Stem Cell Research 27 (2018) 90-94

Contents lists available at ScienceDirect

Stem Cell Research

journal homepage: www.elsevier.com/locate/scr

Lab Resource: Stem Cell Line

Generation of an induced pluripotent stem cell line (CSC-44) from a Parkinson's disease patient carrying a compound heterozygous mutation (c.823C>T and EX6 del) in the *PARK2* gene

Ana Marote ^{a,b}, Yuriy Pomeshchik ^{c,d,e}, Stefano Goldwurm ^f, Anna Collin ^g, Nuno J. Lamas ^{a,b,i}, Luísa Pinto ^{a,b,h}, António J. Salgado ^{a,b}, Laurent Roybon ^{c,d,e,*}

^a Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal

^b ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal

^c Stem Cell Laboratory for CNS Disease Modeling, Wallenberg Neuroscience Center, Department of Experimental Medical Science, BMC A10, Lund University, Lund, Sweden

^d Strategic Research Area MultiPark, Lund University, Lund, Sweden

^e Lund Stem Cell Center, Lund University, Lund, Sweden

^f Parkinson Institute, ASST PINI-CTO, Milan, Italy

^g Department of Clinical Genetics and Pathology, Office for Medical Services, Division of Laboratory Medicine, Lund, Sweden

^h BnML, Behavioral and Molecular Lab, Braga, Portugal

ⁱ Anatomic Pathology Department, Braga Hospital, Braga, Portugal

ARTICLE INFO

ABSTRACT

Article history: Received 15 October 2017 Received in revised form 13 December 2017 Accepted 3 January 2018 Available online 4 January 2018 Mutations in the *PARK2* gene, which encodes PARKIN, are the most frequent cause of autosomal recessive Parkinson's disease (PD). We report the generation of an induced pluripotent stem cell (iPSC) line from a 78-year-old patient carrying a compound heterozygous mutation (c.823C>T and EX6del) in the *PARK2* gene. Skin fibroblasts were reprogrammed using the non-integrating Sendai virus technology to deliver OCT3/4, SOX2, c-MYC and KLF4 factors. The generated cell line CSC-44 exhibits expression of common pluripotency markers, *in vitro* differentiation into the three germ layers and normal karyotype. This iPSC line can be used to explore the association between *PARK2* mutations and PD.

© 2018 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Resource table.		(continued)		
Unique stem cell line identifier Alternative name(s) of stem cell line Institution Contact information of distributor Type of cell line Origin Additional origin info Cell source Clonality Method of reprogramming	ULUNDi006-A CSC-44I Stem Cell Laboratory for CNS Disease Modeling, Depart- ment of Experimental Medical Science, Lund University Laurent Roybon, Laurent.Roybon@med.lu.se iPSC Human Age of patient at onset: 33 Sex of patient at onset: 33 Sex of patient; female Ethnicity: N/A Skin fibroblasts Clonal Sendai virus mediated delivery of OCT3/4, SOX2, c-MYC and KLF4	Genetic modification Type of modification Associated disease Gene/locus Method of modification Name of transgene or resistance Inducible/constitutive system Date archived/stock date Cell line repository/bank Ethical approval	No modification No modification Parkinson's disease PARK2 (MIM #602544) on chromosome 6q26 Genotype: compound heterozygous mutation: c.823C>T in exon 7 and deletion of exon 6 No modification No transgene or resistance Not inducible N/A N/A Parkinson Institute Biobank (part of the Telethon Genetic Biobank Network http://biobanknetwork.telethon.it/): approved by Ethics Committee "Milano Area C" (http://comitatoeticoareac.ospedaleniguarda.it/) on the 26/06/2015, Numero Registro dei pareri: 370-062015.	
* Corresponding author at: Stem Cell Laboratory for CNS Disease Modeling, Wallenberg			Reprogramming: 202100-3211 (delivered by Swedish work environment Arbetsmiljöverket).	

* Corresponding author at: Stem Cell Laboratory for CNS Disease Modeling, Wallenberg Neuroscience Center, Department of Experimental Medical Science, BMC A10, Lund University, Lund, Sweden.

E-mail address: laurent.roybon@med.lu.se (L. Roybon).

https://doi.org/10.1016/j.scr.2018.01.006

1873-5061/ 2018 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Resource utility

Mutations in the *PARK2* gene are the second most common known cause of Parkinson's disease (PD). CSC-44 iPSC line was generated from a PD patient with a compound heterozygous mutation in *PARK2*. This iPSC line can be used as a model to explore the link between mutant *PARK2* and PD pathology.

