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ABSTRACT

Interplanetary Transfer Trajectories Using the Invariant Manifolds of Halo Orbits

Megan S. Rund

Throughout the history of interplanetary space travel, the Newtonian dynamics of the

two-body problem have been used to design orbital trajectories to traverse the solar

system. That is, that a spacecraft orbits only one large celestial body at a time. These

dynamics have produced impressive interplanetary trajectories utilizing numerous

gravity assists, such as those of Voyager, Cassini, Rosetta and countless others. But

these missions required large amounts of ∆v for their maneuvers and therefore large

amounts of fuel mass. As we desire to travel farther and more extensively in space,

these two-body dynamics lead to impossibly high ∆v values, and missions become

infeasible due to the massive amounts of fuel that they would need to carry. In

the last few decades a new dynamical system has been researched in order to find

new ways of designing mission trajectories: the N-body problem. This utilizes the

gravitational acceleration from multiple celestial bodies on a spacecraft, and can lead

to unconventional, but very useful trajectories.

The goal of this thesis is to use the dynamics of the Circular Restricted Three-

Body Problem (CRTBP) to design interplanetary transfer trajectories. This method

of modelling orbital dynamics takes into account the gravitational acceleration of two

celestial bodies acting on a spacecraft, rather than just one. The invariant manifolds

of halo orbits about Sun-planet Lagrange points are used to aid in the transfer from

one planet to another, and can lead into orbital insertion about the destination planet

or flyby trajectories to get to another planet. This work uses this method of dynamics

to test transfers from Earth to both Jupiter and Saturn, and compares ∆v and time of

flight values to traditional transfer methods. Using the CRTBP can lead to reduced

∆v amounts for completing the same missions as two-body dynamics would. The
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aim of this work is to research if using manifolds for interplanetary transfers could be

superior for some high ∆v missions, as it could drastically reduce the required ∆v for

maneuvers. With this method it could be possible to visit more distant destinations,

or carry more mass of scientific payloads, due to the reduced fuel requirements.

Results of this research showed that using manifolds to aid in interplanetary trans-

fers can reduce the ∆v of both departure from Earth and arrival at a destination

planet. For transfers to Jupiter the ∆v for the interplanetary transfer was reduced

by 4.12 km/s compared to starting and ending in orbits about the planets. For a

transfer to Saturn the ∆v required for the interplanetary transfer was reduced by

6.77 km/s. These ∆v savings are significant and show that utilizing manifolds can

lead to lower energy interplanetary transfer trajectories, and have the potential to be

useful for high ∆v missions.
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Chapter 1

INTRODUCTION

1.1 Statement of Problem

Throughout most of the history of space travel, orbital dynamicists have used the

two-body problem to model the motion of spacecraft. This method has led to the

impressive trajectories of missions such as Voyager, Cassini, Juno and countless oth-

ers. Although the orbital mechanics of these missions were optimized to reduce ∆v as

much as possible, they still required large amounts of fuel to reach their destinations.

As humans desire to explore farther and more extensively in space, the traditional

two-body dynamics of past missions will start to yield too high ∆v values for feasible

missions [7].

N-body dynamics have only been researched for use in missions for the last few

decades, but could reduce the ∆v and therefore fuel required dramatically. By using

these methods to design orbital trajectories, missions that would have been impossible

could become feasible, and the extents of exploration through the solar system could

reach new levels.

1.2 Proposed Solution

The Circular Restricted Three Body Problem (CRTBP) is a solution to the dynamics

of a system with two primary bodies and one secondary body or spacecraft. The

motion of these types of systems can create very unique and advantageous solutions

to complicated trajectory problems. Finding trajectories using the solved equations

of motion for this three body system has the potential to dramatically reduce required
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∆v for interplanetary transfer trajectories.

This thesis will test the idea of using a 3-body dynamical system rather than the

traditional 2-body system to design interplanetary transfer trajectories from Earth.

Then these trajectories can be connected to more transfers from planet to planet

using CRTBP or can lead into flyby trajectories about another planet. Often the

maneuvers that require the most ∆v for an interplanetary mission are the ones to

escape Earth’s sphere of influence and then enter into orbit about another planet. If

3-body dynamics can be used to reduce the ∆v required for these maneuvers, then

missions can either carry less fuel and more payloads or visit more distant planets.

The method of creating these trajectories will utilize the invariant manifolds of

halo orbits about Sun-planet Lagrange points. These manifolds are the most useful

for creating interplanetary trajectories [7]. Manifolds can be used for low energy

transfers from Low Earth Orbit (LEO) to a halo orbit about a Lagrange point and

then on to a hyperbolic trajectory to escape the Earth’s sphere of influence. Then,

at a destination planet, the invariant manifolds of a halo orbit can be used to depart

from the arrival hyperbolic trajectory and get onto a path staying in the Sun-planet

system, or a flyby maneuver can be completed.

This method will be tested for transfers to Jupiter and Saturn, so that ∆v and time

of flight values can be compared to transfers that only uses 2-body dynamics. While

using manifolds can often increase the time of flight required, the reduced ∆v values

could make these types of trajectories worthwhile for some interplanetary missions.

As has been seen with the long mission lifetimes of spacecraft such as Voyager, large

amounts of time in space can be accomplished. Utilizing the trajectories created by

3-body dynamics could then expand the reaches of where our spacecraft could travel.
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1.3 Past Research and Missions

Research on using the CRTBP for space mission trajectory design only really started

in the 1960s. Since then, only a few missions have used these types of trajectories to

accomplish their goals. Research has also been conducted on using these dynamics

to design orbital trajectories travelling throughout the solar system and about the

numerous moons of large planets such as Jupiter and Saturn.

Genesis was a mission designed by NASA’s Jet Propulsion Laboratory (JPL) that

travelled to a halo orbit about Sun-Earth L1 to collect solar wind samples. It then

followed a trajectory to return to Earth and bring the samples back to be analyzed

on the surface. Genesis utilized trajectories within invariant manifolds to get to a

halo orbit about L1 and back to Earth using very little fuel, and was only possible

due to the low energy transfers found using the CRTBP [12]. The trajectory that

Genesis used can be seen in Figure 1.1, where the red trajectory is the halo orbit used

to collect samples and the blue is the transfer back to Earth.

Figure 1.1: Trajectory of Genesis Mission, showing the approach trajec-
tory (purple), halo orbit (red), and return trajectory (blue).
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Koon, Lo, Marsden and Ross have done significant research on using invariant

manifolds for travel throughout the solar system. They have explored the possibilities

of using these dynamics for interplanetary transfers as well as tours of systems of

moons, such as those of Jupiter. They have also explored the idea of a lunar gateway

station for interplanetary trajectories at Earth-Moon L1 [7]. At JPL, Martin Lo

has also been part of developing the concept of the interplanetary superhighway that

utilizes manifolds to travel throughout the solar system with very low energy transfers.

An artist concept of this idea is shown in Figure 1.2.

Figure 1.2: Artist rendition of interplanetary superhighway concept de-
veloped at JPL [9].

Other missions that have utilized the dynamics of the CRTBP to complete their

trajectory requirements are the Solar and Heliospheric Observatory (SOHO), WIND,

Advanced Composition Explorer (ACE), WMAP, and ISEE-3 [7]. SOHO and ISEE-3

are joint missions between the European Space Agency (ESA) and NASA that also

travelled to L1 in order to observe the sun and gather data about its interior, surface,
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atmosphere, solar wind, and interactions with the Earth’s magnetosphere [3],[10].

WIND and ACE are NASA missions that orbit about L1 in order to study solar wind

and energetic particles emitted from the sun [13], [1]. WMAP is a NASA mission that

travelled to L2 to measure the properties of cosmic microwave background radiation

of space. This mission travelled to L2 using manifolds as well as multiple lunar flybys

which can be seen in Figure 1.3 [14].

Figure 1.3: The trajectory of the WMAP mission to get to L2 using a
trajectory within the stable manifold and lunar flybys[14].

The most current mission that is planning on using the dynamics of the CRTBP

is the James Webb Space Telescope run by NASA, ESA, and the Canadian Space

Agency (CSA), which is set to launch in 2020. It is a space-based infrared observatory

that will orbit about L2 in order to look into the most distant and oldest galaxies.

This mission uses the dynamics of the CRTBP in its final halo orbit and journey there

in order to accomplish its objectives [11].
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Chapter 2

THE CIRCULAR RESTRICTED THREE BODY PROBLEM

2.1 Overview

The majority of orbital trajectories are calculated using the two-body problem; that

is with the satellite being the secondary body and the Sun, Earth, moon etc. being

the primary body. Obviously perturbational effects from the gravitational pull of

other large celestial bodies are often included to get a better understanding of how

the actual orbit will behave, but the satellite is still in orbit about the one primary

body. The Circular Restricted Three Body Problem (CRTBP) on the other hand,

considers the effects of two large primary bodies’ gravitational forces acting on one

small secondary body. The small secondary body is assumed to have a mass that is

small enough that its gravitational effects upon the system are negligible. The other

important assumption in the CRTBP is that the orbits of the two primary bodies

about the center of mass of the system are circular [17]. Without these assumptions

the problem of solving the equations of the dynamics of the system becomes impossi-

ble. These assumptions are acceptable for most cases involving celestial bodies of the

solar system, since most of the planets’ orbits about the sun have very low eccentric-

ities, and any spacecraft would have a mass many orders of magnitude smaller than

a planet or moon.

