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Abstract. Mobile devices play a significant part in a user’s communication me-

thods and much data that they read and write is received and sent via mobile 

phones, for instance SMS messages, e-mails, Twitter tweets and social media 

networking feeds.  One of the main goals is to make people aware of how much 

negative and positive content they read and write via their mobile phones.  Ex-

isting sentiment analysis applications perform sentiment analysis on down-

loaded data from mobile phones or use an application installed on another com-

puter to perform the analysis.  The sentiment analysis described in this paper is 

to be performed locally on the mobile phone enabling immediate and private 

analysis of personal messages and social media contents, allowing the users to 

be able to reason about their mood and stress level that may be affected by what 

they had been receiving. Experimental results showed the effectiveness of the 

proposed system on Android smartphones with varying computational capabili-

ties. 
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1 Introduction 

Sentiment analysis is a branch of natural language processing and one stage in the 

process of opinion mining.  To achieve opinion mining there are five tasks that need 

to be carried out, these are: Entity extraction and grouping, aspect orientation and 

grouping, opinion holder and time extraction, aspect sentiment classification and opi-

nion quintuple generation for summarization of the opinions.  The stage of aspect 

sentiment classification attempts to classify the sentiment of a particular aspect of a 

sentence; in the context of this paper, the general sentiment of the text will be consi-

dered and not the sentiment of a particular aspect of the sentence, as the aim is to 

provide the user with a general view of the sentiment of the texts within the mobile 

device and not the sentiments of particular products or services. 

SMS messages are a means of sending short text messages not longer than 160 

characters for the Latin alphabet.  Although nowadays most mobile phones have the 

capability to split longer texts into multiple messages and the recipient’s phone to 

receive this as one message, an SMS message is typically one or two sentences long.  
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This is similar to tweets on Twitter which allows text-based posts of up to 140 charac-

ters and has been described as “the SMS of the internet” [14]; because of these simi-

larities, SMS messages will be considered to be the same as tweets.  

Nowadays most personal communication is recorded digitally in mediums such as 

SMS text messages, e-mails, tweets, Facebook updates and other social media net-

working sites.  All of these are accessible from mobile phones and as these become 

faster and more powerful, the possibility of performing sentiment analysis on mobile 

devices has become more attractive, enabling the user to have sentiment analysis per-

formed locally, rather than having personal information sent to a server or down-

loaded to another application on a computer to be analyzed.  The overall goal is to 

perform sentiment analysis locally on the user’s mobile phones to enable the user to 

reflect upon how much general positive or negative content they are reading or writ-

ing. 

We have developed a mobile application for the Android operating system that per-

forms sentiment analysis locally on the mobile phone for SMS messages.  Due to the 

similarity of Twitter messages to SMS messages, the work reported in this paper gen-

erally target both Twitter tweets and SMS messages. It is based on the SentiCorr [2] 

system which performs multi-lingual sentiment analysis of personal correspondence 

on e-mails, Twitter tweets, Facebook and other social networking media.  The multi-

lingual aspect is beyond the scope of this paper, and the only language that shall be 

considered for SMS messages in this paper is English. It is worth noting that the sys-

tem can be easily extended to handle all text received on the mobile phone. Our sys-

tem reported in this paper has extended the SentiCorr system in the following aspects: 

(1) applying a number of POS taggers and experimentally assessing their computa-

tional performance and accuracy; (2) experimental study of the performance with 

respect to the system configuration of the mobile device; and (3) a temporal aspect of 

the sentiment has also been developed allowing the users to reason about the effect on 

the sentiment on their level of stress. 

In the following section work related to the different methods of sentiment analysis 

and the applications of sentiment analysis to mobile applications are considered.  

Section 3 describes our approach to mobile sentiment analysis, while section 4 sum-

marizes our experimental study. Finally, section 5 concludes the findings and suggests 

further work. 

2 Related Work 

There has been much work done on sentiment analysis, especially in the last five 

years due to the abundance of data being available due to the explosion of social me-

dia sites and blogging sites like Twitter.  This is reflected in the differences in Liu’s 

opinion mining and sentiment analysis chapters in subsequent versions [6] published 

in 2006 and [7] published in 2011. There has also been a comprehensive survey of 

sentiment analysis techniques as summarized by Pang [1].  In this paper sentiment 

analysis shall be considered at the sentence level where there are two tasks to be per-

formed; subjectivity classification to determine whether it is a subjective sentence or 



an objective sentence and sentiment classification – if the sentence is subjective, de-

termine if it contains a positive or negative opinion.  The assumption at this level is 

that the sentence expresses a single opinion from a single opinion holder.  Both of 

these tasks are classification problems, so supervised learning methods are applicable.  