Resource details

Mutations in PARK2 result in autosomal-recessive familial PD and are the second most common known cause of this neurodegenerative disease. PARK2 encodes for PARKIN, a E3 ubiquitin ligase that plays a role in targeting proteins for degradation and maintaining mitochondrial function (Nuytemans et al., 2010). Among the identified PARK2 mutations, both deletions and insertions of one or more exons and missense mutations have been described. Here, we report the generation of an induced pluripotent stem cell line (CSC-44) from a patient with PD caused by a compound heterozygous PARK2 mutation: point mutation c.823C>T in exon 7 and deletion of exon 6. The c.823C>T mutation in *PARK2* gene predicts an arginine to tryptophan substitution at amino acid residue 275 (p.R275W), which is located within the RING1 domain of PARK2. This mutation disrupts the charge distribution and leads to local rearrangements in the RING1-IBR interface, which hampers ubiquitin ligase activity and confers a toxic gain of function to PARKIN, leading to its aggregation (Fiesel et al., 2015; Oczkowska et al., 2013). Even though this point mutation has been well characterized and associated with other mutations in compound heterozygotes, its association with the deletion of exon 6 has not been described. Given the importance of compound heterozygous mutations on PARK2 gene, CSC-44 iPSC line can be used to better understand the impact of both alterations on cellular function.

To generate this line, skin fibroblasts collected by punch skin biopsy from a 78-year-old PD patient were reprogrammed using a non-integrating Sendai virus technology. Briefly, fibroblasts were seeded (75,000 cells/well) on a 12-well plate, two days before transduction. The CytoTune™-iPS 2.0 Sendai Reprogramming Kit was then used to deliver the four reprogramming factors (OCT3/4, SOX2, c-MYC and KLF4). At day 7 post-transduction, the cells were re-seeded onto mouse embryonic fibroblasts (MEF)-feeder layer and expanded until colonies presented an embryonic stem cell (ES)-like morphology. At day 28, 12 colonies were picked and expanded as individual clones for 7 days. Three clones (CSC-44G, CSC-44I, CSC-44J) were further selected for expansion and karyotype analysis. All clones were characterized using the methods we previously described (Holmqvist et al., 2016). Here, we present the characterization of clone CSC-44I.

The generated clone, CSC-44I, expressed the common nuclear and cell surface pluripotency markers, OCT4/NANOG and TRA1-81/SSEA4 (Fig. 1A) and showed alkaline phosphatase (ALP) activity (Fig. 1B). Flow cytometry analysis demonstrated that >98% of the iPSCs were positive for SSEA4 (Fig. 1C). Additional immunocytochemistry analysis revealed elimination of the Sendai virus at passage 7 (Fig. 1D). Fig. 1E presents a normal female karyogram identified in CSC-44I clone. The identity of the generated iPSC line was confirmed by DNA fingerprint, showing genetic correspondence to parental fibroblasts. DNA sequencing analysis of CSC-44I iPSCs confirmed the presence of mutations in the PARK2 gene (Fig. 1F). Embryoid bodies (EBs) generated from CSC-44I iPSCs present three-germ layer differentiation capacity as shown by the in vitro expression of alpha-fetoprotein (AFP), an endodermal marker, smooth muscle actin (SMA), a mesodermal marker, and beta-III-tubulin (BIIITub), an ectodermal marker (Fig. 1G). Mycoplasma infection was prevented by routine addition of plasmocin in cell culture media at early passages.

Materials and methods

Fibroblast culture

Dermal fibroblasts were collected by punch skin biopsy from a patient diagnosed with PD, after obtaining informed consent. The fibroblasts were maintained in fibroblast growth medium, composed of DMEM media (ThermoFisher Scientific) with 10% fetal bovine serum and 1% Penicillin-Streptomycin and passaged with 0.05% trypsin.

iPSC generation and expansion

For reprogramming, 75,000 cells were seeded on a 12-well plate and maintained in fibroblast growth medium. Two days after (day 0), the cells were transduced using the three vector preparations (MOI = 5, 5, 3) included in the CytoTune[™]-iPS 2.0 Sendai Reprogramming Kit (ThermoFisher Scientific). On the following day and on every other day, the medium was replaced with fresh fibroblast growth medium. At day 7, the cells were re-seeded onto irradiated mouse embryonic fibroblasts (MEFs) feeder cells with fibroblast growth medium. On the day after and until colony picking, the cells were cultured in WiCell medium composed of advanced DMEM/F12 (ThermoFisher Scientific), 20% Knock-Out Serum Replacement (v/v, ThermoFisher Scientific), 2 mM L-glutamine (ThermoFisher Scientific), 1% nonessential amino acids (NEAA, v/v, Millipore) and 0.1 mM β mercaptoethanol (Sigma-Aldrich), supplemented with 20 ng/ml FGF2 (ThermoFisher Scientific). On day 28, individual colonies were picked and re-seeded on a 24-well plate containing fresh MEFs. One week after, three clones were selected based on the morphology of the colonies, and further expanded on 6-well plates. The cells were passaged once a week and seeded on the appropriate cell culture surface for characterization assays at the indicated passage numbers (Table 1).