The dynamics of the CRTBP can create very useful and interesting orbital tra-

jectories that can be far more complex than typical elliptical and hyperbolic orbits

usually encountered in the two-body problem. The next few sections will cover some

of the unique dynamics of the CRTBP in more detail.
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2.2 Synodic Coordinate Frame and Equations of Motion

The synodic coordinate frame is the most commonly used reference frame for the

CRTBP. The origin is defined at the center of mass of the two primary bodies of

the system (the barycenter, B), and the frame rotates about the fixed barycentric

coordinate frame with an angular velocity of ωs. A diagram of the synodic coordinate

frame is shown in Figure 2.1. In this graphic m1 is the more massive primary body,

and m2 is the smaller of the two primaries. The distances rB,1 and rB,2 are the

distances from m1 and m2 to the barycenter of the system. The vectors ~r1 and ~r2 are

the distances from the two primary bodies to the spacecraft and ~rB,sc is the distance

from the barycenter to the spacecraft. x̂s and ŷs are the unit vectors representing the

x and y axes of the synodic frame while the z axis points out of the page.

Figure 2.1: The Synodic Coordinate Frame used for the CRTBP.
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When working with the CRTBP it is advantageous to use non-dimensional units.

This is accomplished by setting m1 = 1 - µ∗ and m2 = µ∗, where µ∗ is defined as the

mass ratio or three-body constant.

µ∗ =
m2

m1 +m2

(2.1)

The distances from the primaries to the barycenter then become rB,1 = - µ∗ and

rB,2 = 1 - µ∗. The magnitudes of ~r1 and ~r2 can be calculated using the following

equations.

r1 =
√

(x+ µ∗)2 + y2 + z2 (2.2)

r2 =
√

(x+ µ∗ − 1)2 + y2 + z2 (2.3)

The solved equations of motion for acceleration in x, y and z for the system can

then be seen in the equations below. For a full derivation of the equations refer to

Vallado [17].

ẍ = 2ẏ + x− (1− µ∗)(x+ µ∗)

r31
− µ∗(x+ µ∗ − 1)

r32
(2.4)

ÿ = −2ẋ+ y − (1− µ∗)y
r31

− µ∗y

r32
(2.5)

z̈ = −(1− µ∗)z
r31

− µ∗z

r32
(2.6)

2.3 Lagrange Points

There are five equilibrium points in the synodic coordinate frame where the acceler-

ation and velocity due to the gravitational fields and system momentum are equal to

zero. These locations in space are referred to as Lagrange or Libration points, and
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some of the most interesting and useful trajectories can be created in the proximity

of these. There are three co-linear Lagrange points (L1, L2, L3) that lie upon the x

axis of the synodic coordinate frame, and two triangular Lagrange points (L4, L5)

that lie where ~r1 and ~r2 are equal. For all the equilibrium points the z location must

be equal to zero, or out of plane acceleration would cause oscillatory motion.

The x locations of the three co-linear points can be solved for using Equation 2.7

through Equation 2.9. The y coordinate for all of these points is zero since they lie

along the x axis. L1 is defined as the point between the two primaries, L2 is the point

just outside of the smaller primary, and L3 is the point on the opposite side of the

larger primary from the smaller primary.

L1 : x− (1− µ∗)
(x+ µ∗)2

+
µ∗

(x+ µ∗ − 1)2
= 0 (2.7)

L2 : x− (1− µ∗)
(x+ µ∗)2

− µ∗

(x+ µ∗ − 1)2
= 0 (2.8)

L3 : x+
(1− µ∗)
(x+ µ∗)2

+
µ∗

(x+ µ∗ + 1)2
= 0 (2.9)

The x and y coordinates of the triangular points can then be found using Equa-

tion 2.10 and Equation 2.11.

L4 = (
1

2
− µ∗,

√
3

2
) (2.10)

L5 = (
1

2
− µ∗, −

√
3

2
) (2.11)

A diagram of the Lagrange points for the Earth-Moon system can be seen in

Figure 2.2.
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Figure 2.2: The five Lagrange points for the Earth-Moon system.

2.4 Libration Orbits

Libration orbits are orbits about a Lagrange point. There are multiple types of

libration orbits, but some of the most common ones include Lyapunov, halo, and

Lissajous. Lyapunov orbits are two dimensional and remain in the orbital plane of the

primaries. Halo orbits are perfectly periodic three-dimensional orbits, while Lissajous

orbits include periodic and quasi-periodic three-dimensional orbits [17]. In this case

periodic means that a trajectory will retrace its path in the synodic reference frame,

and quasi-periodic means the trajectory will trace a nearby path that is confined to

a particular region of the synodic frame. Examples of a Lissajous orbit and a halo

orbit can be seen in Figure 2.3 and Figure 2.4. For this study halo orbits were the

10



only libration orbits considered in the solutions, and the computation of these will be

covered in the next chapter.

Figure 2.3: Example of Lissajous orbit about Sun-Earth L1 [6].

Figure 2.4: Example of a halo orbit about Sun-Earth L1.
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2.5 Manifolds

Manifolds are collections of trajectories that either approach or depart from a La-

grange point. Stable manifolds travel towards the point, and unstable manifolds

travel away from the point. The stable and unstable manifolds for L2 of the Earth-

Moon system can be seen in Figure 2.5 and Figure 2.6.

Figure 2.5: The stable manifolds approaching Earth-Moon L2.

12



Figure 2.6: The unstable manifolds departing Earth-Moon L2.

The manifolds for a Lagrange point can be calculated by finding the eigenval-

ues of the Jacobian of the state vector at the Lagrange point. The corresponding

eigenvectors are used to slightly perturb the state at the Lagrange point, and then

propagating that state forward and backward in time will reveal the unstable and

stable manifolds [17]. The state vector is defined as the following:

13



X =



x

y

z

ẋ

ẏ

ż


(2.12)

The Jacobian of the state vector is the following matrix:

J =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

∂ẍ
∂x

∂ẍ
∂y

∂ẍ
∂z

0 2 0

∂ÿ
∂x

∂ÿ
∂y

∂ÿ
∂z
−2 0 0

∂z̈
∂x

∂z̈
∂y

∂z̈
∂z

0 0 0


(2.13)

There are two imaginary pairs and one real pair of eigenvalues of the Jacobian

for a Lagrange point. The eigenvector corresponding to the larger of the two real

eigenvalues indicates the direction of the unstable manifold (VU), while the eigenvec-

tor corresponding to the smaller real eigenvalue indicates the direction of the stable

manifold (VS).

The initial state vectors for the stable and unstable manifolds can then be calcu-

lated using

XS = X ± εV S (2.14)

XU = X ± εV U (2.15)

where ε is a small perturbation. Then these state vectors can be propagated using

the equations of motion for the CRTBP (Equation 2.4 through Equation 2.6). One
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must propagate the unstable manifold forwards in time and the stable one backwards

in time.

Unstable periodic orbits about Lagrange points also have stable and unstable

manifolds, but these form tubes of trajectories since a spacecraft can arrive or depart

at any location on the orbit. A specific trajectory that a spacecraft departs or arrives

on is just one of the many that make up the manifold. Invariant manifolds are tubes

of trajectories that will always depart from or approach a halo orbit. An example

of an unstable invariant manifold of a halo orbit about the Sun-Jupiter L2 point can

be seen in Figure 2.7. The computation for invariant manifolds will be covered in

section 3.4.

Figure 2.7: The unstable invariant manifold for a halo orbit about Sun-
Jupiter L2; z-amplitude of 300,000 km.
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These manifolds can be used to a great advantage. Once a spacecraft is on one

of the trajectories within the manifold it will continue to travel along it, with few

corrections to combat perturbations. This means that a spacecraft can travel to or

from a Lagrange point or periodic libration orbit with minimal ∆v.
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Chapter 3

HALO ORBITS AND INVARIANT MANIFOLDS

3.1 Overview

Halo orbits are defined as perfectly periodic trajectories that orbit around a Lagrange

point. By being perfectly periodic they repeat their path in space over and over

again rather than diverging onto a new trajectory. These orbits can be very useful

for many telescopes and Sun observing spacecraft, or can be used as gateways to

interplanetary travel. For telescopes, L1 and L2 are advantageous since the Earth

and the Sun always remain in the same location relative to the spacecraft. This

means that thermal, imaging and power requirements that depend on the location of

the sun are simplified. At L1 Sun observation missions have unobstructed views of the

Sun at all times, and it is the perfect location to take pictures and collect data about

solar wind and particles. Halo orbits are used at these locations so that spacecraft

can stay orbiting along the same path rather than travelling out of the vicinity of the

Lagrange point they are meant to be orbiting. The invariant manifolds of halo orbits

can also be used to complete lower energy interplanetary transfers, as a spacecraft

placed on one will always depart or approach the halo orbit along a specific path. An

example of a halo orbit about L1 can be seen in Figure 3.1.

Halo orbits can be defined as being one of two classes: northern or southern.

Northern halos spend the majority of their orbital period above the x-y plane, whereas

southern halos are mainly below the x-y plane. The y-z views of a northern and

southern halo are shown in Figure 3.2.
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Figure 3.1: Halo orbit about Sun-Earth L1; z-amplitude of 110,000 km.

