580 research outputs found

    Predictive User Modeling with Actionable Attributes

    Get PDF
    Different machine learning techniques have been proposed and used for modeling individual and group user needs, interests and preferences. In the traditional predictive modeling instances are described by observable variables, called attributes. The goal is to learn a model for predicting the target variable for unseen instances. For example, for marketing purposes a company consider profiling a new user based on her observed web browsing behavior, referral keywords or other relevant information. In many real world applications the values of some attributes are not only observable, but can be actively decided by a decision maker. Furthermore, in some of such applications the decision maker is interested not only to generate accurate predictions, but to maximize the probability of the desired outcome. For example, a direct marketing manager can choose which type of a special offer to send to a client (actionable attribute), hoping that the right choice will result in a positive response with a higher probability. We study how to learn to choose the value of an actionable attribute in order to maximize the probability of a desired outcome in predictive modeling. We emphasize that not all instances are equally sensitive to changes in actions. Accurate choice of an action is critical for those instances, which are on the borderline (e.g. users who do not have a strong opinion one way or the other). We formulate three supervised learning approaches for learning to select the value of an actionable attribute at an instance level. We also introduce a focused training procedure which puts more emphasis on the situations where varying the action is the most likely to take the effect. The proof of concept experimental validation on two real-world case studies in web analytics and e-learning domains highlights the potential of the proposed approaches

    Learning from medical data streams: an introduction

    Get PDF
    Clinical practice and research are facing a new challenge created by the rapid growth of health information science and technology, and the complexity and volume of biomedical data. Machine learning from medical data streams is a recent area of research that aims to provide better knowledge extraction and evidence-based clinical decision support in scenarios where data are produced as a continuous flow. This year's edition of AIME, the Conference on Artificial Intelligence in Medicine, enabled the sound discussion of this area of research, mainly by the inclusion of a dedicated workshop. This paper is an introduction to LEMEDS, the Learning from Medical Data Streams workshop, which highlights the contributed papers, the invited talk and expert panel discussion, as well as related papers accepted to the main conference

    Predicting Multi-class Customer Profiles Based on Transactions: a Case Study in Food Sales

    Get PDF
    Predicting the class of a customer profile is a key task in marketing, which enables businesses to approach the right customer with the right product at the right time through the right channel to satisfy the customer's evolving needs. However, due to costs, privacy and/or data protection, only the business' owned transactional data is typically available for constructing customer profiles. Predicting the class of customer profiles based on such data is challenging, as the data tends to be very large, heavily sparse and highly skewed. We present a new approach that is designed to efficiently and accurately handle the multi-class classification of customer profiles built using sparse and skewed transactional data. Our approach first bins the customer profiles on the basis of the number of items transacted. The discovered bins are then partitioned and prototypes within each of the discovered bins selected to build the multi-class classifier models. The results obtained from using four multi-class classifiers on real-world transactional data from the food sales domain consistently show the critical numbers of items at which the predictive performance of customer profiles can be substantially improved

    Rule-based Emotion Detection on Social Media: Putting Tweets on Plutchik's Wheel

    Full text link
    We study sentiment analysis beyond the typical granularity of polarity and instead use Plutchik's wheel of emotions model. We introduce RBEM-Emo as an extension to the Rule-Based Emission Model algorithm to deduce such emotions from human-written messages. We evaluate our approach on two different datasets and compare its performance with the current state-of-the-art techniques for emotion detection, including a recursive auto-encoder. The results of the experimental study suggest that RBEM-Emo is a promising approach advancing the current state-of-the-art in emotion detection

    Teaching responsible machine learning to engineers

    Get PDF
    With the increasing application of machine learning in practice, there is a growing need to incorporate ethical considerations in engineering curricula. In this paper, we reflect upon the development of a course on responsible machine learning for undergraduate engineering students. We found that technical material was relatively easy to grasp when it was directly linked to prior knowledge on machine learning. However, it was non-Trivial for engineering students to make a deeper connection between real-world outcomes and ethical considerations such as fairness. Moving forward, we call upon educators to focus on the development of realistic case studies that invite students to interrogate the role of an engineer.</p

    OMFP: An approach for online mass flow prediction in CFB boilers

    Get PDF
    Abstract. Fuel feeding and inhomogeneity of fuel typically cause process fluctuations in the circulating fluidized bed (CFB) boilers. If control systems fail to compensate the fluctuations, the whole plant will suffer from fluctuations that are reinforced by the closed-loop controls. Accurate estimates of fuel consumption among other factors are needed for control systems operation. In this paper we address a problem of online mass flow prediction. Particularly, we consider the problems of (1) constructing the ground truth, (2) handling noise and abrupt concept drift, and (3) learning an accurate predictor. Last but not least we emphasize the importance of having the domain knowledge concerning the considered case. We demonstrate the performance of OMPF using real data sets collected from the experimental CFB boiler.

    Limited Evaluation Cooperative Co-evolutionary Differential Evolution for Large-scale Neuroevolution

    Get PDF
    Many real-world control and classification tasks involve a large number of features. When artificial neural networks (ANNs) are used for modeling these tasks, the network architectures tend to be large. Neuroevolution is an effective approach for optimizing ANNs; however, there are two bottlenecks that make their application challenging in case of high-dimensional networks using direct encoding. First, classic evolutionary algorithms tend not to scale well for searching large parameter spaces; second, the network evaluation over a large number of training instances is in general time-consuming. In this work, we propose an approach called the Limited Evaluation Cooperative Co-evolutionary Differential Evolution algorithm (LECCDE) to optimize high-dimensional ANNs. The proposed method aims to optimize the pre-synaptic weights of each post-synaptic neuron in different subpopulations using a Cooperative Co-evolutionary Differential Evolution algorithm, and employs a limited evaluation scheme where fitness evaluation is performed on a relatively small number of training instances based on fitness inheritance. We test LECCDE on three datasets with various sizes, and our results show that cooperative co-evolution significantly improves the test error comparing to standard Differential Evolution, while the limited evaluation scheme facilitates a significant reduction in computing time

    Learning with Delayed Synaptic Plasticity

    Get PDF
    The plasticity property of biological neural networks allows them to perform learning and optimize their behavior by changing their configuration. Inspired by biology, plasticity can be modeled in artificial neural networks by using Hebbian learning rules, i.e. rules that update synapses based on the neuron activations and reinforcement signals. However, the distal reward problem arises when the reinforcement signals are not available immediately after each network output to associate the neuron activations that contributed to receiving the reinforcement signal. In this work, we extend Hebbian plasticity rules to allow learning in distal reward cases. We propose the use of neuron activation traces (NATs) to provide additional data storage in each synapse to keep track of the activation of the neurons. Delayed reinforcement signals are provided after each episode relative to the networks' performance during the previous episode. We employ genetic algorithms to evolve delayed synaptic plasticity (DSP) rules and perform synaptic updates based on NATs and delayed reinforcement signals. We compare DSP with an analogous hill climbing algorithm that does not incorporate domain knowledge introduced with the NATs, and show that the synaptic updates performed by the DSP rules demonstrate more effective training performance relative to the HC algorithm.Comment: GECCO201
    • ā€¦
    corecore