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Abstract. We describe a mathematical model of the shape and fibre direction field of the 
cardiac left ventricle. The ventricle is composed of surfaces which model myocardial 
sheets. On each surface, we construct a set of curves corresponding to myocardial fibres. 
Tangents to these curves form the myofibres direction field. The fibres are made as 
images of semicircle chords parallel to its diameter. To specify the left ventricle shape, we 
use a special coordinate system where the left ventricle boundaries are coordinate 
surfaces. We propose an analytic mapping from the semicircle to the special coordinate 
system. The model is correlated with Torrent-Guasp’s concept of the unique muscular 
band and with Pettigrew’s idea of nested surfaces. Subsequently, two models of concrete 
normal canine and human left ventricles are constructed based on experimental Diffusion 
Tensor Magnetic Resonance Imaging data. The input data for the models is only the left 
ventricle shape. In a local coordinate system connected with the left ventricle meridional 
section, we calculate two fibre inclination angles, i.e. true fibre angle and helix angle. We 
obtained the angles found from the Diffusion Tensor Magnetic Resonance Imaging data 
and compared them with the model angles. We give the angle plots and show that the 
model adequately reproduces the fibre architecture in the majority of the left ventricle 
wall. Based on the mathematical model proposed, one can construct a numerical mesh 
that makes it possible to solve electrophysiological and mechanical left ventricle activity 
problems in norm and pathology. In the special coordinate system mentioned, the 
numerical scheme is written in a rectangular area and the boundary conditions can simply 
be written. By changing the model parameters, one can set a general or regional 
ventricular wall thickening or the left ventricle shape change, which is typical for certain 
cardiac pathologies. 

Keywords: left ventricle, myocardial architecture, myocardial sheets, mathematical 
anatomy, analytical cardiac model. 

INTRODUCTION 
Currently, the modelling of complex physiological systems necessitates the inclusion of  
a description from the molecular to whole organ level, the heart is no exception. Modern 
cardiac models allow researchers to study mechanisms of two main types of cardiac activity, 
mechanical and electrical, and to reproduce not only normal, but also pathologic conditions. 

Lately, several models of electrical and/or mechanical function of the whole heart  
or its chambers have been described [35, 4, 10, 15, 38, 37, 9, 22, 30, 20, 17, 28].  
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Minute descriptions of the shape and fibre direction field of the heart are a key component of 
the most recent organ-level models. 

Cardiac anatomy and anisotropy can be represented by two methods: developing 
individual maps, where various experimental techniques yield directly measured fibre 
orientation of a particular heart, and by generation the orientation field using algorithms.  
The latter approach is called ‘theoretical’, or ‘rule-based’. 

In 1972, Spanish cardiologist Torrent-Guasp demonstrated that the myocardium of 
both right and left heart ventricles can be considered a single muscular band twisted and 
wrapped into a double helical coil [33]. Based on this concept, a theoretical model of the left 
ventricle’s shape and fibre orientation field was proposed [27]. This model also relies on 
Pettigrew’s idea [24] of the left ventricle as a set of nested muscular sheets, each of which is 
filled by myofibres. As Pettigrew states, these sheets are evolvents of plane semicircles and 
images of the myofibres are chords that parallel the semicircle diameter. 

For verification of the model [27], its authors used Streeter’s [31] and Hunter’s [21] 
experimental data. They showed that the model reproduced cardiac anisotropy properties such 
as the rotation of fibres in the left ventricle wall, dependence of the rotation on position in the 
wall (base-apex), spiral fibre run at the apex and maximal angle of fibre revolution round the 
vertical left ventricle axis. Quantitative comparison with the experimental data mentioned 
shows agreement between the data in the left ventricle free wall. 

In [27], an axisymmetric model of the truncated left ventricle (only below the equator) 
is described. The present article generalizes that model. The real left ventricles of different 
species can have both an axisymmetric and substantially nonsymmetric form. For example, 
canine left ventricle can for convenience be divided into two parts, prominent free wall and 
interventricular septum, which significantly juts into the upper part of left ventricle cavity.  
In the present work, we construct a non-axisymmetric model of the left ventricle. In our 
model, both anatomy and fibre direction field are determined analytically. 