Figure 3.2: Example of a northern class halo (above) and southern class
halo (below) about Sun-Earth L1; z-amplitude of 110,000 km.
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The size of halo orbits can be altered by changing the out-of-plane amplitude in

the z direction (Az). By increasing this amplitude, one can increase the overall size

of the halo orbit. A family of halo orbits about Sun-Earth L1 with Az values ranging

from 110,000 km to 1,100,000 km can be seen in Figure 3.3.

Figure 3.3: Family of northern class halo orbits about Sun-Earth L1; z-
amplitude of 110,000 to 1,100,000 km.

Solving the equations of motion in order to find a perfectly periodic orbit is very

tricky. The best approximation that can be accomplished is estimating the trajectory

of the halo orbit numerically. In order to do this an analytical solution is used

approximate the trajectory of the desired size of halo orbit, and then this solution is

used as a starting estimate for the numerical solution to iterate on.

The trajectories within the invariant manifolds are calculated once the halo orbit
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itself has been computed.

3.2 Halo Orbit Analytical Solution

The analytical solution here is thoroughly discussed and derived in Koon et al. in

Chapter 6, ”Halo Orbits and Their Computation” [7]. A brief summary of the method

and the required equations to compute an initial estimate at the trajectory for a halo

orbit will be supplied here. The equations were derived by Richardson using the

Lindstedt-Poincare method.

First, the inputs required in order to calculate a halo orbit will be discussed. The

system of celestial bodies must be chosen, so that m1 is the larger primary body and

m2 is the smaller primary body. One should also know which Lagrange point the halo

orbit should be centered around. Since most halos are only considered around L1 or

L2, those will be the only solutions covered here. Az is the desired amplitude in the

z-direction in kilometers and φ is the phase angle in radians. The orbit must also be

specified as a northern or southern class of halo.

First the distance from the Lagrange point to the smaller primary is calculated.

γ1 is the distance for L1 and γ2 is for L2. In these equations the variables L1 and L2

are the Lagrange point locations calculated using Equation 2.7 and Equation 2.8.

γ1 = |1− µ∗ − L1| (3.1)

γ2 = |L2 − 1 + µ∗| (3.2)

Then, there are four c coefficients that are computed using the following equations,

where n designates the number of the coefficient. The equations used differ slightly

depending on whether the orbit is about L1 or L2, since the two points lie on opposite

sides of the smaller primary body. If the orbit is about L1 Equation 3.3 is used, and
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for L2 Equation 3.4 is used.

L1 : cn =
1

γ3(1− γn+1)
(µ∗ + (−1)n(1− µ∗)γn+1 (3.3)

L2 : cn =
1

γ3(1 + γn+1)
(−1nµ∗ + (−1)n(1− µ∗)γn+1 (3.4)

Next, ωp and k will need to be solved for. ωp is one of the imaginary eigenvalues

of the solution to the characteristic equation, and k is the constant that relates the

amplitude in x to the amplitude in y.

ωp =

√
2− c2 +

(
9c22 − 8c2)

2

)1/2

(3.5)

k =
ω2
p + 1 + 2c2

2ωp

(3.6)

The equations of motion for the analytical solution are very long and complicated,

so many of the terms in them have been grouped into constants. All of the following

equations are for the constants necessary to calculate the position and velocity vectors

for the points in the halo orbit.

d1 =
3ω2

p

k

(
k(6ω2

p − 1)− 2ωp

)
(3.7)

d2 =
8ω2

p

k

(
k(11ω2

p − 1)− 2ωp

)
(3.8)

a21 =
3c3(k

2 − 2)

4(1 + 2c2)
; (3.9)

a22 =
3c3

4(1 + 2c2)
(3.10)
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a23 =
−3c3ωp

4kd1

(
3k3ωp − 6k(k − ωp) + 4

)
(3.11)

a24 =
−3c3ωp

4kd1
(2 + 3kωp) (3.12)

b21 =
−3c3ωp

2d1
(3kωp − 4) (3.13)

b22 =
−3c3ωp

d1
(3.14)

d21 =
−c3
2ω2

p

(3.15)

a31 =
−9ωp

4d2

(
4c3(ka23 − b21) + kc4(4 + k2)

)
+

9ω2
p + 1− c2

2d2

(
3c3(2a23 − kb21) + c4(2 + 3k2)

) (3.16)

a32 =
−9ωp

4d2

(
4c3(3ka24 − b22) + kc4

)
− 3

2d2
(9ω2

p + 1− c2)
(
c3(kb22 + d21 − 2a24)− c4

) (3.17)

b31 =
3

8d2
8ωp

(
3c3(kb21 − 2a23)− c4(2 + 3k2)

)
+

3

8d2

(
(9ω2

p + 1 + 2c2)
(

4c3(ka23 − b21) + kc4(4 + k2)
)) (3.18)

b32 =
9ωp

d2

(
c3(kb22+d21−2a24)−c4

)
+

3(9ω2
p + 1 + 2c2)

8d2

(
4c3(ka24−b22)+kc4

)
(3.19)

d31 =
3

64ω2
p

(4c3a24 + c4) (3.20)

d32 =
3

64 + ω2
p

(
4c3(a23 − d21) + c4(4 + k2)

)
(3.21)
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In order to compute a valid halo orbit, the amplitudes in x and y must be calcu-

lated based on the amplitude in z. The s and l constants are used to find the correct

values of these amplitudes given Az.

s1 =

(
2ωp

(
ωp(1 + k2)− 2k

))−1
×
(

3

2
c3

(
2a21(k

2 − 2)− a23(k2 + 2)− 2kb21

)
− 3

8
c4(3k

4 − 8k2 + 8)

) (3.22)

s2 =

(
2ωp

(
ωp(1 + k2)− 2k

))−1
×
(

3

2
c3

(
2a22(k

2 − 2) + a24(k
2 + 2) + 2kb22 + 5d21

)
+

3

8
c4(12− k2)

) (3.23)

l1 =
−3

2
c3(2a21 + a23 + 5d21)−

3

8
c4(12− k2) + 2ω2

ps1 (3.24)

l2 =
3

2
c3(a24 − 2a22) +

9

8
c4 + 2ω2

ps2 (3.25)

Now using the s and l terms and a correction term, ∆, the amplitude in x can

be calculated. First, Az must be converted into canonical units by dividing it by

one Distance Unit (the distance between the two primary bodies, DU ) and then

multiplied by γ for the equations of motion.

Az(canonical) = Az(km)
γ

DU
(3.26)

∆ = ω2
p − c2 (3.27)

Ax =

√
−l2A2

z −∆

l1
(3.28)

In order to remove secular terms from the solution a frequency connection term,

ν, and a new independent variable, τ are introduced. These can be found using

Equation 3.29 and Equation 3.30.

ν = 1 + s1A
2
x + s2A

2
z (3.29)
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τ = νt (3.30)

In the the equation for τ , t is time in canonical units. To find the entire trajectory

of the halo orbit, the the positions and velocities from time 0 until the period of the

orbit (T ) will need to be calculated. This means τ will be a vector of times running

from 0 to T multiplied by the ν variable. The period of the halo orbit in canonical

units can be estimated as:

T =
2π

ωpν
(3.31)

δm and τ1 are the final terms needed before the position and velocity are calculated.

In the equation for δm, m = 1 for a northern halo and 3 for a southern halo.

δm = 2−m (3.32)

τ1 = ωpτ + φ (3.33)

Then motion in the halo orbit can be solved for at each point in the halo orbit by

calculating position and velocity for every value of τ .

Finally, the equations for position and velocity are as follow.

x = γ
(
a21A

2
x+a22A

2
z−Axcos(τ1)+(a23A

2
x−a24A2

z)cos(2τ1)+(a31A
3
x−a32AxA

2
z)cos(3τ1)

)
(3.34)

y = γ
(
kAxsin(τ1) + (b21A

2
x − b22A2

z)sin(2τ1) + (b31A
3
x − b32AxA

2
z)sin(3τ1)

)
(3.35)

z = γ
(
δmAzcos(τ1)+δmd21AxAz

(
cos(2τ1)−3

)
+δm(d32AzA

2
x−d31A3

z)cos(3τ1)
)

(3.36)

ẋ = γ
(
ωpνAxsin(τ1)−2ωpν(a23A

2
x−a24A2

z)sin(2τ1)−3ωpν(a31A
3
x−a32AxA

2
z)sin(3τ1)

)
(3.37)
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ẏ = γ
(
ωpνkAxcos(τ1)+2ωpν(b21A

2
x−b22A2

z)cos(2τ1)+3ωpν(b31A
3
x−b32AxA

2
z)cos(3τ1)

)
(3.38)

ż = γ
(
−ωpνδmAzsin(τ1)−2ωpνδmd21AxAzsin(2τ1)−3ωpνδm(d32AzA

2
x−d31A2

z)sin(3τ1)
)

(3.39)

Note that these equations are solved assuming the Lagrange point is the origin of

the frame. In order to move the location of the halo orbit to be in the correct location

in the synodic frame, the distance from the barycenter to the Lagrange point is added

to all of the x positions.

While the analytical solution to finding halo orbit trajectories does get very close

to an actual answer for the initial state, if only this method is used, the trajectory

will diverge from the desired periodic one very quickly. When the initial state of the

halo is propagated using the the equations of motion for the CRTBP, it is clear that

the numerical solution is necessary to find an accurate halo orbit (see Figure 3.4).

