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Abstract Predicting the class of a customer profile is a key task in marketing, which
enables businesses to approach the right customer with the right product at the right
time through the right channel to satisfy the customer’s evolving needs. However,
due to costs, privacy and/or data protection, only the business’ owned transactional
data is typically available for constructing customer profiles. Predicting the class of
customer profiles based on such data is challenging, as the data tends to be very
large, heavily sparse and highly skewed. We present a new approach that is de-
signed to efficiently and accurately handle the multi-class classification of customer
profiles built using sparse and skewed transactional data. Our approach first bins
the customer profiles on the basis of the number of items transacted. The discov-
ered bins are then partitioned and prototypes within each of the discovered bins se-
lected to build the multi-class classifier models. The results obtained from using four
multi-class classifiers on real-world transactional data from the food sales domain
consistently show the critical numbers of items at which the predictive performance
of customer profiles can be substantially improved.

1 Introduction

Advances in data warehousing and management technologies provide great oppor-
tunities for businesses to enhance long-term relationships with their customers. The
ultimate goal is to effectively utilize the resulting data for transforming relationships
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into greater profitability thorough improved customer product targeting, increased
customer loyalty and purchase probability [19].

To effectively identify, understand and satisfy the needs of their customers, the
businesses need to develop the right interventions for the right customer at the right
time through the right channel.

Customer profiles encapsulate the detailed knowledge of the customer behaviour.
Predictive models can help to classify customer profiles so as to effectively recog-
nize the status and preference of each individual customer. Such predictive models
can be incorporated into the company’s market segmentation, customer targeting
and channelling decisions with the goal of maximizing the total customer lifetime
profit. Transactional data is a valuable resource for building such predictive mod-
els. Transactional data can be electronically collected and readily made available
for data mining in plenty quantity at minimum extra costs. Transactional data is
however, inherently sparse and skewed which adversely affects the performance of
ad-hoc classifier models built using transactional data based customer profiles.

We introduce a new approach for customer profile prediction that addresses the
problem of multi-class classification of sparse and skewed transactional data. We
address the challenge of transactional data sparsity and skewness by modelling cus-
tomer profiles which have been locally specialized by first binning them into homo-
geneous groups, instead of building a global model of all diverse customer profiles.
Prototypes of customer profiles are then extracted from the discovered bins and
multi-class classifier models are built using those prototypes. The learned models
can then be used to predict the class of customer profiles (e.g. restaurants, schools,
supermarkets, etc.) based on their purchases. The approach is validated on the case
study encompassing a food retail and food service company operating in the Dutch
food and beverages market.

This study presents two major contributions. First, we propose a new algorithm
for predicting the class of customer profiles based on their transactions that can
handle sparse multi-class datasets, as exhibited by real life applications. Second,
we present an extensive case study in food sales domain illustrating a set of practi-
cal challenges in customer profile prediction and validating the proposed approach.
The paper is organized as follows. Section 2 discusses background and related work.
Section 3 presents the proposed approach. Section 4 presents our experimental anal-
ysis using a real-world case study. Section 5 summarizes the findings and implica-
tions to a customer-centric business.

2 Background and Related Work

2.1 Customer Profiles

A customer profile is a description of customers using available information, which
help in understanding their background and behaviour. Well developed customer
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profiles are essential in market analysis as they aid businesses in saving time and
money by highlighting the real potential customers whose needs are to be met rather
than concentrating on too wide a range of individuals.

Customer profiles can be factual or behavioural. A factual customer profile con-
sists of a set of characteristics (e.g. demographic information such as name, gender,
birth date) while a behavioural customer profile consists of what the customer is
actually doing and is usually derived from transactional data [1].

Behavioural customer profiles can be much stronger predictors of the future ac-
tions of a customer as they encapsulate the changing behaviour of the customer
more than demographically based customer profiles which are more or less static.
Furthermore, the information that make up demographically based customer profiles
are expensive to acquire while the information for behavioural customer profiles can
be gleaned each time a customer makes a purchase.