THE LEFT VENTRICLE MODEL CONSTRUCTION 
In order to determine the left ventricle form, we use a special coordinate system 

(γ, ψ, φ), where the variable [ ] [ ]0 1, 0,1γ∈ γ γ ⊆  corresponds to position of a point in the left 
ventricle wall layer, 0γ = γ  is the epicardium, 1γ = γ  is the endocardium, ψ∈[0, π/2] is 
analogue of latitude, ψ = 0 is the upper plane part of the left ventricle model (fibrous ring and 
valve zone), ψ = π/2 is the left ventricle apex and φ∈[0, 2π) is analogue of longitude. 

We can transform the special coordinates into cylindrical ones (ρ, φ, z) using the 
formulae (Fig. 1): 
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where ( )0, , , ,inmer er r l pρ ψ  is coordinate ρ  of a point with coordinate ψ  in the left ventricle 
wall, if the left ventricle base has coordinates 0 , 0,rρ = ψ =  the equator has coordinates  
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Fig. 1. A meridional section of the model 
 

,er lρ = ψ =  and p > 1; ( )0,er ϕ  is the left ventricle epicardial radius at the base, equator; 

( )0,ed ϕ  is the left ventricle epicardial wall thickness at the base, equator; ( )0,1l ϕ  is the 
latitude ψ of equator at the epicardium, endocardium; Z is the left ventricle height; h is the left 
ventricle wall thickness at the apex; p(φ) > 1; index f means formal parameter and r means 
real parameter; 
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Spiral surfaces 
The model of left ventricle myocardium consists of fibres that lie on spiral surfaces. 

An spiral surface has the following equation in the special coordinates: 

 ( )min max min max, , ,ϕ γ ϕ ϕ = ϕ + γϕ  (4) 

where maxϕ  is the spiral surface twist angle (the same for all spiral surfaces), 

( )max max 1 0 ,f rϕ = ϕ γ − γ  different spiral surfaces have different values of [ )min 0, 2 .ϕ ∈ π  
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An spiral surface equation in the cylindrical coordinates (see (1), (2)): 

 ( ) min
min
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, ; , , ,sp

⎛ ⎞ϕ−ϕ
ρ ψ ϕ ϕ = ρ ψ ϕ⎜ ⎟ϕ⎝ ⎠

 (5) 

 ( ) min
min

max

, ; , .spz z
⎛ ⎞ϕ−ϕ

ψ ϕ ϕ = ψ⎜ ⎟ϕ⎝ ⎠
 (6) 

Filling of a spiral surface by fibres 
Following J. Pettigrew's theoretical hypothesis [24] and its practical realization [25, 

26, 27], we modelled myocardial fibres as images of chords with the equation Y = const, 
Y∈[0, 1), of semicircumference P = 1; Ф∈[0, π] (the chords are parallel to the diameter) on 
the spiral surface (Fig. 2). Each chord was parameterized by the polar angle [ ]0 1, ,Φ∈ Φ Φ  
where 0 arcsin ,YΦ =  1 arcsin .YΦ = π−  Mapping of a chord point (P; Ф) to an spiral surface 
point is defined by the formulae (Fig. 3): 

 ( ) ,γ Φ = Φ π  (7) 

 ( ) ( )1 2.ψ Ρ = −Ρ ⋅π  (8) 

For example, image of the semicircle diameter is a fibre which begins on the epicardium, 
descends to the apex (Ф = π/2), then ascends and ends on the endocardium. Images of shorter 
chords are situated closer to the left ventricle top and have lesser length. 

The left ventricle form fitting 
We fitted a model of left ventricle form to one real left ventricle of a dog and of a 

human based on Diffusion Tensor Magnetic Resonance Imaging data, which are freely 
accessible online at http://gforge.icm.jhu.edu/gf/project/dtmri_data_sets/docman. 