Immunocytochemistry

The iPSCs cultures were fixed with 4% paraformaldehyde for 15 min at room temperature (RT), permeabilized and blocked for 1 h at RT with PBS containing 10% donkey serum and 0.1% TritonX-100 (Sigma) and incubated overnight at +4 °C with the primary antibodies (Table 2) diluted in the blocking buffer. The secondary antibodies were thereafter added for 1 h at RT in the dark, followed by nuclei counterstain with DAPI (1:10,000 (Life Technologies)) and image acquisition on inverted epifluorescence microscope LRI - Olympus IX-73. Scale bars are 200 μ m.

Alkaline phosphatase activity

Alkaline phosphatase staining was performed using Alkaline Phosphatase Staining Kit (Stemgent, MA).

In vitro differentiation by embryoid body (EB) formation

Human iPSCs were grown for 2 weeks as embryoid bodies (EBs) in low-attachment 24-well plates (Corning) in WiCell medium supplemented with 20 ng/ml FGF2. The EBs were then seeded on a 0.1% gelatin-coated 96-well plate (Greiner Bio-One) in DMEM media containing 10% fetal bovine serum and 1% Penicillin-Streptomycin for subsequent spontaneous differentiation, with media changes every 2–3 days. After 2 weeks, the cells were fixed and stained for three germ-layer markers as described in Table 2.

A. Pluripotency markers

B. Alkaline phosphatase

D. Sendai virus expression

E. Karyogram

F. DNA Sequencing

G. In vitro differentiation

Fig. 1. Characterization of the iPSC line CSC-44I.

Table 1

Characterization and validation.

Classification	Test	Result	Data
Morphology	Photography	Visual record of the line: normal	Not shown but available with author
Phenotype	Immunocytochemisty	Positive staining for pluripotency markers: OCT4,	Fig. 1 panel A
		NANOG, TRA1-81 and SSEA4	
	Alkaline phosphatase activity	Visible activity	Fig. 1 panel B
	Flow cytometry	94.8% SSEA4	Fig. 1 panel C
Karyotype	G-banding	46,XX, (300–400 bands resolution in average)	Fig. 1 panel E
Identity	STR analysis	10 sites analyzed, all matched with parent	Available with author
		fibroblast cell line	
Mutation analysis (IF APPLICABLE)	Sequencing	Compound heterozygous mutation in the PARK2	Fig. 1 panel F
		gene (c.823C>T and EX6del)	
Microbiology and virology	Mycoplasma	Mycoplasma testing by RT-PCR. Negative.	Not shown but available with author
Differentiation potential	Embryoid body formation	Staining of smooth muscle actin, beta-III-tubulin	Fig. 1 panel G
		and alpha-fetoprotein after spontaneous	
		differentiation of embryoid bodies	
Donor screening (OPTIONAL)	HIV 1 + 2 Hepatitis B, Hepatitis C	N/A	N/A
Genotype additional info (OPTIONAL)	Blood group genotyping	N/A	N/A
	HLA tissue typing	N/A	N/A

Karyotype analysis

The G-banding analysis was performed at 300–400 band resolution in average after 9 passages, at the Department of Clinical Genetics and Pathology in Lund.

Mutation sequencing

Genomic DNA from fibroblasts and iPSCs was extracted using conventional lysis buffer composed of 100 mM Tris (pH 8.0), 200 mM NaCl, 5 mM EDTA and 0.2% SDS in distilled autoclaved water supplemented with 1.5 mg/ml Proteinase K. The mutation in the *PARK2* gene was confirmed by direct DNA sequencing (Macrogen Europe, Amsterdam, The Netherlands). Primers used for amplification and directed sequencing of *PARK2* around the mutation sites are listed in Table 2.

DNA fingerprinting

Genomic DNA from fibroblasts and iPSCs was isolated as described above and fingerprinting analyses was outsourced to the IdentiCell STR profiling service (Department of Molecular Medicine, Aarhus University Hospital, Skejby, Denmark).

