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We present a computer simulation study of the crystalline phases of hard ellipsoids of revolution. A
previous study �P. Pfleiderer and T. Schilling, Phys. Rev. E 75, 020402 �2007��. showed that for
aspect ratios a /b�3 the previously suggested stretched-fcc phase �D. Frenkel and B. Mulder, Mol.
Phys. 55, 1171 �1985�� is unstable with respect to a simple monoclinic phase with two ellipsoids of
different orientations per unit cell �SM2�. In order to study the stability of these crystalline phases
at different aspect ratios and as a function of density we have calculated their free energies by
thermodynamic integration. The integration path was sampled by an expanded ensemble method in
which the weights were adjusted by the Wang–Landau algorithm. We show that for aspect ratios
a /b�2.0 the SM2 structure is more stable than the stretched-fcc structure for all densities above
solid-nematic coexistence. Between a /b=1.55 and a /b=2.0 our calculations reveal a solid-solid
phase transition. © 2009 American Institute of Physics. �doi:10.1063/1.3251054�

I. INTRODUCTION

Suspensions of hard particles �i.e., particles that interact
via an infinitely strong, repulsive excluded-volume interac-
tion potential� have been successfully used as model systems
for the statistical mechanics of liquids and solids for more
than half a century. For this class of system phase transitions
are entropy rather than enthalpy driven, and the relevant con-
trol parameters are the particle shape and concentration
rather than temperature. Hard ellipsoids are a simple model
for systems whose macroscopic properties depend on the in-
terplay of positional and orientational entropy such as liquid
crystals1–4 and orientational glasses5–7

In recent years it has been shown by computer simula-
tions and experiments that randomly packed arrangements of
hard ellipsoids can reach densities much higher than random
close packing of spheres.8–10 At certain aspect ratios, random
packing of ellipsoids can even reach densities almost as high
as the closest crystalline packing of spheres.8 However, this
does not imply that random packing of ellipsoids is as dense
as their densest known crystalline packing. In 2004, Donev
et al.11 introduced a family of crystalline packings of ellip-
soids, which reach a packing fraction of ��0.7707 �as com-
pared with �=� /�18�0.7405 for the fcc packing of spheres
and stacking variants thereof�.

Inspired by this study, we reexamined the phase diagram
of hard ellipsoids of revolution.12 We found that the
stretched-fcc phase, which had before been assumed to be
the stable crystalline phase,13 was unstable with respect to a
different crystalline phase. The more stable structure has a
simple monoclinic unit cell containing two ellipsoids of un-
equal orientation �SM2� �cf. Fig. 1�. The packings con-
structed by Donev et al.11 are a special case of SM2 �the
infinite-pressure limit�.

At that time we did, however, not compute free energy

differences between SM2 and stretched fcc. In the present
article we report on Monte Carlo �MC� simulations in which
SM2 and stretched fcc are connected to their respective har-
monic crystals �“Einstein crystals” �ECs�� via thermody-
namic integration �TI�, and hence their free energies are de-
termined. In order to sample the TI pathway, we adapted the
Wang–Landau algorithm.14 In the original Wang–Landau
scheme a flat histogram of the internal energy is constructed.
Here we constructed a flat histogram of the coupling param-
eter that couples the hard ellipsoid model to the EC instead.

II. METHOD OF COMPUTATION

In order to determine which of the two phases is ther-
modynamically more stable, one compares their relevant
thermodynamic potentials, e.g., in the case of constant par-
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FIG. 1. Unit cell of SM2 �Ref. 12� with a /b=3. The open circles indicate
the centers of the two ellipsoids that form the basis. The yellow �light gray�
ellipsoid is at the origin, the green �dark gray� one is at 1

2 �a+b�. The cell is
monoclinic. � is the soft degree of freedom. Part �c� shows the cell at close
packing �the infinite-pressure limit�, where it is an instance of the family of
packings introduced by Donev et al. �Ref. 11�. Note the indicated right angle
and the resulting symmetry about the bc-plane in this case.
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ticle number N, volume V, and temperature T, with their free
energies F. Within a MC simulation, however, for most mod-
els it is impossible to compute F because of its direct con-
nection to the accessible phase space volume �qN ,pN�. To
solve this problem the method of TI15,16 is commonly used,
in which the free energy difference between the system of
interest and a reference system can be calculated by intro-
ducing an artificial external potential U, such that

