits underlie MEP and SP
(121–123). If MEP up-conditioning simply increased the general
excitability of the cortex, both MEP and SP would have increased
[e.g., (124)]. This was not the case. Instead, there were some
selective effects on excitatory and inhibitory neurons in the cortex
(125, 126). Since reduction in intracortical inhibition occurs
through modulation of GABAergic inhibitory interneurons
(127–131), it is highly likely that GABAergic inhibitory
mechanisms are involved in conditioning-induced SP changes.
SPs are often prolonged in people with stable or secondary
progressiveMS (28, 29, 132), which likely reflects alteredGABAB-
mediated intracortical inhibition (33, 131, 133, 134). Despite
an altered state of cortical inhibition in preconditioning, MEP
up-conditioning could reduce SP in individuals with stable MS
(104). Further investigation is clearly needed to understand the
mechanisms and effects of MEP up-conditioning on cortical
inhibition in MS.

OPERANT CONDITIONING OF SPINAL
REFLEXES

In addition to MEP conditioning protocols, several reflex
conditioning protocols are currently being developed. To date,
two protocols have been systematically tested in people with
or without CNS damage: the soleus short-latency stretch reflex
(known as M1 response) conditioning, using mechanical joint
perturbation (135), and the soleus H-reflex conditioning, which
uses electrical stimulation of the tibial nerve (92, 99, 102,
136). With both stretch and H-reflex conditioning protocols,
the person learns to increase or decrease the target reflex
size over 24–30 conditioning sessions. The protocols are
designed to induce sustaining changes in descending influence
over the reflex pathway, which in turn, produce targeted
plasticity in that pathway (101). Because these protocols can
change the transmission of targeted pathways, they can be
designed to address the specific functional deficits of an
individual. For example, in people with spastic hyperreflexia
due to incomplete SCI, down-conditioning of the soleus H-
reflex pathway, whose hyperactivity impaired locomotion, could
improve their locomotion (80, 92). Down-conditioning of the
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stretch or H-reflex might also improve spasticity and spastic
movement disorders in people with MS (137). It should also
be possible to condition other important pathways, such as
pathways of spinal reciprocal and presynaptic inhibition (138–
140), for further improving their motor functions.

OPERANT CONDITIONING IN MS:
CHALLENGES AND POSSIBILITIES

Up until now, the majority of evoked potential operant
conditioning studies have been done in SCI (68, 80, 82,
92, 99, 141–145), and its investigation in MS is still in an
early stage. Unique challenges in the MS population that do
not necessarily apply to the SCI population include impaired
cognitive function, fatigue, and ongoing and/or recurring
inflammation (14, 56, 59, 146). Since operant conditioning is
a behavioral learning approach (81, 82, 89), impairments in
learning, memory, and attention that are frequently found in
MS may affect the effectiveness of this approach in people with
MS. The fact that recurring inflammation influences synaptic
plasticity and plasticity reserve (11, 13), which are physiological
mechanism of learning, memory, and function recovery, could
well interfere with induction and maintenance of conditioning-
induced beneficial plasticity. Furthermore, extents of these
challenges could vary among MS subtypes and across different
individuals (11, 17, 38, 42). Clearly, more studies are needed to
determine the applicability of operant conditioning approach in
people with MS, and an investigation needs to include persons
with all MS subtypes. Long-term follow-up should also be part
of such investigations, although often unpredictable disease
progress may mask or reduce the induction of plasticity and
function improvements temporally or permanently (23, 44, 49,
74). Over 3.5 years of follow-up with a woman with secondary
progressive MS supports a possibility of long-term maintenance
of corticospinal transmission and function improvements with
MEP operant conditioning (104).

A possible strategy to overcome the above-mentioned
MS-related challenges is coadministration of conditioning
training with NIBS or pharmacological treatment. Reflex
or MEP conditioning that aims to change behaviors of
the targeted pathway is fundamentally different from rTMS
and tDCS, or pharmacological treatments, such as baclofen
(147, 148). Because the mechanisms of action differ so

vastly from each other, with careful consideration of dosing
schedules and individual or combined effects, it may be
possible to enhance functional outcomes by coadministering a
conditioning protocol with another intervention. Drugs such as
dalfampridine and D-aspartate (149–153) may further enhance
the corticospinal plasticity and transmission improvement
produced by MEP conditioning.

CONCLUSION

A growing number of neurophysiological studies indicate
the importance of neuroplasticity and its management for
neurorehabilitation in people with MS (11, 13, 54, 56–60,
154). While the benefit of exercise in health and wellness has
become recognized (1, 6), investigation on how to improve
impaired motor function and mobility, which can limit one’s
ability to exercise, has been left behind (3). Applying neural
training methods, such as operant conditioning of EMG-evoked
potentials, to guide beneficial plasticity in the corticospinal or
other important CNS pathways may minimize the factors that
limit function improvement in people withMS. As CNS plasticity
remains available over many years of disease progress (43, 46,
47), guiding it appropriately to gain function improvements on
top of changing physiology may help to prolong the duration
of maintained motor function and quality of life in people
with MS.
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