93 research outputs found

    Economic Evaluation of Regional Innovative Projects in the Sphere of Biomedicine

    Get PDF
    В статье рассмотрены необходимость и методы оценки экономической эффективности инновационных проектов в сфере биомедицины. Применение описанных методов позволит оценить экономический эффект от реализации проектов и будет способствовать коммерциализации интеллектуальной собственности, создаваемой в том числе в Красноярском крае. Стратегия развития медицинской науки в РФ до 2025 г. предусматривает кластерный принцип организации. В качестве модели создания кластера предлагается государственно-частное партнерство в форме концессии. Отбор инновационных биомедицинских проектов следует осуществлять с использованием оценки их экономической эффективности. Отмечается, что применение метода реальных опционов является наиболее оптимальным способом количественной оценки гибкости управления проектамиThe article deals with the cost-effectiveness analysis of innovative projects in the sphere of biomedicine. The analysis of these projects makes it possible to estimate the economic benefits of the projects and will contribute to the commercialization of intellectual property created in our region. The development strategy of medical science in the Russian Federation until 2025 calls for a cluster principle of organization. It is proposed to use a public-private partnership in the form of concession as a model for cluster creation. The selection of innovative biomedical projects should be carried out using their cost-effectiveness analysis. It is noted that the use of real options is a way to quantify the project management flexibilit

    Study of the Effect of Inorganic Particles on the Gas Transport Properties of Glassy Polyimides for Selective CO2 and H2O Separation