�F = Fsys − Fref = �
�=1

�=0

d�� �U�qN;��
��

	
�

. �1�

Here, the parameter �� �0,1� links the interaction potential
of the system of interest Usys
U��=0� to the potential of the
reference system Uref
U��=1� by

U�qN;�� = �1 − ��Usys�qN� + �Uref�qN� . �2�

During a typical integration, Usys is gradually switched
on and at the same time Uref is gradually switched off. How-
ever, the hard-core interaction of the ellipsoids does not al-
low for a gradual change. Therefore, Usys is imposed in the
first step, and then Uref is gradually switched off in the sec-
ond. With this procedure, the free energy of the system can
be calculated as Fsys=Fref+�F1+�F2, where the subscripts
refer to the two steps just described,

�F1 = − ln�exp�− �Usys���=1, �3�

where Usys�qN� here is the overlap potential of the ellipsoids,
and the configuration qN consists of positions and orienta-
tions qN
rN ,�N�. �¯ �� refers to the ensemble average
where the potential is parametrized by Eq. �2�. �F2 will be
discussed together with the free energy of the reference state
in the following paragraph.

From Eq. �1� it is obvious that Fref needs to be known
from other sources, e.g., by analytical computation, and that
no phase transition may occur during the integration process.
In order to construct such a reference system, we consider a
system of hard ellipsoids in which all particles except for one
are coupled to the sites of a lattice via harmonic springs. The
remaining particle is fixed in space and is called the carrier
of the lattice. We fix this particle to the origin of the coordi-
nate system. As we are interested in anisotropic particles, we
will also restrict their rotational motion by a contribution
Urot��i

N� to the potential. We set this to be proportional to
sin2 �i, where �i is the angle between the axis of particle ni

and a reference axis mi �cf. Fig. 2�.
This kind of model is known as an Einstein molecule

�EM�.17 �The reason for fixing one particle is the following.

In the case of an EC, center of mass motion of the entire
system does not cost energy. Hence, for weak coupling one
needs to shift all particle positions after every move to keep
the center of mass positioned, as it was done, e.g., in the
work of Polson et al.18 In the case of the EM, the fixed
carrier particle ensures nondivergency of the center of mass
mean square displacement for a negligible harmonic poten-
tial �see also Ref. 17�.�

The interaction potential of the EM is

Uref = �
i

��i
trans�ri − r0,i�2 + �

i
��i

rot sin2 �i

= ��
i

���ri − r0,i�2 + sin2 �i� , �4�

where r0,i denote the position vectors of the lattice sites. The
prime denotes that the sum runs over all particles except for
the carrier. For simplicity we chose the spring constants of
all lattice sites in the second line of Eq. �4� as equal. In
addition we set �trans=�rot
�. We use twice the short axis b
as the unit of length and kBT as the unit of energy �except
where stated otherwise�. With this the unit of � is kBT / �2b�2.
As we are only interested in the configurational part of phase
space, the kinetic energies of the particles are disregarded.

In order to evaluate the configurational part of the parti-
tion function of the EM, we assume that the maximum cou-
pling constant �max is strong enough for �i	1 �see Appen-
dix�. So we obtain �cf. Ref. 19�

FFCC

N
=

1

N
ln� N

4�V
� +

3

2
�1 −

1

N
�ln��max

�
�

+ �1 −
1

N
�ln��max

2�
� . �5�

In case of the SM2-EM the same approach leads to

FSM2

N
=

1

N
ln� N

8�V
� +

3

2
�1 −

1

N
�ln��max

�
�

+ �1 −
1

N
�ln��max

2�
� . �6�

The derivation of Eq. �6� is outlined in the Appendix. The
difference in free energy per particle between the fcc-EM
and the SM2-EM is �ln 2� /N due to the presence of two
types of lattice sites in the SM2 unit cell. This difference
vanishes in the thermodynamic limit N→
.

Coming back to the calculation of Fsys we rewrite the
integral in Eq. �1� �with �=� /�max� as

�F2 = �
�max

0

d����
i

��ri − r0,i�2	
�

+ ��
i

�sin2 �i	
�
� .

�7�

In order to perform the TI, we make use of the following
idea: For two adjacent values �i and � j, the parts of configu-
ration space that contributes dominantly to the thermody-
namic average in Eq. �7� overlap considerably. There are
many expanded ensemble and flat histogram techniques that
employ overlapping histograms in order to compare free en-
ergies of a system at different values of a reaction coordinate

Carrier

m n

θ

FIG. 2. Scheme of an EM for hard ellipsoids.