Early methods used the Naïve Bayes classifier [9], subsequent methods have applied 

regression models [11] and support vector regression and boosting [12].  Semi-

supervised [10] and unsupervised techniques have also been applied [13]. 

For mobile devices, sentiment analysis has been utilized for reflection of personal 

informatics; analyzing SMS messages and emails to provide a general overview of a 

person’s life at a particular point, but this is not performed on the mobile device but 

by another application to which the data is downloaded [3], and sentiment analysis 

has been employed with SMS messages to gather feedback about teaching, where 

SMS messages are sent by students at the end of a lecture where they are automatical-

ly analyzed at the server-end to provide information about the teaching [8].  There are 

mobile phone applications available that involve sentiment analysis; for instance, for 

the iPhone there is an application available that tells you what people think about your 

area by analyzing the sentiment of tweets around your location by sending them to an 

analytics engine for sentiment analysis [4]. There is also an Android mobile applica-

tion that analyses tweets and tries to determine if the attitude of the writer is positive 

or negative; it uses the internet and returns the results that the twitter sentiment analy-

sis engine has generated [5].  To our knowledge there are no mobile applications that 

locally execute sentiment analysis on the mobile phone. 

3 Mobile Sentiment Analysis System Description 

The target platform selected for the mobile sentiment analysis application is An-

droid due to its “open” nature, availability of development resources and its wide 

usage. The sentiment analysis is to be performed using the principles of the SentiCorr 

sentiment analysis engine; firstly it will be described how SentiCorr achieves senti-

ment analysis and then the different aspects of enabling it to work on the Android 

platform will be further discussed. 

SentiCorr achieves sentiment classification at the sentence level by using POS (Po-

sition Of Speech) tagging to identify the types of the words in the sentence; the sub-

jectivity detection stage then uses the POS tags to identify opinion lexicon and hence 

if the sentence is subjective or objective; the polarity detection stage also utilizes the 

POS tags to search for patterns in the sentence that indicate positive or negative ex-

pressions.   

For the POS tagging stage, Stuttgart University’s Tree Tagger was employed; 

AdaBoost for subjectivity detection and an in-house method called Rule-Based Emis-

sion Model (RBEM) was developed for the polarity detection stage.  It is not the aim 

of this paper to propose new solutions for the sentiment analysis as extensive experi-

ments have been conducted in comparing these classification techniques with others 

such as Majority class, Prior Polarity, Naïve Bayes and Support Vector Machines, in 

which AdaBoost and RBEM outperform these other methods [15].  The following 



paragraphs summarize the algorithms used for subjectivity detection and polarity 

detection, a comprehensive description can be found in [15]. 

The principle employed for subjectivity detection is boosting, by use of the Ada-

Boost (adaptive boosting algorithm) [19] and is a general method for generating a 

strong classifier from a set of weak classifiers.  Each time an instance is incorrectly 

classified, it is given a greater weight for use in the next round of classification.  This 

process continues until the maximum number of rounds is reached or the weighted 

error is more than 50%.  The weak learners used are decision stumps of the form if f 

present then label = a else label = b where f is a feature and a and b are labels.  Fea-

tures utilized are POS tags, pre-defined lexicons that contain positive, negative and 

negation words, the presence of exactly one positive word, the presence of multiple 

positive words, the presence of exactly one negative word and the presence of mul-

tiple negative words, and whenever a positive or negative word is directly preceded 

by a word from the negation list, its polarity is flipped. 

The principle employed for polarity detection is RBEM which uses rules to define 

an emissive model.  The rules emerge from eight different pattern groups which are 

positive patterns, negative patterns, amplifier patterns, attenuator patterns, right flip 

patterns, left flip patterns, continuator patterns and stop patterns.  These patterns are 

combined with rules to define an emissive model.  A model is constructed by 

representing patterns as lists of words and corresponding POS tags. In the patterns, 

word wildcards are allowed which means that wildcards for a word can appear at any 

position of a pattern. Single-position wildcards are allowed so that a single entity in 

the pattern can be any word and any POS tag.  Multi-position wildcards are also al-

lowed so that any number of word tag pairs can occur in-between two elements that 

are not multi-position or single position wildcards.  The model consists of a set of 

patterns per pattern group, each pattern except for the positive and negative patterns 

adhere to an action radius, which is set to 4 in this case. 