    Full text link
    [EN] Three polyimides and six inorganic fillers in a form of nanometer-sized particles were studied as thick film solution cast mixed matrix membranes (MMMs) for the transport of CO2, CH4, and H2O. Gas transport properties and electron microscopy images indicate good polymer-filler compatibility for all membranes. The only filler type thatdemonstrated good distribution throughout the membrane thickness at 10 wt.% loading was BaCe0.2Zr0.7Y0.1O3 (BCZY). The influence of this filler on MMM gas transport properties was studied in detail for 6FDA-6FpDA in a filler content range from one to 20 wt.% and for Matrimid((R)) and P84((R)) at 10 wt.% loading. The most promising result was obtained for Matrimid((R))10 wt.% BCZY MMM, which showed improvement in CO2 and H2O permeabilities accompanied by increased CO2/CH4 selectivity and high water selective membrane at elevated temperatures without H2O/permanent gas selectivity loss.This work was financially supported by the Spanish Government (SEV-2016-0683, SVP-2014-068356, Project ENE2014-57651-R and IJCI-2016-28330 grants) and GeneralitatValenciana (PROMETEO/2018/006 grant) and Helmholtz-Zentrum Geesthacht (HZG) through the technology transfer project program and by the Helmholtz Association of German Research Centers through the Helmholtz Portfolio MEMBRAIN.Escorihuela-Roca, S.; Valero, L.; Tena, A.; Shishatskiy, S.; Escolástico Rozalén, S.; Brinkmann, T.; Serra Alfaro, JM. (2018). Study of the Effect of Inorganic Particles on the Gas Transport Properties of Glassy Polyimides for Selective CO2 and H2O Separation. Membranes. 8(4). https://doi.org/10.3390/membranes8040128S84KULPRATHIPANJA, S. (2003). Mixed Matrix Membrane Development. Annals of the New York Academy of Sciences, 984(1), 361-369. doi:10.1111/j.1749-6632.2003.tb06012.xRobeson, L. M. (2008). The upper bound revisited. Journal of Membrane Science, 320(1-2), 390-400. doi:10.1016/j.memsci.2008.04.030Baker, R. W. (2010). Research needs in the membrane separation industry: Looking back, looking forward. Journal of Membrane Science, 362(1-2), 134-136. doi:10.1016/j.memsci.2010.06.028Stünkel, S., Drescher, A., Wind, J., Brinkmann, T., Repke, J.-U., & Wozny, G. (2011). Carbon dioxide capture for the oxidative coupling of methane process – A case study in mini-plant scale. Chemical Engineering Research and Design, 89(8), 1261-1270. doi:10.1016/j.cherd.2011.02.024Cheng, Y., Wang, Z., & Zhao, D. (2018). Mixed Matrix Membranes for Natural Gas Upgrading: Current Status and Opportunities. Industrial & Engineering Chemistry Research, 57(12), 4139-4169. doi:10.1021/acs.iecr.7b04796Koros, W. J., & Zhang, C. (2017). Materials for next-generation molecularly selective synthetic membranes. Nature Materials, 16(3), 289-297. doi:10.1038/nmat4805Li, Y., He, G., Wang, S., Yu, S., Pan, F., Wu, H., & Jiang, Z. (2013). Recent advances in the fabrication of advanced composite membranes. Journal of Materials Chemistry A, 1(35), 10058. doi:10.1039/c3ta01652hLiu, Y., Liu, G., Zhang, C., Qiu, W., Yi, S., Chernikova, V., … Koros, W. (2018). Enhanced CO2 /CH4 Separation Performance of a Mixed Matrix Membrane Based on Tailored MOF-Polymer Formulations. Advanced Science, 5(9), 1800982. doi:10.1002/advs.201800982Bae, T.