164513-2 Radu, Pfleiderer, and Schilling J. Chem. Phys. 131, 164513 �2009�

Downloaded 05 Nov 2009 to 134.93.131.2. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



�e.g., free energy differences between the liquid and the solid
phase, between different conformations of a molecule, etc.�.
Here, we use the coupling constant � as a “reaction coordi-
nate” and evaluate Eqs. �3� and �7� by the following ex-
panded ensemble technique: We discretize the range of val-
ues for �. Then, besides translational and rotational moves,
we perform a move in which the system passes from one
model with a value �i into an adjacent one with � j and vice
versa. In order to ensure good statistics when sampling the
�-range, we introduce a set of weights �m and sample the
expanded ensemble given by the partition function

Z = �
m=1

M

Zm��m�e�m, �8�

where Zm��m� is the partition function of the model m with
�=�m and �m its weighting factor. The acceptance probabil-
ity of a �-move is then given by

Pi→j = min�1,
exp�� j − Uj�
exp��i − Ui�

� , �9�

such that for an adequate set of weights the system can be
forced to visit the states of interest. One can then compute
the free energy difference as

Fj − Fi = − ln� pj

pi
� + � j − �i. �10�

Here pi and pj are the probabilities for the system to visit
model i or model j, respectively, in the presence of the
weights.

The success of this procedure depends on finding appro-
priate weights. The weights are not known a priori, but they
can be adjusted iteratively during the simulation, as has been
introduced by Wang and Landau14 for the case of the density
of states as a function of energy. We apply this idea to TI.
Initially, we choose the weighting factors as �i=0 ∀i
� 0, . . . ,M�. Then simulations for each subensemble are
carried out in which after each �-move the weight of the
rejected model is increased by ��=1. This leads to an in-
crease in both the possibility to visit the accepted model and
the possibility to stay there. As in the original algorithm ��
is decreased by a factor a�1, ��→a ·�� �here, a=0.5�, as
soon as the difference between the probabilities becomes suf-
ficiently small. Once the simulations are finished pm� pm−1

�in fact ln�pm / pm−1� was less than 10−5NkBT after only 105

steps�.

Finally, we consider the computation of �F1=Foff−Fon,
where the �-step does not change � but consists of switching
on and off the hard-core potential.

According to Eq. �9� moves that switch off the potential
or that lead to a state with no overlap are always accepted,
whereas moves of the form off→on, which yield a state with
at least two overlapping particles, are always rejected. For
this case the coupling parameter was �=�max �i.e., the refer-
ence state�, and hence the free energy difference between the
states on and off was expected to be very small.

Therefore we set the corresponding weights equal to 0
and kept them fixed during the calculation. �This approach is
validated by our results for �F1, which were of the order of
10−4NkBT.�

III. RESULTS

A. Hard spheres

In order to test the algorithm before applying it to aniso-
tropic particles, we first computed the free energy of hard
spheres at various densities �=N /V and particle numbers N.
Table I summarizes our results. Figure 3 shows the free en-
ergy per particle as a function of 1 /N for �=1.040 86. The
dotted line is a fit to

F

N
= e1 +

e2

N
+

e3

N2 , �11�

by which we extrapolate our results to infinite N, F /N
=5.008�4�kT �see also Ref. 17�.

Figure 4 shows a comparison of our results to EC and

TABLE I. Results for the free energy of hard spheres.

� N F /N

1.040 86 504 4.924�12�
768 4.957�10�
810 4.962�10�

1728 4.988�7�
1.099 75 1728 5.647�7�
1.150 00 1728 6.283�7�

FIG. 3. Hard spheres: Free energy per particle as a function of the inverse
particle number. Symbols: MC data. Line: Fit according to Eq. �11�.
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FIG. 4. Hard spheres: Relative difference �F �in percent� between our re-
sults and free energies computed by similar methods ��a� Ref. 17 and �b�
Ref. 18�. There is a very good agreement.
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EM computations that did not use the Wang–Landau algo-
rithm. There is a very good agreement, giving us confidence
in the results for the hard ellipsoid case.