First, we found the left ventricle axis Oz, then we sectioned the left ventricle by  
N = 20 (for canine heart) or N = 24 (for human heart) meridional half-planes 2 ,i i Nϕ = π  
i = 0, 1, …, N–1, passing over this axis, and we manually found the needed parameter values, 

0      0.2        0.4        0.6       0.8 

π/2

π/4

0

Fig. 3. Images of the semicircle 
chords in ( ),γ ψ  coordinates 

Fig. 2. Horizontal chords on the semicircle. 
Here, 0Φ  and 1Φ  are polar angles of the  
 right and left chord ends 
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0 ,r  ,er  0 ,d  ,ed  0 ,l  1,l  p in each section (Fig. 4, 5). After that, we found functions ( )0 ,r ϕ  

( ) ,er ϕ  ( )0 ,d ϕ  ( ) ,ed ϕ  ( )0 ,l ϕ  ( )1l ϕ  and p(φ) by means of linear interpolation. 

METHODS FOR THE MODEL AND EXPERIMENT COMPARISON 
We related the theoretical model and experimental data by comparing the fibre slope 

angles that intersect normals to an epicardium meridional section. This method was described 
in [31] and has the following steps. 

To compare angles along a normal, one needs to specify a point A on the epicardium. 
Let its special coordinates be 0ψ = ψ  and 0.ϕ = ϕ  Let us consider a corresponding meridional 
section 0ϕ = ϕ  of the model, semiplane П. Let us construct a normal to the epicardial section 
by this semiplane and find its intersection with the endocardium or the base, a point B. On the 
segment AB, we set k equidistant points, including its ends, so that 1 2, , , .kA A A A B= =…  The 
position of a point iA  on the segment AB is defined by the variable 

 i
i

A Bt
AB

= . 

(for the endocardium t = 0, for the epicardium t = 1). Through every point iA , we have to 
draw an spiral surface. Problem of finding such an spiral surface reduces to solving a system 
of two algebraic equations with two unknown quantities ψ and min :ϕ  
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where ( )0, ,i izρ ϕ  are cylindrical coordinates of point .iA  This problem is equivalent to 
conversion of cylindrical coordinates into special ones, i.e. solving system 

Fig. 4. Vertical (meridional) sections of the interventricular septum (on the left) and left 
ventricle free wall (on the right) of a canine heart. The points are Diffusion Tensor Magnetic 
Resonance Imaging data, the solid line is the model epicardium, the dashed line is the model 
endocardium. On the left panel: left ventricle cavity is to the left, the right ventricle cavity and  
 free wall are to the right of the interventricular septum 

0  10  20 30  40 50  60 70  80 0  10  20 30  40 50  60 70  80 

90 
80 
70 
60 
50 
40 
30 
20 
10 

0 
–10 

90
80
70
60
50
40
30
20
10

0
–10



S.F. Pravdin 

ISSN 1812-5123. Russian Journal of Biomechanics. 2013. Vol. 17, No. 4 (62): 75–94 80

 
( )
( )

0, , ,
,

i

iz z
⎧ρ γ ψ ϕ = ρ⎪
⎨ γ ψ =⎪⎩

 

with respect to ψ и γ. One can express (see (2)) ψ from the second equation of this system: 
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i
i f f
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 (9) 

and substitute this expression to the first equation. Then, the problem reduces to solving one 
nonlinear equation 

 ( )( )0, , ,i izρ γ ψ γ ϕ = ρ  

with one unknown quantity γ on segment [ ]0 1, ,γ γ  which can easily be done, for example, by 
the method of tangents. 

Strictly speaking, there can be no points from the tomogram exactly on semiplane Π; 
therefore, we selected points lying no further than ∆ = 1 mm from the straight line AB and 
inside the dihedral angle 0 0.1 rad 5.7 .ϕϕ−ϕ ≤ ∆ = = D  
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Fig. 5. Vertical (meridional) sections of the left ventricle free wall (on top) and 
interventricular septum (below) of a human heart. The points are Diffusion Tensor 
Magnetic Resonance Imaging data, the solid line is the model epicardium and the 
dashed line is the model endocardium. On bottom of the panel, there are papillary 
muscles in the right ventricle cavity (vertical one, ρ = 80 … 100 mm) and a right  
 ventricle free wall (inclined) 
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In his work [31], Streeter proposed specifying fibre direction using a local coordinate 
system (u, v, w) and two angles, ‘true fibre angle’ α  and ‘helix angle’ 1α  (these angles are 
sufficient for specifying a fibre direction in a point). The axis u is a normal to the epicardium 
pointed from the left ventricle; w is a meridian, i.e. an epicardial tangent lying in a meridional 
semiplane and pointed upwards; v is a parallel, i.e. vector .×w u  Angle α∈[0; π/2] is an angle 
between a fibre and a parallel, and angle [ ]1 2, 2α ∈ −π π  is an angle between fibre 
projection on the plane uv and a parallel. 