-H., Liu, J., Lee, J. S., Koros, W. J., Jones, C. W., & Nair, S. (2009). Facile High-Yield Solvothermal Deposition of Inorganic Nanostructures on Zeolite Crystals for Mixed Matrix Membrane Fabrication. Journal of the American Chemical Society, 131(41), 14662-14663. doi:10.1021/ja907435cZornoza, B., Téllez, C., & Coronas, J. (2011). Mixed matrix membranes comprising glassy polymers and dispersed mesoporous silica spheres for gas separation. Journal of Membrane Science, 368(1-2), 100-109. doi:10.1016/j.memsci.2010.11.027Anson, M., Marchese, J., Garis, E., Ochoa, N., & Pagliero, C. (2004). ABS copolymer-activated carbon mixed matrix membranes for CO2/CH4 separation. Journal of Membrane Science, 243(1-2), 19-28. doi:10.1016/j.memsci.2004.05.008Kim, S., Chen, L., Johnson, J. K., & Marand, E. (2007). Polysulfone and functionalized carbon nanotube mixed matrix membranes for gas separation: Theory and experiment. Journal of Membrane Science, 294(1-2), 147-158. doi:10.1016/j.memsci.2007.02.028Adams, R., Carson, C., Ward, J., Tannenbaum, R., & Koros, W. (2010). Metal organic framework mixed matrix membranes for gas separations. Microporous and Mesoporous Materials, 131(1-3), 13-20. doi:10.1016/j.micromeso.2009.11.035McKeown, N. B. (2018). A perfect match. Nature Materials, 17(3), 216-217. doi:10.1038/s41563-018-0029-1Dechnik, J., Sumby, C. J., & Janiak, C. (2017). Enhancing Mixed-Matrix Membrane Performance with Metal–Organic Framework Additives. Crystal Growth & Design, 17(8), 4467-4488. doi:10.1021/acs.cgd.7b00595Bastani, D., Esmaeili, N., & Asadollahi, M. (2013). Polymeric mixed matrix membranes containing zeolites as a filler for gas separation applications: A review. Journal of Industrial and Engineering Chemistry, 19(2), 375-393. doi:10.1016/j.jiec.2012.09.019Dechnik, J., Gascon, J., Doonan, C. J., Janiak, C., & Sumby, C. J. (2017). Mixed-Matrix Membranes. Angewandte Chemie International Edition, 56(32), 9292-9310. doi:10.1002/anie.201701109Yang, Y., Chuah, C. Y., Nie, L., & Bae, T.-H. (2019). Enhancing the mechanical strength and CO2/CH4 separation performance of polymeric membranes by incorporating amine-appended porous polymers. Journal of Membrane Science, 569, 149-156. doi:10.1016/j.memsci.2018.10.018Mikkelsen, M., Jørgensen, M., & Krebs, F. C. (2010). The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy Environ. Sci., 3(1), 43-81. doi:10.1039/b912904aMiltner, M., Makaruk, A., & Harasek, M. (2017). Review on available biogas upgrading technologies and innovations towards advanced solutions. Journal of Cleaner Production, 161, 1329-1337. doi:10.1016/j.jclepro.2017.06.045Ullah Khan, I., Hafiz Dzarfan Othman, M., Hashim, H., Matsuura, T., Ismail, A. F., Rezaei-DashtArzhandi, M., & Wan Azelee, I. (2017). Biogas as a renewable energy fuel – A review of biogas upgrading, utilisation and storage. Energy Conversion and Management, 150, 277-294. doi:10.1016/j.enconman.2017.08.035Montañez-Hernández, L. E., Hernández-De Lira, I. O., Rafael-Galindo, G., de Lourdes Froto Madariaga, M., & Balagurusamy, N. (2018). Sustainable Production of Biogas from Renewable Sources: Global Overview, Scale Up Opportunities and Potential Market Trends. Sustainable Biotechnology- Enzymatic Resources of Renewable Energy, 325-354. doi:10.1007/978-3-319-95480-6_13Baker, R. W., & Lokhandwala, K. (2008). Natural Gas Processing with Membranes:  An Overview. Industrial & Engineering Chemistry Research, 47(7), 2109-2121. doi:10.1021/ie071083wZhang, Y., Sunarso, J., Liu, S., & Wang, R. (2013). Current status and development of membranes for CO2/CH4 separation: A review. International Journal of Greenhouse Gas Control, 12, 84-107. doi:10.1016/j.ijggc.2012.10.009Rezakazemi, M., Ebadi Amooghin, A., Montazer-Rahmati, M. M., Ismail, A. F., & Matsuura, T. (2014). State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): An overview on current status and future directions. Progress in Polymer Science, 39(5), 817-861. doi:10.1016/j.progpolymsci.2014.01.003Angelidaki, I., Treu, L., Tsapekos, P., Luo, G., Campanaro, S., Wenzel, H., & Kougias, P. G. (2018). Biogas upgrading and utilization: Current status and perspectives. Biotechnology Advances, 36(2), 452-466. doi:10.1016/j.biotechadv.2018.01.011Jeon, Y.