Formally, a behavioural profile is defined as follows. Given, a transactional
dataset TN×d , containing N transactions categorized into d product items of M cus-
tomers, we define a set of customer profiles PM×d as pi, j =∑

ni
k=i1

tk, j, ∀i=1,...,M ∀ j=1,...,d ,
where k ∈ {i1, i2, . . . , ini} is a set of indexes referring to the n transactions of the i-th
customer profile in the set of transactions T. In other words, we define a behavioural
customer profile as a vector containing the individual sum of the d product items
transacted by a customer over a period of time.

2.2 Challenges in Mining Transactional Data

Transactional data are time-stamped data collected over time at no particular fre-
quency. Examples of transactional data may include: point of sales (POS) data, retail
data, inventory data, call centre data, trading data.

Transactional data tend to be inherently skewed and sparse, due mainly to the
underlying process from which they are generated which provide relatively little in-
formation per available attribute. For example, in retail, customers usually purchase
only a small number of products out of thousands of products in the retailers inven-
tory. Such a transaction when represented in an attribute-vector representation has
many zeroes and only a few informative numbers, (i.e. the data is sparse). In our
case study the Sligro data is inherently very sparse with sparsity factor1 0.3%.

In addition, transactional datasets are typically very large in volume and dimen-
sionality. Although processing power has continued to increase, predictive mod-
elling on the entire dataset can be prohibitive in terms of computational time and
costs. Conventional data reduction techniques may not work well [12], because the
data is sparse. There is also a high risk of information loss, as different rows may
have very different sparsity factors leading to each sampled data instance conveying
little or no information for accurate inference. Typically data is concentrated around
a point where a vast majority of customers buy only few items over long periods of

1 The faction of informative (non-zero) elements to all the elements in the data
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time. Thus, very little information is available for distinguishing between customer
profiles, which makes profile prediction very challenging.

2.3 Related work

Over the last decade and beyond data mining has been widely used for user pro-
filing. In this context three research streams can be distinguished: (i) recommender
approaches (personalized recommendations) given a customer aim to predict what
she/he will buy (e.g. [1]), (ii) analytical approaches (constructing profiles) that given
customers and their categories analyze which profiles buy what (e.g. [15]), (iii) pre-
dictive approaches (predict profiles) that given a customer aim to predict who (which
profile) she/he is (e.g. [3]).

From technical perspective the proposed binning approach relates to contextual
learning (e.g. [2, 22]), where specialized predictive models are used in making pre-
dictions based on the current context during operation. Typically contexts are de-
termined arbitrary using domain knowledge. Our approach combines the domain
knowledge and computational analysis for finding good bins.

Profile prediction from transactional data closely resembles user modelling for
textual data [23]. A customer may have many transactions, likewise a user may
read many documents. Items in transactional data resemble words in textual data.
In this study we take a domain driven approach expecting the predictive power to
be concentrated in purchase quantities. We reserve exploration of alternative feature
representations from the textual data analysis domain for our future work.

3 Predicting Customer Profiles from Transactional Data

Our approach builds upon the algorithm proposed in [3]. We introduce two principal
extensions to be able to handle realistic sparse multi-class data:

1. the algorithm is redesigned from binary to a multi-class setting that is required
by realistic application tasks;

2. we introduce k-means prototyping of customer profiles to be able to efficiently
build multi-class classifier models using large sparse datasets.

This section first presents the setting and the new approach for customer profile
prediction and then discusses specific algorithmic aspects and design choices of the
proposed approach in more detail.



Title Suppressed Due to Excessive Length

3.1 Problem Setting

Formally, given a set of M customer profiles P = {p1,p2, . . . ,pM}, with each cus-
tomer profile pi having its aggregated d-dimensional transaction as defined in Sec-
tion 2.1, our goal is to efficiently build multi-class classifier models that accurately
assign the i-th customer pi to the j-th class label y j ∈ ωA, . . . ,ωK . We assess the
predictive accuracy as the area under the Receiver Operating Characteristic (ROC)
curve (AUC) for classifying unseen customers.