We compared two these angular characteristics of the fibre direction field with 
experimental data. The comparison was conducted along epicardial normals in two meridians 
(one meridian lies in the left ventricle free wall, another one lies in the interventricular 
septum) in upper, middle and lower parts of the left ventricle wall. 

RESULTS OF A COMPARISON WITH CANINE HEART DATA 

The following parameter values were used: left ventricle height 90rZ =  mm, left 
ventricle wall thickness at the apex 12rh =  mm, spiral surface effective twisting angle 

max 3 ,rϕ = π  subepicardial lamination parameter 0 0.05,γ =  subendocardial lamination 
parameter 1 0.98.γ =  

In Fig. 6, we show an spiral surface made using these parameter values, with chord 
images on it. 

The comparison was conducted in different left ventricle zones: upper (epicardial 
normal was constructed in a point with coordinate ψ = 5°), middle (ψ = 35°) and lower one 
(ψ = 65°). 

 In Figs. 7–12, we display heart areas where we compared fibre slope angles and 
graphs of these angles from the experimental data (points) and from the model (solid lines). 
Let us analyse each figure in more detail. 

At the upper part of the left ventricle free wall (Fig. 7), we see qualitative and good 
quantitative data agreement: angle α is maximal at the endocardium, decreases approximately 
to 10° at the middle of the wall, then increases and has its local maximum at the epicardium. 
In panel D, if we move from the endocardium to the epicardium, helix angle 1α  almost 
linearly decreases from big positive values to great in magnitude negative values and equals 
zero at the middle of the wall. 

Similar behaviour of the angles can be observed at the middle (by height) part of the 
left ventricle free wall (Fig. 8). In comparison with the previous figure, both in the experiment 
and in the model, we notice that angle α graphs have a form close to a V-shape at the basal  

Fig. 6. An spiral surface used in the human left ventricle model with chord images on it.  
On the left: side and top view. At the middle: top view. On the right: side and slightly 
 bottom view
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area and close to U-shape at the middle area. Angle 1α  graph in Fig. 7 seems to be a straight 
line, and, in Fig. 8, it is somewhat similar to an overturned cubic parabola (i.e. at the middle 
of the wall the angle's decrease becomes slower; at the external and internal parts of the wall, 
it becomes faster). 

At the apical zone (Fig. 9), the quantitative data agreement worsens, but the qualitative 
agreement remains. Notice that angle 1α  graphs in the model and in the experiment have 
come even closer to an overturned cubic parabola. 

Let us now consider the interventricular septum and compare the fibre angles along 
three epicardial normals. 

At the basal (Fig. 10), middle (Fig. 11) and apical (Fig. 12) zones, only qualitative 
data agreement can be observed. As at the free wall, the true fibre angle α is maximal at the 
endocardium, then it drops reaching its minimum at the middle of free wall and rises to have 
its maximum at the epicardium. Notice that in experiment and in the model, the endocardial 
value of this angle is greater than its epicardial value at the middle and – especially – at the 
lower interventricular septum part. 

The helix angle 1α  decreases monotonically at the interventricular septum and at the 
left ventricle free wall from approximately 80° on the endocardium to –60° on the 
epicardium. 