-W., & Lee, D.-H. (2015). Gas Membranes for CO2/CH4 (Biogas) Separation: A Review. Environmental Engineering Science, 32(2), 71-85. doi:10.1089/ees.2014.0413Murali, R. S., Sankarshana, T., & Sridhar, S. (2013). Air Separation by Polymer-based Membrane Technology. Separation & Purification Reviews, 42(2), 130-186. doi:10.1080/15422119.2012.686000Kanehashi, S., Chen, G. Q., Ciddor, L., Chaffee, A., & Kentish, S. E. (2015). The impact of water vapor on CO2 separation performance of mixed matrix membranes. Journal of Membrane Science, 492, 471-477. doi:10.1016/j.memsci.2015.05.046Kreuer, K. D. (2003). Proton-Conducting Oxides. Annual Review of Materials Research, 33(1), 333-359. doi:10.1146/annurev.matsci.33.022802.091825HAUGSRUD, R. (2007). Defects and transport properties in Ln6WO12 (Ln=La, Nd, Gd, Er). Solid State Ionics, 178(7-10), 555-560. doi:10.1016/j.ssi.2007.01.004Kim, S., Anselmi-Tamburini, U., Park, H. J., Martin, M., & Munir, Z. A. (2008). Unprecedented Room-Temperature Electrical Power Generation Using Nanoscale Fluorite-Structured Oxide Electrolytes. Advanced Materials, 20(3), 556-559. doi:10.1002/adma.200700715Fernández-Barquín, A., Casado-Coterillo, C., Palomino, M., Valencia, S., & Irabien, A. (2015). LTA/Poly(1-trimethylsilyl-1-propyne) Mixed-Matrix Membranes for High-Temperature CO2/N2Separation. Chemical Engineering & Technology, 38(4), 658-666. doi:10.1002/ceat.201400641Tena, A., Shishatskiy, S., Meis, D., Wind, J., Filiz, V., & Abetz, V. (2017). Influence of the Composition and Imidization Route on the Chain Packing and Gas Separation Properties of Fluorinated Copolyimides. Macromolecules, 50(15), 5839-5849. doi:10.1021/acs.macromol.7b01051Escorihuela, S., Tena, A., Shishatskiy, S., Escolástico, S., Brinkmann, T., Serra, J., & Abetz, V. (2018). Gas Separation Properties of Polyimide Thin Films on Ceramic Supports for High Temperature Applications. Membranes, 8(1), 16. doi:10.3390/membranes8010016Corma, A., Fornés, V., Guil, J. ., Pergher, S., Maesen, T. L. ., & Buglass, J. . (2000). Preparation, characterisation and catalytic activity of ITQ-2, a delaminated zeolite. Microporous and Mesoporous Materials, 38(2-3), 301-309. doi:10.1016/s1387-1811(00)00149-9Itoh, T., Mori, M., Inukai, M., Nitani, H., Yamamoto, T., Miyanaga, T., … Idemoto, Y. (2015). Effect of Annealing on Crystal and Local Structures of Doped Zirconia Using Experimental and Computational Methods. The Journal of Physical Chemistry C, 119(16), 8447-8458. doi:10.1021/jp5117118Vigneron, F., Sougi, M., Meriel, P., Herr, A., & Meyer, A. (1980). Etude par diffraction de neutrons des structures magnétiques de TbBe 13 à basse température. Journal de Physique, 41(2), 123-133. doi:10.1051/jphys:01980004102012300Scherb, T., Kimber, S. A. J., Stephan, C., Henry, P. F., Schumacher, G., Escolástico, S., … Banhart, J. (2016). Nanoscale order in the frustrated mixed conductor La5.6WO12−δ. Journal of Applied Crystallography, 49(3), 997-1008. doi:10.1107/s1600576716006415Han, D., Kishida, K., Shinoda, K., Inui, H., & Uda, T. (2013). A comprehensive understanding of structure and site occupancy of Y in Y-doped BaZrO3. Journal of Materials Chemistry A, 1(9), 3027. doi:10.1039/c2ta00675hMorejudo, S. H., Zanón, R., Escolástico, S., Yuste-Tirados, I., Malerød-Fjeld, H., Vestre, P. K., … Kjølseth, C. (2016). Direct conversion of methane to aromatics in a catalytic co-ionic membrane reactor. Science, 353(6299), 