B. Hard ellipsoids

Previous work showed that the angle of inclination of
the SM2 unit cell � is a very “soft” degree of freedom,12 i.e.,
the corresponding shear modulus is almost zero. � fluctuated
strongly even at a pressure as high as P=46kBT /8ab2 �for
a /b=3, where the nematic-solid coexistence pressure is P
=31kBT /8ab2 �Ref. 1��. This unusual mechanical property is
due to the fact that planes of equally oriented particles can
slide across each other without much interaction, unless the
system is forced to pack very densely. In order to quantify
this effect, we computed free energies for various fixed val-
ues of �. In the special case that the unit cell is invariant
under reflections with respect to the bc-plane �see Fig. 1�c��,
the configuration has the same symmetry as �but different
unit cell parameters than� the close-packed structure con-
structed by Donev et al.11 In the following we refer to this
structure as SM2�cp�.

Figure 5 shows the free energy for a /b=3 as a function
of the density � �to simplify the comparison to other studies
we use 1 /8ab2 as the unit of density here instead of 1 /8b3�.
The symbols are direct simulation results of free energies:
Triangles for SM2�cp�, circles for SM2 with different values
of � �see Table II for details�, and a square for stretched fcc.
The solid lines are polynomial fits to the equation of state
data from our previous work �Ref. 12�, integrated over � and
shifted by a constant to fit the free energy data.

Taking the errors into account, there is no evidence for a
difference in free energy between the different angles of in-

clination � for the SM2 crystals. This supports our earlier
observation that the angle of inclination is a soft degree of
freedom.12

For decreasing density, the free energy difference be-
tween stretched fcc and SM2 decreases and the lines inter-
sect at ��1.17, which is very close to the solid-nematic
phase transition ��=1.163 according to Ref. 1�. Our data
therefore confirm that SM2 is more stable than fcc at a /b
=3 and above ��1.17.

In Table III, we compare the free energies of SM2,
SM2�cp�, and fcc as a function of aspect ratio, viz., for a /b
=1.55, 2, and 3. As our input configurations were produced
at a fixed pressure �P=46kBT /8ab2�, systems of different
aspect ratios and/or structure had different densities. In order
to compare them, we calculated the Gibbs free energy per
particle G /N by the Legendre transform of F /N with respect
to the volume. Figure 6 shows the Gibbs free energy per
particle. �The lines are a guide to the eye only.� Again there
is no difference �within the error bars� between the SM2�cp�

structure and the other values of �. The superior stability of
SM2 is confirmed for a /b�2. At a /b=1.55, however, we
find that fcc is more stable, indicating a phase transition be-
tween a /b=1.55 and a /b=2.0. �This happens to be near
a /b=�3, the lower boundary of aspect ratios for which pro-
late ellipsoids can form crystals with maximal packing frac-
tion �=0.770 732;11 but smaller aspect ratios near this value
still produce higher-than-fcc densities, so that we do not sus-
pect a connection.�

In Fig. 7 we show an updated phase diagram of hard
ellipsoids of revolution. It includes part of the results of

FIG. 5. Hard ellipsoids, a /b=3: Free energy per particle as a function of
density. Symbols are direct MC results for the free energy, lines are fits to
MC data for the equation of state.

TABLE II. Hard ellipsoids: Free energy per particle for a /b=3.

Lattice type � N
�

�deg� Fsim /N

fcc 1.233 90 432 �90� 8.95�8�
SM2 1.225 45 432 110.76 8.52�16�

1.271 11 432 115.91 9.68�16�
SM2�cp� 1.228 15 432 148.35 8.71�16�

1.273 52 432 147.97 9.76�16�

TABLE III. Hard ellipsoids: Free energy and Gibbs free energy per particle
�P=46kBT /8ab2�.

Lattice type a /b � N
�

�deg� F /N G /N

fcc 1.55 1.230 27 1728 �90� 7.18�7� 44.57�12�
2.00 1.231 71 1728 �90� 8.24�7� 45.58�12�
3.00 1.233 90 432 �90� 8.95�8� 46.23�13�

SM2 2.00 1.272 15 432 142.44 8.96�23� 45.12�25�
3.00 1.271 11 432 115.91 9.68�16� 45.87�19�

SM2�cp� 1.55 1.250 13 768 127.42 8.14�16� 44.94�19�
2.00 1.277 02 432 135 8.89�17� 44.91�20�
3.00 1.273 52 432 147.97 9.76�16� 45.88�19�
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FIG. 6. Hard ellipsoids: Gibbs free energy per particle vs aspect ratio a /b at
P=46kBT /8ab2. Lines to guide the eye. At a /b�2, SM2 is more stable,
while fcc is more stable at a /b=1.55, implying a solid-solid phase transition
in between.
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Frenkel and Mulder1 and their suggested phase boundaries
and coexistence regions. We have inserted our state points
�this work and Ref. 7� and extended its high-density bound-
ary to the maximum densities found by Donev et al.,11 hence
including all densities possible in SM2 �recall that SM2 at
maximum packing coincides with the packings of Donev et
al.�. As stated above, our data imply a phase transition be-
tween SM2 and fcc near a /b=�3.