Fig. 7. The fibre angles in the model and in the experimental data. The left ventricle free wall, 
basal area (ψ = 5°), canine heart. A is a horizontal left ventricle section. The points are 
myocardial points from a Diffusion Tensor Magnetic Resonance Imaging scan, the straight line 
is a normal to the epicardium, the solid (dashed) curve is the model epicardium (endocardium). 
B is a meridional left ventricle section. The solid (dashed) curve is the model epicardium 
(endocardium) and the points are myocardial points from a Diffusion Tensor Magnetic 
Resonance Imaging scan. C shows the angle α, D shows the angle α1. The X axis displays point  
 position in the wall depth; 0 corresponds to the endocardium, 1 corresponds to the epicardium 
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Fig. 8. Fibre angles in the model and in 
the experimental data. The left ventricle 
free wall, middle height area (ψ = 35°), 
canine heart. The conventional signs 
 are the same as in Fig. 7 

0          20        40         60 

90 
80 
70 
60 
50 
40 
30 
20 
10 

0 

90 
75 
60 
45 
30 
15 

0 

90 
60 
30 

0 
–30 
–60 
–90 

0     0.2   0.4    0.6    0.8     1 

A 

B 

C 

D 

0     0.2   0.4    0.6    0.8     1 

Fig. 9. Fibre angles in the model and in the 
experimental data. The left ventricle free wall, 
apical area (ψ = 65°), canine heart.  
The conventional signs are the same as  
 in Fig. 7. Horizontal section is not shown 
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Fig. 10. The fibre angles in the model 
and in the experimental data.  
The interventricular septum, basal 
area (ψ = 5°), canine heart.  
The conventional signs are the same 

as in Fig. 7

0          20        40         60 

90 
80 
70 
60 
50 
40 
30 
20 
10 

0 

90 
75 
60 
45 
30 
15 

0 

90 
60 
30 

0 
–30 
–60 
–90 

0     0.2   0.4    0.6    0.8     1 

A 

B 

C 

D 

0     0.2   0.4    0.6    0.8     1 

Fig. 11. The fibre angles in the model and 
in the experimental data.  
The interventricular septum, middle height 
area (ψ = 35°), canine heart.  
The conventional signs are the same  
 as in Fig. 7 
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RESULTS OF A COMPARISON WITH HUMAN HEART DATA 
We followed the method used to compare angles in the canine heart. 
The following parameter values (common for all meridians) were used: left ventricle 

height 84rZ =  mm, left ventricle wall thickness at the apex 11rh =  mm, spiral surface 
effective twisting angle max 2 ,rϕ = π  subepicardial lamination parameter 0 0.05,γ =  
subendocardial lamination parameter 1 0.98.γ =  

Graphs of dependence of angles α, 1α  on a point position on normal to the epicardium 
are shown in Figs. 13–18. Let us analyse the results obtained. 

At the upper and middle left ventricle areas (e.g., Figs. 13 and 14, A), one can see that 
the vertical axis goes not through the centre of horizontal left ventricle sections, but is situated 
closer to the interventricular septum. The axis position is set there because the axis must 
intersect the apical left ventricle area, and the left ventricle apex projection to its basal plane is 
not situated at the centre of the base. If one moves the axis to the base centre, then the apex is 
far from the axis in one of the meridional sections; therefore, we cannot fit the left ventricle 
wall shape by this model. 

Let us consider the fibre slope angles in one of the left ventricle free wall meridians. 
In the upper left ventricle part (Fig. 13), the true fibre angle α (panel C) in the model 

rather accurately reproduces the Diffusion Tensor Magnetic Resonance Imaging data.  
It descends from 90° on the endocardium to approximately 25° at the middle of the wall, then 
it grows and reaches 70° on the epicardium. The helix angle (panel D) in the model is also 
rather close to the experimental data. 

The middle (by height) part of the free wall (Fig. 14) shows an essentially large 
dispersion of the both angles values. At the same time, their behaviour here and in the basal 
zone is mostly the same, and the model can reproduce this both qualitatively and 
quantitatively. 