563-566. doi:10.1126/science.aag0274IZA Structure Comissionhttp://www.iza-structure.org/Lillepärg, J., Georgopanos, P., Emmler, T., & Shishatskiy, S. (2016). Effect of the reactive amino and glycidyl ether terminated polyethylene oxide additives on the gas transport properties of Pebax® bulk and thin film composite membranes. RSC Advances, 6(14), 11763-11772. doi:10.1039/c5ra22026bZhang, C., Dai, Y., Johnson, J. R., Karvan, O., & Koros, W. J. (2012). High performance ZIF-8/6FDA-DAM mixed matrix membrane for propylene/propane separations. Journal of Membrane Science, 389, 34-42. doi:10.1016/j.memsci.2011.10.003Fernández-Barquín, A., Casado-Coterillo, C., Palomino, M., Valencia, S., & Irabien, A. (2016). Permselectivity improvement in membranes for CO2/N2 separation. Separation and Purification Technology, 157, 102-111. doi:10.1016/j.seppur.2015.11.032Sabetghadam, A., Seoane, B., Keskin, D., Duim, N., Rodenas, T., Shahid, S., … Gascon, J. (2016). Metal Organic Framework Crystals in Mixed-Matrix Membranes: Impact of the Filler Morphology on the Gas Separation Performance. Advanced Functional Materials, 26(18), 3154-3163. doi:10.1002/adfm.201505352Khayet, M., & García-Payo, M. C. (2009). X-Ray diffraction study of polyethersulfone polymer, flat-sheet and hollow fibers prepared from the same under different gas-gaps. Desalination, 245(1-3), 494-500. doi:10.1016/j.desal.2009.02.013RECIO, R., PALACIO, L., PRADANOS, P., HERNANDEZ, A., LOZANO, A., MARCOS, A., … DEABAJO, J. (2007). Gas separation of 6FDA–6FpDA membranesEffect of the solvent on polymer surfaces and permselectivity. Journal of Membrane Science, 293(1-2), 22-28. doi:10.1016/j.memsci.2007.01.022Calle, M., Lozano, A. E., de Abajo, J., de la Campa, J. G., & Álvarez, C. (2010). Design of gas separation membranes derived of rigid aromatic polyimides. 1. Polymers from diamines containing di-tert-butyl side groups. Journal of Membrane Science, 365(1-2), 145-153. doi:10.1016/j.memsci.2010.08.051Liu, Y., Huang, J., Tan, J., Zeng, Y., Ding, Q., Zhang, H., … Xiang, X. (2017). Barrier and thermal properties of polyimide derived from a diamine monomer containing a rigid planar moiety. Polymer International, 66(8), 1214-1222. doi:10.1002/pi.5381Yampolskii, Y., Shishatskii, S., Alentiev, A., & Loza, K. (1998). Correlations with and prediction of activation energies of gas permeation and diffusion in glassy polymers. Journal of Membrane Science, 148(1), 59-69. doi:10.1016/s0376-7388(98)00130-6Jamil, A., Ching, O. P., & Shariff, A. B. M. (2016). Current Status and Future Prospect of Polymer-Layered Silicate Mixed-Matrix Membranes for CO2 /CH4 Separation. Chemical Engineering & Technology, 39(8), 1393-1405. doi:10.1002/ceat.201500395Bae, T.-H., & Long, J. R. (2013). CO2/N2 separations with mixed-matrix membranes containing Mg2(dobdc) nanocrystals. Energy & Environmental Science, 6(12), 3565. doi:10.1039/c3ee42394hCastarlenas, S., Téllez, C., & Coronas, J. (2017). Gas separation with mixed matrix membranes obtained from MOF UiO-66-graphite oxide hybrids. Journal of Membrane Science, 526, 205-211. doi:10.1016/j.memsci.2016.12.041Galve, A., Sieffert, D., Vispe, E., Téllez, C., Coronas, J., & Staudt, C. (2011). Copolyimide mixed matrix membranes with oriented microporous titanosilicate JDF-L1 sheet particles. Journal of Membrane Science, 370(1-2), 131-140. doi:10.1016/j.memsci.2011.01.011Vinoba, M., Bhagiyalakshmi, M., Alqaheem, Y., Alomair, A. A., Pérez, A., & Rana, M. S. (2017). Recent progress of fillers in mixed matrix membranes for CO 2 separation: A review. Separation and Purification Technology, 188, 431-450. doi:10.1016/j.seppur.2017.07.05