In hashes we indicate a possible location of the coexist-
ence region according to the following argument: For
spheres �a /b=1� and maximum packing ��=�2� the density
differences among plastic solid, fcc, and SM2 vanish, so the
coexistence regions among these phases should join and van-
ish in width either at this point, or before this point is
reached. �We cannot make statements yet about the details of
the approach to the sphere limit, therefore we have not drawn
anything.� For a /b1, and above �=�2 �the dotted line�,
only SM2 exists, so the SM2-fcc coexistence region must lie
below �=�2. The packing efficiency of SM2 and the result-
ing entropic advantage should favor SM2 even below �
=�2, and the stronger this advantage, the lower the transition
density—hence, the downward slope of the coexistence re-
gion with increasing a /b. The packing advantage also dic-
tates the increase in width of the region, since SM2 is ac-
cordingly higher in density at a given pressure. Finally, the
coexistence region should pass between our state points of
fcc at a /b=1.55 and SM2 at a /b=2.00. We estimate the
width there from the density difference at a /b=1.55 and
a /b=2.00 at pressure P=46kBT /8ab2 �Table III�.

IV. CONCLUSION

In summary, we have studied crystalline phases of hard
ellipsoids considering their relative stability. We calculated
the absolute free energies as functions of the particle density
� and the aspect ratio a /b by use of a TI technique with an

EM as the reference state. The integration path was sampled
by an expanded ensemble method, in which the weights were
adjusted by the Wang–Landau algorithm. After checking our
simulations for reliability considering the test case of hard
spheres, we applied our methods to ellipsoids. At pressure
P=46kBT /8ab2 we found no difference in the free energies
of SM2 crystals with different angles of inclination �. Fur-
thermore our results show that the SM2 phase is more stable
than the stretched-fcc phase for densities ��1.17 �at a /b
=3� and for aspect ratios a /b�2.0 �at P=46kBT /8ab2�. Hard
ellipsoids exhibit a fcc-SM2 phase transition between a /b
=1.55 and a /b=2.0.
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APPENDIX: CALCULATION OF FSM2

First, without loss of generality, we label particle i=1 as
the carrier of the lattice. Then we write down the partition
function of the SM2-EM using Eq. �4�,

ZSM2 = ��N�� dr1� d�1

�� dr2 ¯ drN exp�− �max�
i=2

N

�ri − r0,i�2�
�� d�2 ¯ d�N exp�− �max�

i=2

N

sin2 �i� . �A1�

The two trivial integrations are due to our freedom of choos-
ing r1 as origin of the coordinate system and �1 as some
orientation in space.

��N� is a combinatorial factor: We consider a lattice G
that consists of N particles with two different orientations
�distinguished by the primes in Fig. 8�. We now divide G
into two sublattices G� and G� with respect to the particle
types. On these sublattices there are �N /2�! possibilities, re-
spectively, to position the particles on their sites. To account
for the presence of the carrier on one of the sublattices the
associated factorial is �N /2−1�!. Hence

1 1.25 2 3 4 61.5 1.7 2.5
a/b

0.9

1.0

1.1

1.2

1.3

1.4
ρ

[(
8a

b2 )-1
]

SM2
FCC
Nematic (N)
Isotropic (I)

√2

N

8

PS

I

FCC

SM2

FIG. 7. Updated phase diagram of hard ellipsoids of revolution. It includes
part of the results of Frenkel and Mulder �Ref. 1� �open symbols� and their
suggested phase boundaries and coexistence regions. PS stands for plastic
solid. The data points at a /b=1 are taken from Ref. 20. We have inserted
our state points �this work and Ref. 7; filled symbols� and extended its
high-density boundary to the maximum densities found by Donev et al.
�Ref. 11�, hence, including all densities possible in SM2 �recall that SM2 at
maximum packing coincides with the packings of Donev et al.�. In hashes
we indicate a possible location of the coexistence region between fcc and
SM2 �see text for details�.
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FIG. 8. Combinatorics for an EM of the SM2 type.
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��N� =
�N

2
� ! �N

2
− 1�!

�N

2
� ! �N

2
�!