Fig. 12. The fibre angles in the model and in the experimental data. The interventricular 
septum, apical area (ψ = 65°), canine heart. The conventional signs are the same as in Fig. 7.  
 Horizontal section is not shown 
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Fig. 13. Fibre angles in the model and 
in the experimental data. The left 
ventricle free wall, basal area (ψ = 5°), 
human heart. The conventional signs 
 are the same as in Fig. 7 
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Fig. 14. Fibre angles in the model and in 
the experimental data. The left ventricle 
free wall, middle area (ψ = 35°), human 
heart. The conventional signs are the 
 same as in Fig. 7 
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Fig. 15. Fibre angles in the model and in the 
experimental data. The left ventricle free wall, 
apical area (ψ=65°), human heart.  
The conventional signs are the same as  
 in Fig. 7. Horizontal section is not shown 
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Fig. 16. Fibre angles in the model and in 
the experimental data. The interventricular 
septum, basal area (ψ = 5°), human heart. 
The conventional signs are the same as  
 in Fig. 7 
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Fig. 17. Fibre angles in the model and 
in the experimental data.  
The interventricular septum, middle 
area (ψ = 25°), human heart.  
The conventional signs are the same 
 as in Fig. 7 
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Fig. 18. Fibre angles in the model and 
in the experimental data.  
The interventricular septum, apical 
area (ψ = 45°), human heart.  
The conventional signs are the same 
 as in Fig. 7 
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One can make practically the same statement about the angles at the lower part of left 
ventricle free wall (Fig. 15). Let us notice only that in the subepicardial wall part, the angle α 
increases considerably more dramatically than usually, the angle 1α  does not decrease but 
increase and a great variation of its values can be seen. 

In the upper part of interventricular septum (Fig. 16), the angles do not match in the 
model and in the experimental data. 

In the middle and lower interventricular septum parts (Figs. 17 and 18), the model 
reproduces the angles reasonably accurately. 

If one considers the fibres in the radial direction, both our model and the model from 
[27] imitate the distinctive arrangement of fibres in the ventricular wall ([27], Fig. 14). This 
arrangement was called the ‘Japanese fan’ by Streeter ([31], Fig. 42, C). 

We can conclude that our model adequately reproduces the fibre directions in the left 
ventricle. 

DISCUSSION 
This section deals with limitations, ways of verification, usage, and further 

development of the model constructed. 

Limitations 
The model adequately reproduces the fibre angles in the upper and middle zones of the 

left ventricle free wall and in the middle and lower zones of the interventricular septum of 
human heart (the angles are modelled slightly less accurately in the canine heart). 
Nevertheless, the data agreement in the apical zone of free wall is only qualitative; in the 
interventricular septum upper part of human heart, the model yields results that differ totally 
from the experimental data. 

The inaccurate reproduction of the fibre direction angles in the apical left ventricle 
zone can be explained using Torrent-Guasp's ‘unique muscular band’ approach. According to 
this theory (e.g., [34, 18]), the left and right ventricles myocardium forms a single long 
wrapped muscular band. The left ventricle and interventricular septum together take roughly 
75% of the band length, and the right ventricle takes 25% (called the ‘right segment’). It is 
particularly important that the upper part (approximately two thirds) of left ventricle free wall 
is formed from one band area (‘left segment’) and the lower one (about one third) is formed 
from another area (‘descending segment’) that is not adjacent to the first one. The model 
reproduces the wrapping of the left segment (exterior upper part of the left ventricle free wall) 
well, but not the folding of the descending and ascending segments. In the descending 
segment, the model can reproduce well the fibre directions in the area that is close to the left 
segment (internal upper part of the left ventricle free wall), its lower middle area (internal 
lower part of the left ventricle free wall and interventricular septum) and the upper part which 
is close to the ascending segment (the mid-myocardial left ventricle free wall zone). In the 
ascending segment, there are two relatively small areas where the tomography data are not 
reproduced well; one adjoins the aorta, another abuts the apex. The rest of ascending segment 
corresponds to the external part of left ventricle free wall and interventricular septum; the 
fibre organization is reproduced well here. 

Experimental techniques suitable for the model verification 
Currently, a number of experimental methods allows use to measure cardiac fibre 

directions. One of them is Diffusion Tensor Magnetic Resonance Imaging in which a matrix 
of water molecule diffusion in the heart is found. The main diffusion directions are identified 
by the tissue structure [13, 19, 12, 39]. The fibre direction coincides with the matrix 
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eigenvector, which corresponds to its greatest eigenvalue. The spatial resolution of Diffusion 
Tensor Magnetic Resonance Imaging reaches 200 microns [8]. Another modern method is the 
microcomputer tomography, which has a spatial resolution up to 36–70 microns [2]. Both 
methods yield high-quality data that is needed for computer models. 