    REMOVED: Gas Permeation through PDMS Membranes Covered by 1 or 3nm Thick Carbon Nanomembranes (CNMs)

    Get PDF
    This article has been removed: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy).This article has been removed at the request of the Executive Publisher.This article has been removed because it was published without the permission of the author(s)

    Synthesis, Transfer, and Gas Separation Characteristics of MOF-Templated Polymer Membranes

    Get PDF
    This paper discusses the potential of polymer networks, templated by crystalline metal–organic framework (MOF), as novel selective layer material in thin film composite membranes. The ability to create mechanically stable membranes with an ultra-thin selective layer of advanced polymer materials is highly desirable in membrane technology. Here, we describe a novel polymeric membrane, which is synthesized via the conversion of a surface anchored metal–organic framework (SURMOF) into a surface anchored gel (SURGEL). The SURGEL membranes combine the high variability in the building blocks and the possibility to control the network topology and membrane thickness of the SURMOF synthesis with high mechanical and chemical stability of polymers. Next to the material design, the transfer of membranes to suitable supports is also usually a challenging task, due to the fragile nature of the ultra-thin films. To overcome this issue, we utilized a porous support on top of the membrane, which is mechanically stable enough to allow for the easy membrane transfer from the synthesis substrate to the final membrane support. To demonstrate the potential for gas separation of the synthesized SURGEL membranes, as well as the suitability of the transfer method, we determined the permeance for eight gases with different kinetic diameters

    Gas Transport Properties of the Metal-Organic Framework (MOF)-Assisted Polymer of Intrinsic Microporosity (PIM-1) Thin-Film Composite Membranes

    Get PDF
    The current study summarizes the findings of single-gas transport performances of mixed matrix thin-film composite membranes consisting of metal-organic frameworks (MOFs) incorporated into a polymer of intrinsic microporosity (PIM-1). Mg-MOF-74, MIL-53, TIFSIX-3, and Zn2(bim)4 were investigated as stand-alone materials and as incorporated into the PIM-1 polymer matrix serving as a selective layer of thin-film composite membranes by various methods: Fourier-transform infrared spectroscopy, solid-state NMR, X-ray diffraction, thermogravimetric analysis, and scanning electron microscopy. The effect of MOF loading and nature on the mixed-matrix membrane morphology and operation were analyzed by varying the MOF content in the polymer matrix from 2 to 10 wt % with respect to the dry polymer weight. The results show that the incorporation of MOFs into the PIM-1 polymer matrix boosts the permeance and selectivity of H2 and O2 over N2, and the prepared PIM-1/TIFSIX_4 mixed matrix membrane shows better separation performance for CO2/CH4 than pure PIM-1. Such membranes can be good candidates for ammonia purge gas, oxygen enrichment, and acid gas treatment applications

    Gas Separation Properties of Polyimide Thin Films on Ceramic Supports for High Temperature Applications

    Full text link
    [EN] Novel selective ceramic-supported thin polyimide films produced in a single dip coating step are proposed for membrane applications at elevated temperatures. Layers of the polyimides P84 (R), Matrimid 5218 (R), and 6FDA-6FpDA were successfully deposited onto porous alumina supports. In order to tackle the poor compatibility between ceramic support and polymer, and to get defect-free thin films, the effect of the viscosity of the polymer solution was studied, giving the entanglement concentration (C*) for each polymer. The C* values were 3.09 wt. % for the 6FDA-6FpDA, 3.52 wt. % for Matrimid (R), and 4.30 wt. % for P84 (R). A minimum polymer solution concentration necessary for defect-free film formation was found for each polymer, with the inverse order to the intrinsic viscosities (P84 (R) >= Matrimid (R) >> 6FDA-6FpDA). The effect of the temperature on the permeance of prepared membranes was studied for H-2, CH4, N-2, O-2, and CO2. As expected, activation energy of permeance for hydrogen was higher than for CO2, resulting in H-2/CO2 selectivity increase with temperature. More densely packed polymers lead to materials that are more selective at elevated temperatures.This work was financially supported by the Spanish Government through predoctoral training grants for Centres/units of Excellence "Severo Ochoa" (SEV-2016-0683), which gave S. Escorihuela the opportunity to undertake a research stay at Helmholtz-Zentrum Geesthacht (HZG), Spanish Ministry of Economy and Competitiveness (Project ENE2014-57651-R) and Helmholtz-Zentrum Geesthacht (HZG) through the technology transfer project program and by the Helmholtz Association of German Research Centers through the Helmholtz Portfolio MEMBRAIN. The authors thank M. Schieda and P. Merten for the support in the coating process and viscosity determination, and the microscopy service at Universitat Politecnica de Valencia (UPV) for the FE-SEM images.Escorihuela-Roca, S.; Tena, A.; Shishatskiy, S.; Escolástico Rozalén, S.; Brinkmann, T.; Serra Alfaro, JM.; Abetz, V. (2018). Gas Separation Properties of Polyimide Thin Films on Ceramic Supports for High Temperature Applications. Membranes. 8(1). https://doi.org/10.3390/membranes8010016S8