The analytical solution may not work as a final answer, but it is required to find a

starting estimate to iterate on for the numerical solution, so must still be calculated.

Figure 3.4: Analytically estimated halo orbit compared with the actual
trajectory when propagated with the equations of motion.
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3.3 Halo Orbit Numerical Solution

The procedure detailed in Howell’s research [4] is used to find the numerical solution

for halo orbits. The numerical solution will require the state at time 0 of the analytical

solution as an initial estimate to iterate on. At this point in the halo orbit, the position

in y and the velocities in x and z must be equal zero, as this is the point where the

halo orbit crosses the x-z plane. In order for the orbit to be periodic, the velocities in

x and z must be equal to zero when the trajectory crosses the x-z plane again (at half

a period in time, T/2). The numerical solution covered by Howell, iterates to find a

solution by slightly altering the initial state vector until ẋ and ż are sufficiently small

when y = 0 again in the propagation of the orbit.

This calculation requires that the state transition matrix (Φ) is also calculated at

every time step. The state transition matrix is used to relate the state vector (X ) at

time 0 to the state vectors at all later time steps, so that:

X(ti) = Φ(t0 + ti, t0)X(t0) (3.40)

The state transition matrix must be propagated using an ODE solver just as the

positions and velocities from the equations of motion are. The state transition matrix

for halo orbits is a 6x6 matrix, and every one of the 36 elements is part of the state

vector. This means that with the position and velocity in x, y and z, the state ends

up being a 42x1 vector, represented by:

X = [ x y z ẋ ẏ ż Φ1 Φ2 Φ3 Φ4 Φ5 Φ6 ]T (3.41)

and the derivative of the state vector is:

X = [ ẋ ẏ ż ẍ ÿ z̈ Φ̇1 Φ̇2 Φ̇3 Φ̇4 Φ̇5 Φ̇6 ]T (3.42)

where the subscript on Φ indicates the row of the state transition matrix.
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The derivatives of position and velocity are known from the equations of motion

of the CRTBP (Equation 2.4, Equation 2.5, and Equation 2.6). The derivative of the

state transition matrix is found using Equation 3.43.

Φ̇ = FΦ (3.43)

F =

 0 I3

UXX 2Ω

 (3.44)

Here 0 represents a 3x3 matrix of zeros and I3 is the 3x3 identity. Ω is the following

matrix,

Ω =


0 1 0

−1 0 0

0 0 0

 (3.45)

and UXX is equal to:

UXX =


Uxx Uxy Uxz

Uyx Uyy Uyz

Uzx Uzy Uzz

 (3.46)

The terms inside of the UXX matrix are found by taking the second partial deriva-

tives with respect to x, y and z of U, which is equal to:

U =
1

2
(x2 + y2) +

1− µ∗√
(x+ µ∗)2 + y2 + z2

+
µ∗√

(x− 1 + µ∗)2 + y2 + z2
(3.47)

This formula comes from the equations of motion for the CRTBP. The partial

derivatives for the UXX matrix can be found using the following equations.

Uxx =
1 + (1− µ∗)(−r21 + 3(x+ µ∗)2)

r51
+
µ∗(−r22 + 3(x− 1 + µ∗)2)

r52
(3.48)

Uyy = 1 +
(1− µ∗)(−r21 + 3y2)

r51
+
µ∗(−r22 + 3y2)

r52
(3.49)
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Uzz =
(1− µ∗)(−r21 + 3z2)

r15
+
µ∗(−r22 + 3z2)

r52
(3.50)

Uxy = Uyx =
3y(1− µ∗)(x+ µ∗)

r51
+
µ∗(x− 1 + µ∗)

r52
(3.51)

Uxz = Uzx =
3z((1− µ∗)(x+ µ∗)

r51
+
µ∗(x− 1 + µ∗)

r52
(3.52)

Uyz = Uzy =
3yz((1− µ∗)

r51
+
µ∗

r52
(3.53)

The initial state vector for the first estimate of the numerical solution will consist

of the position and velocity at time 0 from the analytical solution, and the 6x6 identity

as the state transition matrix. y, ẋ, and ż should all be equal to zero at this point in

time, so that the initial state vector not including Φ is:

X0 = [ x0 0 z0 0 ẏ0 0 ] (3.54)

To consider the orbit periodic, ẋ and ż should be equal to zero when y is equal to

zero again at T/2, so the state vector without Φ at T/2 is:

XT/2 = [ x 0 z 0 ẏ 0 ] (3.55)

It is not possible to find a solution where ẋ and ż are equal to exactly zero, so

some tolerance is chosen to decide when the iterative scheme has reached a point that

is satisfactory. The smaller the value of this tolerance, the more accurate the halo

orbit approximation will be. Tol = 10−12 is a good starting point.

The following steps are required to find the solution:

1. Propagate the initial state vector using an ODE solver, such as ode45 in Matlab,

until the position in y is equal to zero again (T/2).
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2. Find the error in x and z velocities at T/2 (δẋ and δż).

δẋ = Tol − ẋ (3.56)

δż = Tol − ż (3.57)

3. Calculate the change in the initial state required to reduce the error. It is only

necessary to change two of the initial states. Since all the zero terms are correct

those are left alone, and x and ẏ are the only terms that will need to be altered.

The initial position in z will remain fixed. δx0 and δẏ0 are the values that will

be used to change the initial state.δx0
δẏ0

 =

(Φ41 Φ45

Φ61 Φ65

− 1

vy

ẍ
z̈

[Φ21 Φ25

])−1 δẋ
δż

 (3.58)

Where the Φ terms are from the state transition matrix at T/2, and ẍ and z̈

are the accelerations at T/2.

4. Now, a new initial state is calculated by adding δx0 and δẏ0 to the original

initial state as in Equation 3.59 and Equation 3.60.

x0(new) = x0(old) + δx0 (3.59)

ẏ0(new) = ẏ0(old) + δẏ0 (3.60)

5. The new estimate for the initial state vector is now:

X0 = [ x0(new) 0 z0 0 ẏ0(new) 0 ] (3.61)

Steps 1-4 are now repeated with the new estimate for the initial state.

This process is repeated until δẋ0 and δż0 are within the tolerance at T/2. Once

the correct initial state is established, it can be propagated for one period and this
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yields the entire halo orbit. The comparison of the analytical solution and the numer-

ical solution can be seen in Figure 3.5. The analytical solution is off by approximately

11,900 km in x position and 11.4 m/s in y velocity for the initial state vector. This

difference in the starting state means that the propagated analytical solution will not

be periodic, while the numerical solution will.

Figure 3.5: Comparison of the halo orbit trajectories generated by the
numerical and analytical solutions.

3.4 Invariant Manifolds

Once all the points of the halo orbit have been calculated using the numerical solution,

the trajectories within the invariant manifolds departing from each of those points

can be computed. The invariant manifolds can be found by finding the eigenvalues

of the Jacobian at each point along the halo orbit, but since this is computationally

expensive it is more advantageous to use the monodromy matrix. The monodromy

matrix is simply the state transition matrix after one period, or at time T, and
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contains information about the stability of the entire orbit, so its eigenvalues can be

used in place of the Jacobian eigenvalues.

M = Φ(t0 + T, t0) (3.62)

Then the eigenvalues and corresponding eigenvectors of M must be calculated.

There are six eigenvalues of the monodromy matrix, but only the maximum and min-

imum real eigenvalues are required to find the invariant manifolds. The eigenvector

corresponding to the smaller eigenvalue is used to calculate the stable manifold, while

the eigenvector for the larger eigenvalue is used for the unstable manifold. Let VS

denote the eigenvector for the stable manifold and VU be the eigenvector for the

unstable one. These eigenvectors can then be found at every point along the halo

using the state transition matrix at each time step, as is shown in Equation 3.63 and

Equation 3.64. Here i represents the point along the halo being evaluated.

V S
i = Φ(t0 + ti, t0)V

S (3.63)

V U
i = Φ(t0 + ti, t0)V

U (3.64)

Now these eigenvectors can be used to find the initial conditions for the trajectories

within the stable and unstable manifolds originating from each point of the halo (Xi
S

and Xi
U) with the following equations.

XS
i = Xi ± ε

V S
i

|V S
i |

(3.65)

XU
i = Xi ± ε

V U
i

|V U
i |

(3.66)

Where Xi represents the point along the halo and ε is a small number used to

perturb the state on the halo. This value is usually around 1000 km for the Sun-

Earth system (approximately 10-5 in canonical units).

The initial states for the invariant manifolds can be propagated using the equations

of motion for the CRTBP. Since the unstable ones depart the halo orbit, they are
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propagated forward in time. But, the stable manifolds must be propagated backwards

in time since the halo orbit is the final state. An example of the stable manifold for

Sun-Jupiter L2 can be seen in Figure 3.6.