When classifying previously unseen data, all of the patterns that match the sen-

tence are collected from the model, and a rule associated with each pattern group is 

applied to each pattern in the message.  All patterns of all groups are evaluated for a 

match within the sentence; if there is a match, the start position and the end position 

of the pattern in the sentence is recorded.  Some patterns may occur within other pat-

terns in the sentence, if so these subsumed patterns are removed from the final pattern 

collection.  Once the patterns that occur in the sentence have been collected, the rules 

for each pattern group are applied.  The rules must be applied in the correct order as 

outlined in the following paragraph. 

The first rule to be applied is Setting Stops; this sets a stop at the starting position 

of all the left flip and stop patterns.  The second rule to be applied is Removing Stops; 

if there is a stop to the left of a continuator pattern within the pre-set action radius it is 

removed.  The third rule to be applied is Positive Sentiment Emission; for each posi-

tive pattern an emission value is calculated based on the distance of the elements in 

the sentence from the centre of the positive pattern, which decays the further the ele-

ment is from the centre of the pattern, e
-x

 is used as the decaying function, this is cal-

culated for each element until stops are reached.   



The fourth rule to be applied is Negative Sentiment Emission; this is handled the 

same way as Positive Sentiment Emission except that the decay function is –e
-x

.  The 

fifth rule to be applied is Amplifying Sentiment; amplifier patterns amplify sentiment 

emitted by positive or negative patterns and similarly to the positive and negative 

patterns, amplification reduces over distance.  The function used is 1+ e
-x

 where x is 

the distance within the action radius.  The sixth rule to be applied is Attenuating Sen-

timent; this performs the reverse of Amplifying Sentiment and the decay function 

applied is 1 – e
-x
.   

The seventh rule to be applied is Right Flipping Sentiment; if there is a right flip 

pattern the emission of sentiment is flipped to the right and if there is a stop at the 

exact centre of the right flip pattern, it is ignored. The eighth rule to be applied is Left 

Flipping Sentiment; this mirrors the effect of the right flip pattern.  

Once the rules have been applied, every element of the sentence has an emission 

value and the final polarity of the message is calculated by summing the emission 

values for each element. If the final polarity of the sentence is greater than zero, the 

sentence is positive; if it is less than zero the sentence is negative, if it is zero the po-

larity of the sentence is unknown due to insufficient patterns in the sentence model. 

The main aim of mobile sentiment analysis is to perform sentiment analysis on 

SMS messages which were earlier likened to tweets and that language identification 

was beyond the scope of this paper, this reduces the original SentiCorr framework to 

that of the POS tagger, Subjectivity Detection and Polarity Detection. Although we 

have focused in this paper on short text sentiment analysis as applied to SMS messag-

es and tweets received onboard the mobile phone, the work could be easily genera-

lized to other social media items like Facebook and LinkedIn. 

Android mobile phones use ARM processors (Advanced RISC Machine) and the 

original POS tagger (TreeTagger) could not be used on the Android operating system 

as the source code was not available for re-compilation suitable for an ARM proces-

sor.  This reduced the POS taggers available as they are constrained to POS taggers 

written in Java for which either a library where all the components and dependencies 

are capable of executing on an ARM compiler or the source code is available so it can 

be compiled to execute on an ARM processor. The shortlist of POS taggers tested 

were Stanford POS tagger and OpenNLP POS tagger. 

The subjectivity detection stage and the polarity detection stages required that the 

POS tags were in the format of the Penn Tree Bank set 1 for the software to operate 

correctly with the pre-trained models used within the subjectivity and polarity detec-

tion stages.  

POS taggers are usually supervised and as such require a model.  Loading these 

models contributed to how the software was architected.  On a PC, the time to load 

these models is small compared to the time to load them on a mobile device.  In Sen-

tiCorr, the language of the text is assessed at the sentence level and if the sentence is 

in a different language to the previous one, a different model needs to be loaded for 

the POS tagging, subjectivity and polarity classification stages.  As we are not yet 

considering the multi-lingual aspect, the model is loaded once at startup of the appli-

cation and the same language is assumed throughout each usage of the application and 



the model is loaded only once per application usage. These constraints shaped the 

workflow of the mobile sentiment analysis system as shown in Figure 1. 