3.2 The Proposed Approach for Predicting Customer Profiles

The intuition behind the new approach for predicting customer profiles from large
sparse transactional data is as follows. Since customer profiles may vary in magni-
tude and normalizing the profiles may occlude some predictive features, we would
like to partition our customers into homogeneous groups first. Thus, we bin the cus-
tomer profiles based on the number of items purchased and select the most typical
instances as prototypes within each bin to form our training sets. Then we train
multi-class classifiers on these prototypes. Algorithm 1 formally describes the pro-
cedure for training the predictors.

Algorithm 1: Train predictors
Input: Training set P
Output: Predictors Cb, cluster centers µb

k
Initialize: S = 0.6

1 Bin P into B bins based on the number of items per transaction.;
2 for b← 1 to B do
3 Cluster into KClasses groups using K-means, where KClasses is the number of classes in T ;
4 Record cluster centers µb

k ;
5 for each instance xi in bin b do
6 for each group k ∈ Kclasses do
7 Compute the Silhouette Statistics swk

i ;
8 if swk

i > S then
9 include xi into the set of prototypes P?

kb

10 Train a predictor Cb on instances in P?
kb;

The class of new customer profiles are predicted as follows. First we determine
the closest bin of the new customer profile, based on the number of transactions in
the historical data. Then we use the classifier trained within that bin to predict the
class of the new customer profile as formally described in Algorithm 2.

In the next sections we give more details and justification of the design choices
for the proposed approach.
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Algorithm 2: Predict class of new customer profile
Input: new instance xi, predictors Cb, cluster centers µb

k
Output: predicted class ki

1 Assign xi to the closest bin Bp : p = argmin
∥∥x−µb

k

∥∥;
2 classify xi using the predictor Cb;

3.3 Data Binning

Data binning is an unsupervised discretization technique in which the data is
grouped into either Equal Interval Width or Equal Frequency Intervals.

The equal-width data binning algorithm work by determining the minimum and
maximum values of the attribute of interest and then divides the range into a user-
defined number of equal width bin intervals. This approach to data binning is how-
ever vulnerable to outliers that may drastically skew the range [6].

The equal-frequency data binning algorithm, on the other hand, determines the
minimum and maximum values of the attribute of interest, sorts all values in ascend-
ing order, and divides the range into a user-defined number of intervals so that every
interval contains the same number of sorted values.

Irrespective of the grouping method, a typical data binning process broadly con-
sists of four steps:

1. sorting the continuous values of the feature to be binned,
2. evaluating a cut-point for splitting or adjacent intervals for merging,
3. splitting or merging intervals of continuous value according to the chosen crite-

rion.

One key parameter of concern in the data binning process is determining the best
“cut-point” to split a range of continuous values or the best pair of adjacent intervals
to merge. Entropy based-and/or-statistical based evaluation function have been used
to determine an appropriate “cut-point” with varying results [17].

In order to overcome the problem of skewness that is inherent in sparse trans-
actional data as well as to ensure sufficient statistical power for inference, it is par-
ticularly important that the cut-point for splitting the range of the number of items
bought be such that each bin contains a proportional representation of the number
of customer profiles for each class.

To meet this requirement, our approach uses the equal-frequency data binning
algorithm outlined below to partition/group customer transactions by the number of
items purchased.

Given a set of M customer profiles,

P = [p1,p2, . . . ,pM]

with each customer profile pi having its aggregated d-dimensional transaction as
defined in Section 2.1, re-ordered to obtain:
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P̂ =

 p̂1
...

p̂M

 , where p̂i =
[
p̂i,1, . . . , p̂i,d

]
based on the sum total of the number of items transacted by each of the customers.