The scrupulous histological study of the fibres in space [31, 21] must be mentioned 
when discussing invasive methods of directly measuring the fibre directions. This requires a 
series of parallel sections of the heart. In each section, the angle of the fibre slope that 
produces a full pattern of the fibre direction field in the whole heart is gauged. Recently, 
Smaill et al. developed a method of combined serial high-resolution microscopy [36]. In this 
method, a series of microscopic sections of the fixed heart was conducted. From these 
sections, serial high-resolution images were obtained, and, after computerized processing, a 
consistent cardiac model was formed. 

In article [16], quantitative polarized light microscopy is utilized for the analysis of 
fibres in foetal human heart. The hearts are placed in a pellucid resin, polymerized and 
sectioned. Thereafter, the elevation and azimuth angles are found with the help of polarized 
light (see [16] for details). 

Comparison with other models 
In order to build anatomical computational cardiac models, one can use experimental 

data from the fibre directions in two ways: 
– first, as a discrete dataset in finite element models [40, 11, 41]; 
– second, for the rule-based models verification [29, 5, 3, 14]. 
The Laplace–Dirichlet  algorithm is one of the recent rule-based techniques, it is 

described in [3]. The algorithm receives a noisy Diffusion Tensor Magnetic Resonance 
Imaging-derived fibre orientation field and returns two types of output data: first, transmural 
and apico-basal directions for the whole myocardium; second, a continuous and smooth fibre 
orientation field. Peskin [23] obtained a fibre direction field on the basis of mechanical 
equilibrium principle. Chadwick [7] used concepts of mechanical activity of the heart to 
construct an anatomic model: he considered a cylindric left ventricle and set a linear 
dependence of the helix angle on point position in the left ventricle wall. Beyar et al. [4] used 
the same linear dependence and spherical left ventricle. In 1982, Arts et al. [1] proposed the 
principle of mechanical adaptation, which allowed calculation of the helix angle distribution. 
This was used in work [6] by Bovendeerd et al. in which they constructed a model of an 
ellipsoidal left ventricle and applied a more complex helix angle law, namely a piecewise 
quadratic law. 

The model of left ventricle architecture presented in this article is rule-based and 
includes the ventricle shape and run of fibres in its wall. The model is substantively connected 
with Pettigrew’s idea of nested spiral surfaces [24], Torrent-Guasp’s theory of a unique 
muscular band [33] and Streeter’s anatomical observations represented in his classical work 
[31]. We obtain cardiac anisotropy by using some common principles, that is, the left 
ventricle is constructed as a set of similar “spiral” surfaces each of which is defined 
analytically and represents an image of a semicircle. The mapping of the semicircle consists 
of two steps. In the first step, the semicircle is transformed into a rectangle in a special 
coordinate system. The second step maps the special coordinates to cylindrical ones. This map 
is directly linked with the epicardium and endocardium shape, which is obtained by Diffusion 
Tensor Magnetic Resonance Imaging, for example. As a result, we obtain spiral surfaces 
filled by curves (myofibres). These curves are images of the semicircle chords that are parallel 
to the diameter (Fig. 2). 

Besides our model, there are other myocardial models that are based on the idea of 
wrapping surfaces. Sinha et al. considered [30] a model of one myocardial layer in the form of 
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a rectangle, which was wrapped around a (truncated) cone. They utilized this unsophisticated 
model to simulate self-induced waves and to study their disappearance. The waves in Sinha’s 
work revolved around obstacles in the isotropic and anisotropic cases, but there was no 
association with the real fibre pattern in the ventricles. 

To verify the model, we use Diffusion Tensor Magnetic Resonance Imaging 
experimental data of normal canine and human hearts. The model adequately reproduces both 
loop-like fibre shape and the 3D arrangement of fibres in the left ventricle wall (Streeter 
compared the arrangement with Japanese fan). 

The model is based on the theoretical postulates of Torrent-Guasp’s band conception 
and gives an appropriate fibre direction field; this is an important argument for the band 
concept. 