 

 

Fig. 1. Mobile Sentiment Analysis Workflow 

In the mobile sentiment analysis solution the POS taggers are dynamically inter-

changeable for analysis purposes and can be loaded via settings menus and the output 

form each POS tagger are transformed into a standard output so that the interface to 

the rest of the application remains constant regardless of the POS tagger.  Tagging of 

the sentence splits the text into sentences and tags them using the selected POS tag-

ger.  The tagged sentences are then passed to the subjectivity detection stage where 

the algorithm operates in the same way as within SentiCorr as described in the pre-

vious paragraphs.   

Once the subjectivity has been determined, if it is subjective, the sentence is then 

passed to the polarity detection stage where the algorithm operates in the same way as 

the SentiCorr algorithm also as summarized in the previous paragraphs; if the sen-

tence is objective, no further processing is applied to it. 

The sentiment analysis code is implemented as a standard Java library that the An-

droid application uses, ensuring its use is not limited to an Android mobile applica-

tion. The models for the subjectivity and polarity detection stages are stored in XML 

format and serializable directly into Java objects using Simple XML [20] so that it has 

the possibility to be extended to allow creation of new models that can be stored in 

the correct format for later use. 

Having discussed the technical and implementation details of our mobile sentiment 

analysis system, the following section provides an experimental study of the system 

proving empirically its feasibility and efficiency. 

4 Experimental Results 

The mobile sentiment analysis application was installed on three mobile phones, 

the specifications of which are shown in Table 1. The aim of varying the mobile 

phones is to conduct stress testing, so that to reveal the minimum configuration of 

computational power that is able to run our system.  

The load time of the POS tagger models was the major factor in the duration of the 

execution time of the application.  The POS taggers evaluated were OpenNLP and 

Stanford POS Tagger. Each of these taggers has a number of models which are sum-

marized in the following paragraphs; these models are also listed in Table 2 along 



with the time taken to load these models for each phone. Each POS tagger model was 

loaded ten times and an average taken to give the model load times in Table 2. 

The Open NLP POS tagger comes with two different types of models: maximum 

entropy model and a perceptron model, each with the option of using a dictionary.  A 

token can have many tag possibilities depending on the token and the context. Open 

NLP uses a probability model to guess the correct POS tag out of the tag set, to limit 

the possible tags, a dictionary can be used.  The maximum entropy model with a dic-

tionary produced the best results at 87%.  The perceptron model is a linear classifier 

and relies on Viterbi decoding of training examples [18]. 

The Stanford POS tagger comes with trained English tagger models and taggers 

trained on the Wall Street Journal corpus from the Penn Treebank Project., as de-

picted by ‘wsj’ in the model name; the ‘left3’ in the model name means that the mod-

el uses the left3 words architecture and includes word shape features; the ‘distsim’ 

part of the tagger name means that the model includes distributional similarity fea-

tures.  All of the Stanford POS tagger models utilize a maximum entropy method of 

tagging where a probability is assigned for every tag in a set of possible tags for a 

word where the possible tags are determined from the sequence of words preceding 

the word that is to be tagged [16].  The Stanford POS tagger model that performed the 

best on the tested data was the english-left3words-distsim model and the wsj-0-18-

left3words model, showing that in general, the left3 words architecture was a success-

ful model for the data.  The bidirectional models use a cyclic dependency networks to 

achieve bi-directional traversing of the words in a given sentence [17]. 

As the sentiment analysis code is implemented as a standard java library, we were 

able to calculate the accuracy of the sentiment analysis for each model on a PC where 

the accuracy is taken as the number of correctly tagged tokens divided by the total 

number of tokens and represented as a percentage.  The sentiment was analyzed on 

part of the original data used in the evaluation of SentiCorr and is based on 60 texts 

and utilizes the POS tags from the original data and uses this as the gauge for accura-

cy. These 60 texts were obtained from Twitter by scraping all public data and manual-

ly labeling 20 negative, 20 objective and 20 positive tweets, according to the tweet's 

text. The results are shown in table 2.  The peak memory usage of the application 

during the loading of the POS tagger models was also recorded and is shown in Table 

2. 