Figure 3.6: Example the stable invariant manifold for Sun-Jupiter L2.
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Chapter 4

MANEUVERS FOR INTERPLANETARY TRANSFERS

4.1 Overview

There are multiple maneuvers required to use the invariant manifolds of halo orbits

to complete an interplanetary transfer. First a spacecraft must depart from the Earth

and reach a halo orbit about a Sun-Earth Lagrange point. This maneuver will re-

quire a transfer from a parking orbit about the Earth onto a trajectory within a the

stable manifold of the halo orbit. There is no maneuver required to be inserted onto

the halo orbit as the invariant manifold will eventually bring a spacecraft onto the

halo. Then a spacecraft must leave the halo orbit on a trajectory within the unstable

invariant manifold to return towards Earth for a transfer onto a hyperbolic escape

trajectory. Then a maneuver from the trajectory within the unstable manifold onto

the hyperbolic escape trajectory must be completed, and a spacecraft will begin the

journey on to the destination planet. Upon arrival, either a maneuver from the hyper-

bolic capture trajectory onto an invariant manifold of a halo orbit at the destination

planet can be completed, or a flyby maneuver can be executed. This chapter will

cover the methods for computing how to connect these different trajectories and the

∆v required for the maneuvers.

4.2 Earth to Halo Transfer

In order to use invariant manifolds to find interplanetary trajectories, first a transfer

from Earth to a halo orbit about a Sun-Earth Lagrange point must be computed. The

transfer will need to begin in a parking orbit about Earth, and then use a trajectory

within the stable invariant manifold to travel to the halo. The only maneuver required
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will be the burn to get onto the manifold from the parking orbit. It is possible to

direct inject onto a trajectory within the manifold, but this analysis will only consider

a transfer from a parking orbit.

Once a desired halo orbit is chosen, and the invariant manifolds are calculated,

the trajectories that pass closest to the Earth must be found. First, the trajectories

within the stable invariant manifold are calculated for 300 evenly spaced points around

the halo orbit, and the one that passes closest to the Earth is identified by finding

the smallest difference in the position vector of the Earth and and all the position

vectors of each trajectory within the manifold. Then the trajectories for 100 points

on either side of the point within the halo corresponding to the trajectory with the

closest approach are calculated; this will find the 200 trajectories within the manifold

that pass the closest to the Earth. An example of these trajectories can be seen in

Figure 4.1 for a halo orbit about L2.

Figure 4.1: An example of the 200 trajectories within the stable invariant
manifold that pass closest to Earth for a halo about L2.

Now, a design choice must be made to leave from a parking orbit with the lowest
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altitude, or to leave from any altitude parking orbit with the lowest ∆v for the

maneuver onto the manifold. The disadvantage of using a larger parking orbit is that

it requires more ∆v to get to the higher altitude for a launch vehicle. A trade will

be run on the total ∆v for both of these parking orbit methods to see which is more

optimal. To obtain the lowest altitude parking orbit, the trajectory passing closest to

the Earth is identified, as well as the point within it that is the closest approach to

the Earth. Then, the inclination (i), Right Ascension of the Ascending Node (RAAN,

Ω), and argument of perigee (ω) are determined for the parking orbit, as well as the

true anomaly (θ) at the intersection point. These orbital elements are determined by

estimating what they would be based on the position and velocity vectors (~rm and

~vm) of the closest approach point within the manifold. The equations to find these

elements can be found in Appendix A and in Curtis [2].

The eccentricity of the parking orbit is zero since it is defined as circular. The

radius of the orbit (rpark)is simply the magnitude of the position vector for the closest

approach point within the manifold trajectory. Then the magnitude of the specific

angular momentum for a circular orbit (hpark) can be calculated using Equation 4.1.

hpark =
√
µrpark (4.1)

Now all of the orbital elements for the parking orbit have been calculated and can

be used to find the velocity vector at the departure point onto the manifold trajectory

from the parking orbit. The velocity vector is computed in the perifocal frame and is

then rotated via a 3-1-3 rotation sequence using the angles of the inclination, RAAN,

and argument of perigee to be in the translated synodic frame. The perifocal frame

is centered at the focus of the orbit with the x-y plane aligned with the plane of

the orbit. The x-axis points toward the periapsis point, and the z axis is normal to

the orbital plane and parallel to the angular velocity vector, ~h. Then the y-axis is

90◦ away from the x-axis and completes the right-handed coordinate system [2]. The
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equations used to obtain the velocity vector can be found in Appendix B.

Then the ∆v for the maneuver onto the manifold is calculated by finding the

difference in velocities between the insertion point on the manifold trajectory and the

velocity in the parking orbit at the intersection point.

∆vpark = |~vm − ~vpark| (4.2)

If it is desired to leave from the parking orbit with the lowest ∆v for the maneuver

onto the manifold, then the same process for finding the parking orbit is completed,

but this time for all of the 200 trajectories passing closest to Earth. Then the ∆v is

calculated for all the parking orbit options, and the solution with the lowest required

∆v is selected.

The different results for parking orbit altitudes and ∆v values for various halo

orbit sizes can be seen in Table 4.1.

Table 4.1: ∆v and parking orbit altitudes for minimized parking orbit
altitude and minimized ∆v for various halo orbit sizes.

Minimized Parking Orbit Altitude Minimized ∆v

Halo Orbit Az ∆v Parking Orbit Altitude ∆v Parking Orbit Altitude

110,000 km 2.40 km/s 5033 km 1.54 km/s 20,091 km

500,000 km 3.17 km/s 285.1 km 1.60 km/s 18,455 km

800,000 km 1.37 km/s 28,019 km 1.00 km/s 54,305 km

It is clear that larger and smaller halos do not have trajectories within the manifold

that pass into Low Earth Orbit (LEO), but medium sized halos can get to parking

orbits as low as 200 km in altitude. If a low parking orbit is a mission requirement,

this would influence what sized halo should be chosen for the later transfers. Since

this study is not limited to a specific parking orbit, it will use the transfer that results

in the least total ∆v after launch into LEO. It can also be seen that leaving from
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higher parking orbits leads to a smaller burn onto the trajectory within the manifold.

It is not immediately clear whether the total ∆v will be reduced by completing a

Hohmann transfer from LEO to the higher parking orbit altitudes, where less ∆v is

needed to get onto the manifold, or whether it is more advantageous to just complete

one large maneuver onto a trajectory that can be reached from LEO. Therefore,

calculations were run for both cases, to compare and see which concept of operations

would reduce the total ∆v. The results for the 500,000 km halo are shown in Table 4.2,

and it is clear that the Hohmann transfer (assuming launch into 300 km parking orbit)

increases the total ∆v significantly. The smaller ∆v for the transfer onto the manifold

does not decrease with altitude enough for the Hohmann to be worth it. Therefore,

only trajectories passing into LEO will be considered for the transfer to the halo from

Earth. Also, the approximately 3 km/s burn required to leave a LEO parking orbit

to get onto a manifold matches the results seen in works by Howell et al. [5].

Table 4.2: Comparison of total ∆v to get to halo orbit using higher and
lower altitude parking orbits for a halo orbit with Az equal to 500,000 km.

Parking Orbit Altitude Hohmann ∆v Manifold Transfer ∆v Total ∆v

285.1 km 0 km/s 3.17 km/s 3.17 km/s

18,455 km 3.37 km/s 1.60 km/s 4.97 km/s

Once a spacecraft is on the stable invariant manifold, theoretically it will not

require anymore maneuvers, since the trajectory will lead it straight onto the halo,

with no insertion ∆v cost [5]. In reality, there will be perturbations and orbital

corrections, but they are not taken into account in this thesis. An example of the

trajectory to get onto a 300,000 km halo is shown in Figure 4.2. A close-up view of

the parking orbit at the Earth and the transfer point onto the manifold can be seen

in Figure 4.3
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Figure 4.2: Example of transfer trajectory from Earth parking orbit to
halo with Az equal to 300,000 km.

Figure 4.3: Close up view of transfer point from Earth parking orbit onto
trajectory within the stable invariant manifold.

4.3 Interplanetary Transfer

Once a spacecraft has been inserted onto the halo orbit, a transfer onto the unstable

invariant manifold will need to be completed in order to get on an interplanetary
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trajectory. Two methods were considered for how to use the manifolds to complete

an interplanetary transfer. The first involves connecting the unstable manifold of a

halo orbit at the departure planet with the stable manifold of the halo orbit at the

arrival planet using patched conics. The second uses the unstable and stable manifolds

to achieve lower energy transfers onto and off of hyperbolic escape trajectories at the

departure and destination planets. Both methods will be described here, but in the

end the second method ended up producing lower ∆v values and will be used for all

test cases in later chapters.

4.3.1 Patched Conics with Manifolds Method

The idea for using patched conics between invariant manifolds is shown to be success-

ful in Topputo et al. for transfers to Venus and Mars [16]. For this thesis, the goal

is to complete transfers to Jupiter and Saturn, so the idea was adapted to those such

trajectories. The method used here is to calculate arrival and departure ∆v values

using Lambert’s solution in the same way a normal patched conics trajectory would,

but for points within the manifold instead of at the spheres of influence of the planets.

First, the unstable invariant manifolds for the halo orbit at the departure planet

and the stable invariant manifolds for the halo orbit at the destination planet are

calculated. The unstable manifold is required for departure since it is desired to leave

the halo, while the stable manifold is required for the arrival planet as a spacecraft

should approach the halo here. Then, points within these manifolds are tested as

arrival and departure points for the interplanetary transfer. Narrowing down the

actual locations within the manifolds to complete the transfer between proved to be

very challenging since there are infinitely many possibilities. The method of using

Poincare sections utilized by Ross [15] could be considered for future work, but it

was deemed out of the scope of this thesis. Instead, points within the manifolds with
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high velocities were the first tested for possible arrival and departure locations. This

method did not yield feasible ∆v values, and was discarded. Due to the problem of

infinitely many departure and arrival points a new method proposed in Nakamiya et

al. [8] was adopted.