=
2

N
. �A2�

The integral over the spatial coordinates can directly be
carried out and leads to �� /�max��3�N−1�/2�. Hence, Eq. �A1�
can be simplified to

ZSM2 �� d�2� ¯ d�n1
� �i�

�exp�− �max�
i=2

n1

�i�
2�� d�n1

� ¯ d�N�� j�

�exp�− �max �
j=n1

N

� j�
2� . �A3�

Here, because of the azimuthal symmetry of the prob-
lem, we already carried out the integration over � and used
the approximation sin ���, which was motivated before.
The two remaining integrals now are related with sublattices
G� and G�. Solving them, we find for the resulting partition
function

ZSM2 =
8�V

N
� �

�max
�3�N−1�/2� 2�

�max
�N−1

. �A4�

1 D. Frenkel and B. Mulder, Mol. Phys. 55, 1171 �1985�.
2 G. J. Zarragoicoechea, D. Levesque, and J. J. Weis, Mol. Phys. 75, 989
�1992�.

3 M. P. Allen and C. P. Mason, Mol. Phys. 86, 467 �1995�.
4 P. J. Camp, C. P. Mason, M. P. Allen, A. A. Khare, and D. A. Kofke, J.
Chem. Phys. 105, 2837 �1996�.

5 M. Letz, R. Schilling, and A. Latz, Phys. Rev. E 62, 5173 �2000�.
6 C. De Michele, R. Schilling, and F. Sciortino, Phys. Rev. Lett. 98,
265702 �2007�.

7 P. Pfleiderer, K. Milinkovic, and T. Schilling, Europhys. Lett. 84, 16003
�2008�.

8 A. Donev, I. Cisse, D. Sachs, E. A. Variano, F. H. Stillinger, R. Connelly,
S. Torquato, and P. M. Chaikin, Science 303, 990 �2004�.

9 A. W. S. Sacanna, L. Rossi, and A. P. Philipse, J. Phys.: Condens. Matter
19, 376108 �2007�.

10 A. Bezrukov and D. Stoyan, Part. Part. Syst. Charact. 23, 388 �2006�.
11 A. Donev, F. Stillinger, P. Chaikin, and S. Torquato, Phys. Rev. Lett. 92,

255506 �2004�.
12 P. Pfleiderer and T. Schilling, Phys. Rev. E 75, 020402 �2007�.
13 D. Frenkel and B. Mulder, Mol. Phys. 100, 201 �2002�.
14 F. Wang and D. Landau, Phys. Rev. E 64, 056101 �2001�.
15 D. Frenkel and A. Ladd, J. Chem. Phys. 81, 3188 �1984�.
16 D. Frenkel and B. Smit, Understanding Molecular Simulation �Aca-

demic, New York, 2002�.
17 C. Vega and E. Noya, J. Chem. Phys. 127, 154113 �2007�.
18 J. Polson, E. Trizac, S. Pronk, and D. Frenkel, J. Chem. Phys. 112, 5339

�2000�.
19 C. Vega, E. Sanz, J. Abascal, and E. Noya, J. Phys.: Condens. Matter 20,

153101 �2008�.
20 W. Hoover and F. Ree, J. Chem. Phys. 49, 3609 �1968�.

164513-6 Radu, Pfleiderer, and Schilling J. Chem. Phys. 131, 164513 �2009�

Downloaded 05 Nov 2009 to 134.93.131.2. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp

http://dx.doi.org/10.1080/00268978500101971
http://dx.doi.org/10.1080/00268979200100771
http://dx.doi.org/10.1063/1.472146
http://dx.doi.org/10.1063/1.472146
http://dx.doi.org/10.1103/PhysRevE.62.5173
http://dx.doi.org/10.1103/PhysRevLett.98.265702
http://dx.doi.org/10.1209/0295-5075/84/16003
http://dx.doi.org/10.1126/science.1093010
http://dx.doi.org/10.1088/0953-8984/19/37/376108
http://dx.doi.org/10.1002/ppsc.200600974
http://dx.doi.org/10.1103/PhysRevLett.92.255506
http://dx.doi.org/10.1103/PhysRevE.75.020402
http://dx.doi.org/10.1080/00268970110088992
http://dx.doi.org/10.1103/PhysRevE.64.056101
http://dx.doi.org/10.1063/1.448024
http://dx.doi.org/10.1063/1.2790426
http://dx.doi.org/10.1063/1.481102
http://dx.doi.org/10.1088/0953-8984/20/15/153101
http://dx.doi.org/10.1063/1.1670641