Table 1. POS tagger model load times on mobile phone 
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GT540 2.1 1.77 0.099 1.869 

HTC Desire HD 2.3.5 3.0 0.815 3.815 

Galaxy Nexus 4.0.2 N/A N/A 13.33 



Table 2. POS tagger model size and accuracy  
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NLP 

Maxent no dictio-

nary 

5.46 85 105 OSM 17.78 23.03 2.1 180 61 

Maxent with 

dictionary 

5.56 87 - Invalid format for dictionary 

file 

- - - 

Perceptron no 

dictionary 

3.78 83 105 OSM 17.78 22.21 2.1 178 62 

Perceptron with 

dictionary 

3.88 85 - Invalid format for dictionary 

file 

- - - 

Stan-

ford 

english-

left3words-distsim 

20.15 90 230 OSM OHM 250.79 3.0 182 233 

english-caseless-

left3words-distsim 

19.77 88 225 OSM OHM 180.26 3.0 182 229 

wsj-0-18-

left3words-distsim 

17.38 87 207 OSM OHM 205.44 3.0 181 207 

wsj-0-18-

left3words 

7.98 90 110 OSM OHM 50.71 3.0 177 110 

wsj-0-18-caseless-

left3words-distsim 

17.12 88 201 OSM OHM 179.71 3.0 180 201 

wsj-0-18-

bidirectional-

distsim 

31.65 87 285 OSM OHM OHM 3.0 - - 

OSM = Out of Storage Memory, OHM = Out of Heap Memory 

 

The accuracy of the models ranges from 83% to 90% across the Stanford and the 

Open NLP POS tagger models, with the most accurate being the Stanford English left 

3 words and the Stanford wsj-0-18left3words which also had a low load time but only 

ran on the Galaxy Nexus phone.  In fact, no Stanford model could be loaded on a 

phone that had an Android version of lower than 3.0 because the Android application 

setting largeHeap was required to be set to true in the Android manifest file to 

allow more memory to be dynamically allocated to the application, hence no results 

for the Stanford POS tagger for the LG GT540 or the HTC Desire HD mobile phones 

could be recorded for the Stanford POS taggers.  No results could be recorded for the  

GT540 phone as there was not enough storage memory.  From this information mini-

mum phone specifications for each tagger have been calculated and included in Table 

2.  Overall, the Stanford POS tagger model was more accurate but requires more mo-



bile phone resources such as memory and load time, which limits the targets it can be 

installed on. In most cases, it took nearly ten times as long to load the Stanford mod-

els as it did the Open NLP model, for a 2% increase in accuracy. 

The duration of the loading of the POS models has been focused on but the Ada-

Boost and Emission Miner models also have an overhead when they are loaded.  The 

AdaBoost and Emission Miner models use the POS tags that are produced by the POS 

taggers.  The original POS tagger – TreeTagger output Penn tree bank I tag set whe-

reas the Stanford POS tagger and Open NLP POS tagger both output Penn tree bank 

II tag set.  The difference in these tag sets are that in tree bank II the individual tags 

for “VH” tags are now included in “VB” tags as re “VV” tags, meaning that the verbs 

“to have” and “to take” are now included under the general verb tags.  This meant that 

the existing AdaBoost and Emission Miner models had to be adjusted to take this into 

account.  The result is that if the POS tagger model is changed to one which uses a 

different tag set, then different AdaBoost and Emission Miner models are also re-

quired to be loaded.  The time it takes to load these models will be critical if a dynam-

ic multi-language approach is required as in the original SentiCorr system. 

5 Conclusion and Future Work 

Sentiment analysis can be performed locally on a mobile phone, as we have proved 

empirically in this paper.  To the best of our knowledge, the proposed and imple-

mented system reported in this paper is the first mobile sentiment analyzer. The 

amount of time and resources this takes largely depends upon the POS tagger model 

that is utilized.  The Stanford POS tagger is more accurate, but takes longer to load 

and requires more memory. In a non-language dynamic environment, the model is 

only loaded once per start-up of the application but limits the user to the same lan-

guage unless this is specifically changed by the user.  The change of a POS tagger 

could affect the subsequent subjectivity and polarity detection stages, meaning that 

new models for these stages may also need to be loaded.  If the application was to 

incorporate dynamic language selection then the load time of the models would be-

come critical.   

Future work is to include experimentation on a wider set of Android mobile phones 

with differing memory and Android operating systems, and inclusion of analysis on 

other POS taggers implemented in Java and those specifically aimed at Twitter data 

such as Tweet NLP.  Experimentation could also be extended to the training of small-

er models to widen the target mobile phones of the application such that the applica-

tion could be extended to dynamically interrogate and change the language during 

sentiment classification. 
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