4.3.2 Manifold to Hyperbolic Escape Trajectory Method

The new process for finding interplanetary transfer trajectories uses traditional patched

conics for the transfers from planet to planet. That is, hyperbolic escape trajecto-

ries about each planet are connected using an elliptical transfer about the Sun. The

difference is that rather than just maneuvering onto or off of the hyperbolic trajec-

tories from or to orbits about the planets, manifolds can be used to reduce the ∆v

for getting onto or off of the escape trajectories. A typical burn for getting onto an

escape trajectory to a planet such as Jupiter or Saturn from a parking orbit about

Earth is very large and often means a mission must complete multiple flybys of closer

planets to reach its final destination. Reducing that ∆v could be very advantageous

for certain missions that would be better off with an itinerary that does not require

multiple gravity assists. Missions that need multiple gravity assists to reach their

destinations must have spacecraft designed to survive more, and often harsher en-

vironments at the various planets along their journeys. If manifolds can be used to

reduce ∆v and avoid these extra environmental considerations that could make them

a viable solution for missions to distant planets.

Again, for this method the unstable invariant manifolds for the departure planet

halo must be calculated. At the destination planet, an unstable or stable invariant

manifold can be used to get off of the hyperbolic escape trajectory depending on where

the mission will take the spacecraft after arrival. Later investigation revealed that the

stable manifolds produced better ∆v numbers though, so the stable manifolds were
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used at arrival. Another option is to not not use a manifold at all and just complete

a flyby maneuver to the next planet in the mission schedule.

Manifold Transfer Arrival

First, the procedure for a transfer onto a manifold at the destination planet will be

explained. The invariant manifolds for the halo orbit at the departure planet and

at the arrival planet are calculated. These remain the same in the synodic frame

regardless of the location of the planets about the sun, so the same manifolds can

be used no matter what the departure and arrival dates are. A set of departure and

arrival dates are tested to compare the ∆v required and find the optimal time to leave

and arrive with the least amount of fuel for the mission. In order to test all of these

dates the positions and velocities of the first planet at all departure dates and of the

second planet at all arrival dates are calculated using the planetary ephemeris model.

Then Lambert’s solution is used to find the velocity required for the transfer from

the first planet to the second planet for all arrival and departure dates. This yields

the required hyperbolic excess velocity (v∞) required of the hyperbolic trajectories at

departure and arrival.

Then, various values for the radius of perigee of the departure and arrival hyper-

bolic trajectories are tested to find the transfer with the least ∆v. For every arrival

and departure date multiple values for the magnitude of the radius of periapsis of the

departure hyperbola (rp) and arrival hyperbola are tested with the manifold trajec-

tories. The design of the hyperbolic escape trajectory at the departure planet can be

seen in Figure 4.4 and can be found in Curtis [2].
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Figure 4.4: Hyperbolic escape trajectory geometry.

For this section of analysis the origin of the synodic frame has been translated

so that the it is at the center of mass of the departure planet. The direction of the

departure hyperbola is more advantageous for manifold trajectories coming from L1.

The angle β can be found using the following equation, where e is the eccentricity of

the hyperbolic trajectory [2]. The required eccentricity is based off of the hyperbolic

escape velocity at Earth’s sphere of influence (924,540 km) and the radius of periapsis

of the hyperbola.

β = cos−1
(

1

e

)
(4.3)

For this set up of the hyperbolic departure, the position and velocity vectors at

the radius of perigee of the hyperbola in the translated synodic frame are given by
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the following:

~rp = [ rpsin(β) rpcos(β) 0 ] (4.4)

~vp = [ vpcos(β) − vpsin(β) 0 ] (4.5)

For arrival at the destination planet the hyperbolic trajectory is slightly different,

and can be seen in Figure 4.5.

Figure 4.5: Hyperbolic arrival trajectory geometry.

Here β can again be found using Equation 4.3, and δ is computed using the

following:

δ = 2sin−1
(

1

e

)
(4.6)

The equations for the position and velocity vectors at the radius of periapsis of
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the arrival hyperbolic trajectory are shown in Equation 4.7 and Equation 4.8.

~rp = [ rpsin(180◦ − δ − β) rpcos(180◦ − δ − β) 0 ] (4.7)

~vp = [ −vpcos(180◦ − δ − β) vpsin(180◦ − δ − β) 0 ] (4.8)

At both ends of the transfer, 500 trajectories within the invariant manifolds are

tested to see which point in which trajectory passes the closest to the radius of

periapsis of the hyperbolic escape trajectory. Once this point is found, the position

and velocity at that point within the manifold trajectory are used to estimate the

ideal inclination of the hyperbolic trajectory. Since the hyperbolic trajectory can

be rotated about the apse line to any angle [2], the magnitude of this rotation (the

inclination) can be altered to match the manifold trajectory. By taking the cross

product of the position and velocity vectors of the closet approach point within the

manifold, the specific angular momentum vector (~h) is acquired. Then inclination (i)

is found using the following equation.

i = cos−1
(
hz
h

)
(4.9)

Then, the vectors of the hyperbolic trajectory at periapsis are rotated for this

inclination change so that they become the following for escape hyperbolas:

~rhyp = [ rpsin(β)cos(i) − rpcos(β) rpsin(β)sin(i) ] (4.10)

~vhyp = [ vpcos(β)cos(i) vpsin(β) vpcos(β)sin(i) ] (4.11)

and the following for arrival hyperbolas:

~rhyp = [ rpsin(180◦−δ−β)cos(i) rpcos(180◦−δ−β) −rpsin(180◦−δ−β)sin(i) ]

(4.12)

~vhyp = [ −vpcos(180◦−δ−β)cos(i) vpsin(180◦−δ−β) −vpcos(180◦−δ−β)sin(i) ]

(4.13)
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These results are then used to calculate the ∆v required for departure and arrival

on the invariant manifolds by finding the difference in the velocity vectors.

∆vd = |~vhyp,d − ~vman,d| (4.14)

∆va = |~vman,a − ~vhyp,a| (4.15)

The subscripts on the velocity vectors designate whether the velocity is on the

manifold or the hyperbolic trajectory.

An example for the departure maneuver can be seen in Figure 4.6. The purple

trajectory is one within the manifold, while the green is the hyperbolic escape tra-

jectory. The red star is the perigee point of the hyperbola and the yellow star is

the departure point from the manifold. Although they do not line up perfectly it is

assumed that this error can be corrected for with further orbital analysis. The work

required for that is out of the scope of this thesis. The zoomed out view that includes

the entire manifold trajectory is shown in Figure 4.7.
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Figure 4.6: Example of intersection point between the trajectory within
the unstable invariant manifold (purple) and the hyperbolic escape trajec-
tory (green) to leave Earth.
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Figure 4.7: Earth departure example showing full manifold trajectory.

An arrival trajectory at Jupiter can be observed in Figure 4.8. Again, the manifold

trajectory can be seen in purple, and the incoming hyperbolic trajectory in green. The

star point shows the transfer location. The full manifold trajectory from the halo orbit

is shown in Figure 4.9.

Figure 4.8: Example of transfer point from incoming hyperbolic trajectory
onto a trajectory within a manifold at Jupiter.
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Figure 4.9: Jupiter arrival example showing full manifold trajectory.

The Matlab code that was written to perform this analysis was verified with vari-

ous sources in order to ensure that all positions and velocities within trajectories are

correctly calculated. The invariant manifolds and halo orbits match results found in

Koon et al. [7], and the hyperbolic trajectory calculation was checked with examples

in Curtis [2].

Flyby Maneuver Arrival

If a mission required a flyby at the destination planet, the usual steps required to

calculate the dynamics of a gravity assist would be employed. Departure and arrival

date options would be much more limited as the v∞ arriving at the original destination

planet would need to match that required to transfer on the next planet. Using

manifolds in the method presented here would then only be needed at departure from

Earth. The actual flyby trajectory would use traditional patched conics methods.

The full analysis will not be outlined here, but a gravity assist is certainly possible

in this mission design plan.
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Chapter 5

MISSION APPLICATIONS AND RESULTS

5.1 Overview

This method of completing interplanetary transfers has the potential to reduce the

total ∆v required for missions to distant planets. The transfer from a trajectory

within a manifold onto a hyperbolic escape trajectory requires significantly less ∆v

than a transfer from a parking orbit. At arrival planets, the transfer off of a hyperbolic

trajectory onto a manifold trajectory also costs less than a transfer onto an orbit about

the planet. A spacecraft on a manifold at a destination planet could then continue

to use the CRTBP to travel about that system. This section will cover various test

cases that were run in order to find out if this method of interplanetary transfers

could reduce overall mission ∆v. Missions to Jupiter and Saturn will be investigated,

and the ∆v found will be compared to that required for a normal patched conics

transfers. The time of flight required, and other mission considerations will also be

discussed.

