We present a computer simulation study of the crystalline phases of hard
ellipsoids of revolution. A previous study [Phys. Rev. E, \textbf{75}, 020402
(2007)] showed that for aspect ratios a/b≥3 the previously suggested
stretched-fcc phase [Mol. Phys., \textbf{55}, 1171 (1985)] is unstable with
respect to a simple monoclinic phase with two ellipsoids of different
orientations per unit cell (SM2). In order to study the stability of these
crystalline phases at different aspect ratios and as a function of density we
have calculated their free energies by thermodynamic integration. The
integration path was sampled by an expanded ensemble method in which the
weights were adjusted by the Wang-Landau algorithm.
We show that for aspect ratios a/b≥2.0 the SM2 structure is more stable
than the stretched-fcc structure for all densities above solid-nematic
coexistence. Between a/b=1.55 and a/b=2.0 our calculations reveal a
solid-solid phase transition