Table 2

Reagents details.

Mycoplasma detection

Absence of mycoplasma contamination was confirmed by the realtime PCR method at GATC Biotech AG (European Genome and Diagnostics Centre, Konstanz, Germany).

Acknowledgements

We are greatly thankful to AnnaKarin Oldén and Marianne Juhlin, for their technical assistance and to the 'Cell Line and DNA Biobank from Patients affected by Genetic Diseases' (Istituto G. Gaslini, Genova, Italy) and the 'Parkinson Institute Biobank, members of the Telethon Network of Genetic Biobanks (http://biobanknetwork.telethon.it; project no. GTB12001) funded by Telethon Italy, for providing fibroblasts samples. This work was supported by the Strategic Research Environment MultiPark at Lund University and the strong research environment BAGADILICO (grant 349-2007-8626), the Swedish Parkinson Foundation (Parkinsonfonden; grant 889/16), the Swedish Research Council (grant 2015-03684 to LR) and Finnish Cultural Foundation (grant 00161167 to YP). We also acknowledge the Portuguese Foundation for Science and Technology for the doctoral fellowship - PDE/BDE/ 113598/2015 to AM and IF Starting and Development Grants to LP and AJS (IF/00111/2013 and IF/01079/2014), respectively.

Antibodies used for immunocytochemistry					
	Antibody	Dilution	Company Cat # and RRID		
Pluripotency markers	Mouse anti-Oct4	1:200	Millipore Cat# MAB4401, RRID:AB_2167852		
	PE-conjugated mouse anti-human NANOG	1:200	BD Biosciences Cat# 560483, RRID:AB_1645522		
	Mouse anti- TRA-1-81	1:200	Thermo Fisher Scientific Cat# 41–1100, RRID:AB_2533495		
	PE-conjugated mouse anti-SSEA4	1:200	Thermo Fisher Scientific Cat# A14766, RRID:AB_2534281		
Sendai	Chicken anti-Sendai virus	1:1000	Abcam Cat# ab33988, RRID:AB_777877		
Differentiation markers	Mouse anti-AFP	1:200	Sigma-Aldrich Cat# A8452, RRID:AB_258392		
	Mouse anti-SMA	1:200	Sigma-Aldrich Cat# A2547, RRID:AB_476701		
	Mouse anti-beta-III tubulin	1:200	Sigma-Aldrich Cat# T8660, RRID:AB_477590		
Secondary antibodies	Donkey anti-mouse Alexa Fluor® 488	1:400	Molecular Probes Cat# A-21202, RRID:AB_141607		
	Donkey anti-chicken Alexa Fluor® 488	1:400	Jackson ImmunoResearch Labs Cat# 703-545-155, RRID:AB_2340375		
	Donkey anti-mouse Alexa Fluor® 555	1:400	Thermo Fisher Scientific Cat# A-31570, RRID:AB_2536180		
Primers					
	Target		Forward/reverse primer (5'-3')		
Mutation sequencing	PARK2		AGGATTACAGAAATTGGTCT/TCTGTTCTTCATTAGCATTAGA		

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi. org/10.1016/j.scr.2018.01.006.

References

- Fiesel, F.C., Caulfield, T.R., Moussaud-Lamodière, E.L., Ogaki, K., Dourado, D.F., Flores, S.C., Ross, O.A., Springer, W., 2015. Structural and functional impact of Parkinson disease-associated mutations in the E3 ubiquitin ligase parkin. Hum. Mutat. 36, 774–786.
- Holmqvist, S., Lehtonen, S., Chumarina, M., Puttonen, K.A., Azevedo, C., Lebedeva, O., Ruponen, M., Oksanen, M., Djelloul, M., Collin, A., et al., 2016. Creation of a library of induced pluripotent stem cells from Parkinsonian patients. NPJ Parkinsons Dis. 2 (16009).
- Nuytemans, K., Theuns, J., Cruts, M., Van Broeckhoven, C., 2010. Genetic etiology of Parkinson disease associated with mutations in the SNCA, PARK2, PINK1, PARK7, and LRRK2 genes: a mutation update. Hum. Mutat. 31, 763–780.
 Oczkowska, A., Kozubski, W., Lianeri, M., Dorszewska, J., 2013. Mutations in PRKN and
- Oczkowska, A., Kozubski, W., Lianeri, M., Dorszewska, J., 2013. Mutations in PRKN and SNCA genes important for the progress of Parkinson's disease. Curr. Genomics 14, 502–517.