5.2 Earth to Jupiter Transfer

Since so many scientific missions to outer planets are interested in either investigating

Jupiter itself or using it to complete a flyby maneuver, the first transfer case tested was

from Earth to Jupiter. The main goal was to find a method of patching together the

various components of the trajectories in such a way that the ∆v could be reduced

from that of a typical patched conics trajectory from Earth to Jupiter. If using

manifolds can significantly reduce overall required ∆v to get to Jupiter, it could end

up being more useful than using multiple flybys of inner planets. Often those flybys
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induce greater thermal and environmental requirements of a spacecraft since it has to

go closer to the sun and encounter harsh atmospheres (especially for Venus flybys).

A transfer leaving Earth and arriving at Jupiter around the dates of Voyager 1 was

investigated. Dates around the actual departure and arrival dates for the Voyager

spacecraft (September 5, 1977 and March 5, 1979) were tested for various sizes of

halo orbits at Earth and at Jupiter. After initial tests it was found that using the

unstable invariant manifolds of a halo orbit about Sun-Earth L1 was optimal for

transferring onto a hyperbolic escape trajectory from Earth. This was also found for

cases of transfers to Mars in Nakamiya et al. [8]. Due to this finding, all the test

cases reported here are run with halo orbits about Sun-Earth L1 at the departure

end of the transfer. After preliminary tests it was also found that using the stable

manifold of a halo about Sun-Jupiter L1 lined up the best with the arrival hyperbolic

trajectories. This means all arrival cases are also tested for halos about L1 at Jupiter.

First wide ranges of halo orbit sizes were tested to see which yielded lower ∆v

values. It was found that halo orbits with very large or very small Az amplitudes

tended to yield higher amounts of ∆v for the maneuver onto or off of the hyperbolic

escape trajectories at departure and arrival. It was also discovered that southern halos

for departure from Earth, and northern halos for arrival at Jupiter produced much

lower ∆v values. Therefore, the results shown here are for halo orbits tested in the

realm where the lowest ∆v values were found, and where the hyperbolic trajectories

lined up with the invariant manifolds. The reason these halo orientations yielded

lower ∆v values may have to do with the directions of the manifolds and the orbits

of the planets, but further investigation could yield a more definitive answer. The

steps outlined in chapter 4 are used to find the ∆v values for all the different dates

of departure and arrival. The optimal transfer dates from the range inputted are

found based on the lowest total ∆v required for departure and arrival maneuvers.

The different ∆v values found for various sizes of departure and arrival halos can be
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seen in Table 5.1. Here, the departure ∆v is for the maneuver from the manifold onto

the hyperbolic escape trajectory at Earth, and the arrival ∆v is for the maneuver

from the hyperbolic trajectory onto the manifold at Jupiter.

Table 5.1: ∆v values for manifold-hyperbolic transfer for various sized
halos at Earth and Jupiter.

Earth Halo Az Jupiter Halo Az Departure ∆v Arrival ∆v Total ∆v

250,000 km 1,000,000 km 4.70 km/s 7.13 km/s 11.83 km/s

310,000 km 950,000 km 4.76 km/s 7.03 km/s 11.80 km/s

280,000 km 800,000 km 4.66 km/s 7.08 km/s 11.74 km/s

280,000 km 1,000,000 km 4.64 km/s 7.04 km/s 11.69 km/s

280,000 km 900,000 km 4.65 km/s 7.02 km/s 11.67 km/s

As can be seen in the table above the lowest total ∆v found for these dates was

11.67 km/s. For this transfer the Earth departure date is September 2, 1977 and the

Jupiter arrival date is March 9, 1979. The trajectory from Earth to Jupiter for the

given dates can be seen in Figure 5.1.
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Figure 5.1: Transfer trajectory about the sun from Earth to Jupiter, show-
ing Earth’s position at departure and Jupiter’s position at arrival.

The transfer off of the unstable invariant manifold onto the hyperbolic escape

trajectory at Earth is shown in Figure 5.2 and Figure 5.3. The halo orbit size pro-

ducing the lowest ∆v is 280,000 km z-amplitude, and the altitude of periapsis of the

departure hyperbola is 651.7 km. The required ∆v for this maneuver is 4.65 km/s.

There is an error of −418.6x̂+ 249.6ŷ+ 127.9ẑ km in the positioning of the departure

point on the manifold and the radius of periapsis of the hyperbolic trajectory, as can

be seen in Figure 5.3. This error is relatively small and it is assumed that with orbital

corrections and more in-depth analysis this error could be significantly reduced. For

the scope of this thesis, the error was decided to be acceptable.
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Figure 5.2: Full view of transfer from halo orbit (blue) to trajectory within
manifold (purple) to hyperbolic escape trajectory (green).
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Figure 5.3: Close up views of transfer from manifold (purple) onto hy-
perbolic escape trajectory (green) at Earth. The yellow star shows the
departure point on the manifold and the red star shows the injection point
on the hyperbola.

The maneuver from the hyperbolic trajectory onto the stable invariant manifold at

Jupiter can be seen in Figure 5.4 and Figure 5.5. The halo orbit size for this transfer

is 900,000 km in z-amplitude and the altitude of periapsis of the hyperbola is 403,670

km. The ∆v required is 7.02 km/s, bringing the total ∆v for the interplanetary

transfer to 11.67 km/s.
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Figure 5.4: Full view of transfer from hyperbolic escape trajectory (green)
to trajectory within manifold (purple) to halo orbit (blue).
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Figure 5.5: Close up views of transfer from hyperbolic escape trajectory
(green) to manifold (purple) upon arrival at Jupiter. The yellow star shows
the injection point on the manifold and the red star shows the departure
point on the hyperbola.

These ∆v values are indeed high, but are much less than the ∆v required for a

traditional patched conics trajectory, where a burns from and to orbits about the

planets would need to be completed. A comparison of the lowest computed total

∆v for the manifold method can be compared to the ∆v required for transfers from

circular orbits at the same periapsis altitudes about Earth and Jupiter to and from

the hyperbolic escape trajectories can be seen in Table 5.2.

Table 5.2: Comparison of the ∆v required for traditional patched conics
maneuvers and for the manifold maneuvers.

Transfer Type Departure ∆v Arrival ∆v Total ∆v

Manifold 4.65 km/s 7.02 km/s 11.67 km/s

Traditional 7.30 km/s 8.50 km/s 15.80 km/s

It is clear from this comparison that using the manifold transfers can significantly

reduce the ∆v at both ends of the interplanetary transfer. At Earth the ∆v is reduced

by 2.64 km/s and at Jupiter by 1.48 km/s, leading to a reduced total ∆v of 4.12 km/s
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for the interplanetary transfer. It is important to note that for the manifold transfer

the ∆v to get to the halo orbit in the first place needs to be included in the overall

mission ∆v. The ∆v required to get to the Earth halo from a LEO parking orbit is

3.09 km/s, bringing the total ∆v to get from Earth to Jupiter to 14.76 km/s. The

total ∆v and time of flight (ToF) comparison for a traditional transfer and all the

components of the manifold transfer can be seen in Table 5.3. The time of flight for

the manifold method is longer because of the need to get to the halo orbit and back.

Table 5.3: Comparison of the total ∆v required for mission and the time
of flight (ToF) for traditional and manifold methods.

Transfer Type Halo Insertion ∆v Transfer ∆v Total ∆v ToF

Manifold 3.09 km/s 11.67 km/s 14.76 km/s 919 days

Traditional 0 km/s 15.80 km/s 15.80 km/s 553 days

As these results show, the overall mission ∆v is reduced by about 1 km/s. Al-

though the ∆v for the maneuver onto the hyperbolic trajectory at Earth was greatly

reduced by using the manifold, the 3 km/s needed to get onto the manifold in the first

place increases the ∆v to leave Earth to be slightly greater than that of a traditional

transfer. Upon arrival at Jupiter there are still significant savings, and the dynamics

of the CRTBP could be used to explore the Jovian system after arrival.

5.3 Earth to Saturn Transfer

Saturn is also a destination planet of great interest for scientific missions. More

explorations of the planet itself, as well as its many moons are very likely to take

place in the future, and the next test cases will see if a trajectory to Saturn is feasible

using manifolds to assist in departure from Earth and arrival at Saturn. All missions

that have flown to Saturn in the past have required a flyby of Jupiter, so this study
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will see if it is possible to get there without the Jupiter flyby. Again, reducing the

number of flybys required to get the destination could help reduce the requirements

on a spacecraft for surviving in different planets’ harsh environments and simplify the

trajectory.

Dates for a future mission to Saturn (leaving Earth around 2020) were tested,

and departure and arrival times corresponding to the most energy efficient transfer

based on the positions of the planets were used. These dates end up being mid-April

2020 for departure from Earth, and mid-May 2026 for arrival at Saturn. Various days

around these times were tested for arrival and departure in order to find a better

transfer ∆v. As with the Jupiter test, it was found that southern halos at Earth,

and northern halos at Saturn produced better results, so those are the only cases

included here. Additionally, preliminary tests were run with much larger and smaller

halo orbits at both planets, but these yielded much higher values for ∆v, and so are

not included here. The same process was completed, as with the Jupiter cases, to

find the lowest total ∆v, and the results for various sizes of halo orbits can be seen

in Table 5.4.

Table 5.4: ∆v values for manifold-hyperbolic transfer for various sized
halos at Earth and Saturn.