Let us compare the model with another rule-based model in which fibre orientation is 
assigned locally. We compare it with the model from [3] by Bayer et al. We use fibre 
orientation data from different parts of the left ventricle for comparison. The basis of Bayer’s 
model is the Diffusion Tensor Magnetic Resonance Imaging data of canine heart ventricles. 
Bayer’s model and the experimental data are in agreement, although there is not a full 
quantitative reproduction of the data (average error in fibre directions is 23°). Bayer’s model 
reproduces fibre anisotropy in the left ventricle basal zone qualitatively better than our model 
([3], Fig. 3). Our model yields better results in the middle (by height) left ventricle zone, 
because we get the specific s-like graph of the angle 1α  in the transmural direction (Fig. 8, 
D), and this dependence is linear by definition in Bayer’s model. Moreover, the formulae (1) 
and (2) from the Bayer article make all graphs of the angle 1α  (Figs. 7–12, D) independent 
from latitude and longitude of epicardial normal along which the angle is calculated. Bayer et 
al. claim that non-linearity of the angle 1α  can be easily embedded in their model, but the 
anisotropy should necessarily be latitudinally and longitudinally dependent, which is a rather 
complicated problem. Our model demonstrates this dependence (Figs. 7–12), which reflects 
the real cardiac fibre pattern, especially in the left ventricle middle zone. 

The Bayer model also simplifies the transmural fibre rotation (Japanese fan) by 
Streeter ([31], Fig. 42 C). In the Bayer model, fibres rotate only in one plane and only around 
one transmural axis. This plane is a tangent plane for surface d = const, where d is a variable 
from the article [3]. This variable describes point position in the wall (d = 0 on the 
endocardium and d = 1 on the epicardium). Additionally, if we find the angle 3,α  which is 
defined by Streeter in [31] and reflect fibre direction relative to myocardial layer, the angle is 
constantly equal to 0, which is a significant simplification. Hence, fibre direction in the wall 
relative to muscle ‘d-layers’ cannot be defined in the Bayer model. 

In contrast, this 3D pattern is taken into account in our model, and the fibres on a 
spiral surface go from the subepicardium to the subendocardium. 

Thus, we conclude that both models have their strengths and weaknesses. Additional 
development of the models would be useful to surmount the limitations. 

Further development and usage of the model 
The analytical description of the cardiac geometry can be used in developing new 

numerical methods for the study of electrophysiological and mechanical activity of the left 
ventricle. The model is an analytical map of a rectangle in space (γ, ψ, φ) to a curvilinear left 
ventricle; therefore, one can make a numerical scheme on a rectangular area in the coordinates 
(γ, ψ, φ) (where the boundary conditions can be written in the simplest manner), and we can 
consider anisotropy by using explicit analytical formulae. The model can also be utilized for 
the generation of different anisotropic properties of the heart, for alteration of the left ventricle 
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shape (by change of the model parameters) and for studying their influence on the cardiac 
electrical and mechanical function. 

CONCLUSIONS 
An analytical description of the cardiac left ventricle anatomy on basis of Torrent-

Guasp’s band conception and Pettigrew’s spiral surfaces is constructed. The model can be 
used for band hypothesis verification, for simulating cardiac mechanical function and for 
various numerical experiments that study the influence of anisotropy on the electrical 
excitation spread. A good qualitative and – in some left ventricle wall areas – quantitative 
agreement between the model and experimental data is demonstrated. 
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APPENDIX 
CALCULATION OF FIBRE DIRECTION IN A POINT 

Let us consider a point that has cylindrical coordinates (ρ, φ, z). To calculate a fibre 
direction vector in this point, the following is needed: 

1. Use formulae (1)–(3) to numerically find the special coordinates γ and ψ of the 
point. This problem can be reduced to solving one algebraic equation with one unknown 
quantity γ, as this needs to express ψ(γ, z) in formula (2) and substitute this expression in (1) 
and (3). 

2. Find Cartesian coordinates of the point (x = ρ cos φ,  y = ρ sin φ,  z). 
3. Differentiate (numerically or analytically) the function ρ(ψ, γ, φ) with respect to all 

arguments and obtain three partial derivatives , , .ψ γ ϕρ ρ ρ  
4. The non-normalized vector of fibre direction is: 
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