    The Dynamics of the Population and Features of the Modern Resettlement System Indigenous Peoples of the North in the Arctic Zone of the Krasnoyarsk Territory

    Get PDF
    Арктическая зона представляет собой уникальную модельную территорию, занимающую более 2/3 территории Красноярского края, на которой проживает более 85 % коренных малочисленных народов региона. Цель данного исследования – выявление закономерностей распределения коренных малочисленных народов по территории Арктической зоны региона и определение тенденций устойчивости их социально-экономического развития. Динамика численности коренных малочисленных народов выступает одним из важных индикаторов не только жизнеспособности северных этносов, но и глобальной социально-экологической сбалансированности, сохранения исконной среды обитания Арктики в условиях промышленного освоения. Проведенный в статье анализ выявил существенные различия в динамике численности коренных малочисленных народов Арктической зоны Красноярского края в 2002–2020 гг. Они обусловлены территориальной неоднородностью развития традиционных видов хозяйствования, особенностями расселения и трансформацией условий сохранения базовых поселений в этнохозяйственных ареалах коренных малочисленных народов. Показано, что важнейшим фактором улучшения динамики КМН и повышения устойчивости их развития является создание благоприятных условий для эффективного развития традиционных видов хозяйственной деятельности КМН, прежде всего домашнего оленеводстваThe Arctic zone is a unique model territory, which is undergoing more than 2/3 of the territory of the Krasnoyarsk Territory, on which more than 85 % of the indigenous peoples of the region lives. The aim of this study is to identify the patterns of the distribution of indigenous peoples through the territory of the Arctic zone of the region and the determination of the trends of the stability of their socio-economic development. The dynamics of the population of indigenous peoples is one of the important indicators of not only the viability of the northern ethnic groups, but also the global socio-ecological balance, preservation of the original habitat of the Arctic in the context of industrial development. The analysis conducted in the article revealed significant differences in the dynamics of the number of indigenous peoples of the Arctic zone of the Krasnoyarsk Territory in 2002–2020. They are due to the territorial heterogeneity of the development of traditional types of management, the features of resettlement and the transformation of the conditions for the preservation of basic settlements in ethno-economic areas of indigenous peoples. It is shown that the most important factor in improving the dynamics of indigenous peoples and increasing the stability of their development is the creation of favorable conditions for the effective development of the traditional types of economic activity of the indigenous peoples, primarily home reindeer husbandr

    Formation of continuous dense polymer layer at the surface of hollow fiber using a photografting process

    Get PDF
    The main objective of this study is to develop a new formula for a diet mayonnaise-like sauce without cholesterol. Emulsifying power is provided by the use of soy lecithin and the total fat content was limited to 16%. Droplet size measurement of employed mayonnaise samples at different times show that the largest diameter of fat does not exceed 18.5 µm with a yield stress of 56.1 Pa. Results of stability to centrifugation reveal that the absence of the supernatant oily layer ensures the stability of the emulsion. Using the experimental design method, the number of trials can be limited to a number of 16 experiments, and best formulation of the mayonnaise (without cholesterol) was obtained
    corecore