Earth Halo Az Saturn Halo Az Departure ∆v Arrival ∆v Total ∆v

320,000 km 700,000 km 6.02 km/s 1.90 km/s 7.92 km/s

280,000 km 600,000 km 5.80 km/s 1.98 km/s 7.78 km/s

300,000 km 800,000 km 5.74 km/s 1.90 km/s 7.63 km/s

260,000 km 700,000 km 5.86 km/s 1.76 km/s 7.62 km/s

300,000 km 700,000 km 5.74 km/s 1.76 km/s 7.49 km/s

As the table above shows, the lowest total ∆v found for these dates was 7.49

km/s. For this transfer the Earth departure date is April 11, 2020 and the Saturn
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arrival date is May 9, 2026. The trajectory from Earth to Saturn for the given dates

can be seen in Figure 5.6.

Figure 5.6: Transfer from Earth to Saturn about the sun, showing Earth
at the time of departure and Saturn at the time of arrival.

The transfer off of the unstable invariant manifold onto the hyperbolic escape

trajectory at Earth is shown in Figure 5.7 and Figure 5.8. The halo orbit size pro-

ducing the lowest ∆v is 300,000 km in z-amplitude, and the altitude of periapsis of

the departure hyperbola is 200.4 km. This low altitude could cause some problems

with drag in Earth’s atmosphere, but further investigation would be necessary to

see if there is any significant change in the trajectory. If drag was a problem, the

periapsis altitude could have lower limits specified so that no solutions would pass

too close to Earth. The required ∆v for this maneuver is 5.74 km/s. There is an

error of −218.3x̂ + 238.2ŷ + 182.3ẑ km in the positioning of the departure point on
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the manifold and the radius of periapsis of the hyperbolic trajectory, as is shown in

Figure 5.8. As with the Jupiter case, it was decided that for the scope of this thesis,

the error was acceptable, but could reduced with further investigation.

Figure 5.7: Full view of transfer from halo orbit (blue) to trajectory within
manifold (purple) to hyperbolic escape trajectory (green).
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Figure 5.8: Close up views of transfer from manifold (purple) onto hy-
perbolic escape trajectory (green) at Earth. The yellow star shows the
departure point on the manifold and the red star shows the injection point
on the hyperbola.

The maneuver from the hyperbolic trajectory onto the stable invariant manifold

at Saturn is shown in Figure 5.9 and Figure 5.10. The halo orbit size for this transfer

is 700,000 km in z-amplitude and the altitude of periapsis of the hyperbola is 788,464

km. The ∆v required is 1.76 km/s, bringing the total ∆v for the interplanetary

transfer to 7.49 km/s.
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Figure 5.9: Full view of transfer from hyperbolic escape trajectory (green)
to trajectory within manifold (purple) to halo orbit (blue).
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Figure 5.10: Close up views of transfer from hyperbolic escape trajectory
(green) to manifold (purple) upon arrival at Saturn. The yellow star shows
the injection point on the manifold and the red star shows the departure
point on the hyperbola.

Again, these are certainly high values for ∆v, but as can be seen in Table 5.5 they

are significantly lower than the ∆v required for the traditional patched conics transfer

approach that would escape Earth from a parking orbit and enter into a circular orbit

about Saturn. The maneuver onto the hyperbolic escape trajectory to leave Earth

is reduced by 4.07 km/s, while the arrival burn at Saturn is reduced by 2.70 km/s,

bringing the total ∆v savings to 6.77 km/s for the interplanetary transfer.

Table 5.5: Comparison of the ∆v required for traditional patched conics
maneuvers and for the manifold maneuvers.

Transfer Type Departure ∆v Arrival ∆v Total ∆v

Manifold 5.74 km/s 1.76 km/s 7.49 km/s

Traditional 9.81 km/s 4.46 km/s 14.27 km/s

The ∆v to get to the halo orbit at Earth must also be included in the overall

mission ∆v, and the full ∆v budget with the total time of flight (ToF) is shown

in Table 5.6. Even with the required transfer onto the halo orbit, the total ∆v is
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significantly less for the manifolds method. Although the time of flight is increased,

the added time is comparable to missions that require multiply flybys.

Table 5.6: Comparison of the total ∆v required for mission and the time
of flight (ToF) for traditional and manifold methods.

Transfer Type Halo Insertion ∆v Transfer ∆v Total ∆v ToF

Manifold 3.19 km/s 7.49 km/s 10.68 km/s 2578 days

Traditional 0 km/s 14.27 km/s 14.27 km/s 2219 days
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Chapter 6

CONCLUSION

6.1 Conclusions

This thesis delved into the possibility of using the dynamics of the Circular Restricted

Three-Body Problem to reduce ∆v required for interplanetary missions. A method

of using the invariant manifolds of halo orbits to complete transfers to and from

hyperbolic escape trajectories was used to test missions to both Jupiter and Saturn.

The results from this research have shown that using manifolds to aid in inter-

planetary transfers can significantly reduce ∆v for the burns required to enter and

exit hyperbolic escape trajectories. For the Jupiter case, Earth escape ∆v using a

manifold was 2.65 km/s less than a transfer from a parking orbit, and at Jupiter the

∆v for capture was decreased 1.48 km/s. Although, the required ∆v to get to a halo

orbit does mean that overall mission ∆v was only reduced by 1.04 km/s, this still

shows that the CRTBP can reduce the energy required for transfers to Jupiter.

The outcome of the tests for a trajectory to Saturn yielded even better results

than the Jupiter transfer. Even with the required ∆v to get the halo orbit the mission

∆v for the Saturn case was reduced by 3.6 km/s from a traditional patched conics

maneuver. This large reduction in ∆v has the potential to make a transfer to Saturn

possible without the need for multiple flybys. The ∆v for the maneuver onto the

hyperbolic escape trajectory at Earth was decreased by 4.1 km/s and the arrival at

Saturn was reduced by 2.7 km/s.

With further research and added optimization, this method for interplanetary

transfers could reduce mission ∆v even further.
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6.2 Future Work

This thesis dedicated large amounts of time developing the tools necessary to model

the dynamics of halo orbits and manifolds, as well as figure out methods to patch

the different the sections of trajectories together for the maneuvers. With added

optimization and further tests for different transfer cases, this method of completing

interplanetary transfers could yield lower ∆v values, and could possibly be a promising

approach to designing lower energy interplanetary transfer trajectories.

Using the Matlab tools that were developed for this thesis to calculate the dy-

namics of halo orbits, manifolds, and transfers to and from planetary orbits could be

incorporated into an optimization scheme to find even farther reduced ∆v values for

interplanetary transfers. The method of using manifolds to aid in transfers onto and

off of hyperbolic escape trajectories could be further investigated, or more work could

be done to accomplish transfers through using patched conics between the manifolds

of departure and arrival planets. In addition, further research could be conducted to

test itineraries that visit multiple planets through the use of manifolds.

Extensions of missions through use of the CRTBP to Jupiter and Saturn could

also be investigated based off of the work from this thesis. While this research only

studied the transfers from Earth to Jupiter and Saturn, more work could be done

on using manifolds to travel to interesting scientific locations within the systems of

these planets. Using the arrival halo orbit as a base location spacecraft could then

use invariant manifolds to travel to the planet itself or to one or multiple of the many

moons surrounding these gas giants. This could be especially advantageous at Jupiter

since the halo orbit would keep the spacecraft out of the harsh radiation environment

surrounding the planet.
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APPENDICES

Appendix A

ORBITAL ELEMENTS CALCULATION

The following steps are used to calculate the orbital elements based on a position and

velocity vector [2].

1. Calculate the specific angular momentum vector.

~h = ~rm × ~vm (A.1)

2. Find the inclination.

i = cos−1
(
hz
h

)
(A.2)

3. Compute the vector defining the node line.

~N = [ 0 0 1 ]× ~h (A.3)

4. Find the value for RAAN.

Ω = cos−1
(
Nx

N

)
(Ny ≥ 0)

or

Ω = 360◦ − cos−1
(
Nx

N

)
(Ny < 0)

(A.4)

5. Calculate the eccentricity vector. Here, µ is the gravitational parameter of the

Earth.

~e =
1

µ

(
~vm × ~h− µ

~rm
rm

)
(A.5)
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6. Find the argument of perigee.

ω = cos−1
( ~N

N
· ~e
e

)
(ez ≥ 0)

or

ω = 360◦ − cos−1
( ~N

N
· ~e
e

)
(ez < 0)

(A.6)

7. Calculate the radial velocity.

vr =
~rm · ~vm
rm

(A.7)

8. Find the true anomaly.

θ = cos−1
(
~e

e
· ~rm
rm

)
(vr ≥ 0)

or

θ = 360◦ − cos−1
(
~e

e
· ~rm
rm

)
(vr < 0)

(A.8)
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Appendix B

VELOCITY VECTOR CALCULATION

The following equation is used to obtain the velocity vector in the Earth-centered

synodic frame [2].

~vpark = Qp,s

(
µ

h
[ −sin(θ) e+ cos(θ) 0 ]T

)
(B.1)

where Qp,s is the rotation matrix to transform a vector from the perifocal frame to

the translated synodic frame.

Qp,s =


−sinΩ cos isin ω + cosΩ cos ω cosΩ cos i sin ω + sinΩ cos ω sin i sin ω

−sinΩcos i cos ω − cosΩ sin ω cosΩ cos i cos ω − sinΩ sin ω sin i cos ω

sinΩ sin i −cosΩ sin i


(B.2)
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