The corresponding vector ŝ, consisting of the total number of items bought by
each of the M customers is:

ŝ =


d
∑

i=1
p̂1,i

...
d
∑

i=1
p̂M,i

=

 ŝ1
...

ŝM

 , where ŝ1 ≤ ŝ2 ≤ . . .≤ ŝM

Given that P̂ and ŝ are sorted in ascending order, the bins can be easily deter-
mined. That is, for a given bin size of Q (in our case Q = 40000 instances) there will
be dM/Q bins.

The training sets in the respective b-1 bins will be:

Bi =

 p̂1+(i−1)Q
...

p̂iQ

 , for i = 1, . . . ,b−1

with the minimum and maximum number of items transacted within each bin given
by: [

ŝ1+(i−1)Q ŝiQ
]

For the (b-th) bin, the number of items can be smaller than Q; and the respective
training set and range of total items bought is given by:

Bi =

 p̂1+(i−1)Q
...

p̂M

 , for i = b

and
[
ŝ1+(i−1)Q ŝM

]
.
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3.4 Prototype Selection

The binning process whilst abating the problem of skewness in transactional data
can result in transactional data groups whose sparsity makes sampling them for
classifier modelling unwieldy with a resultant poor performance of the classifier
model. An alternate approach to sampling the data in each bin is to carefully select
prototypes that most represent each bin.

Many methods have been developed for prototype selection. Some of them are
aimed at minimizing space and time needed for the classification of a dataset;
while others attempt to improve accuracy. Typical examples of the former include
Edited Nearest Neighbour (ENN) [24], Multi-edit [11], Relative Neighbourhood
Graph Edition (RNGE) [20], etc.; while the Decremental Reduction Optimization
Procedure Family (DROP3) [25], Prototype Selection by Relative Certainty Gain
(PSRCG) [18] and Model Class Selection (MoCS) [5] have been proposed as pro-
totype selection for accuracy improvement.

Although different researchers have addressed the issue of prototype selection,
there is no research that suggests an automatic procedure for instance selection,
which can be employed for any given classification algorithm and in a computation-
ally efficient way, for sparse transactional data. This paper presents an algorithm for
prototype selection, which exploits the K-means clustering algorithm. It is aimed at
reducing the error rate compared to that obtained to a simple sampling of the trans-
actional data. The proposed approach in this paper is analogous to fuzzy clustering
based approach proposed in [4] in which the centroids are selected as prototypes.

We choose the basic K-means for prototype selection that uses the K-means al-
gorithm for partitioning the data within each bin. Then we use the silhouette statistic
to select the prototypes, i.e. the instances that are the closest to the centre (measured
by the average silhouette width) of the partitioned bin.

First, the K-means algorithm is used to partition the transactional data in each bin
into k groups such that the within-group sum-of-squares is minimized. The K-means
algorithm works by defining the within-bin scatter matrix given by:

SW =
1
n

g

∑
j=1

n

∑
i=1

Ii j
(
Xi−X j

)(
Xi−X j

)T
, (1)

where Ii j is one if Xi belongs to group j and zero otherwise, and g is the number
of groups. The criterion that is minimized by the k-means algorithm is given by the
sum of the diagonal elements of SW , i.e., the trace of the matrix, as follows

Tr (SW ) = ∑SWii (2)

Minimizing the trace, is equivalent to minimizing the total within-group sum of
squares about the group means [10].

In order to proceed with the decomposition of the unlabelled data, Kmeans re-
quires the number of subsets, or in our case, groups, existing in the data. The
Kmeans algorithm requires this parameter as input, and is affected by its value.
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Various heuristics attempt to find an optimal number of groups most of them refer
to intercluster distance or intracluster similarity. Nevertheless, in this case, as we
know the actual class of each instance, we use the number of classes in the trans-
actional data and employ silhouette statistic to determine and select the instances
closes to the centre of each class as prototypes for classification.

[16] present the silhouette statistic as a way of estimating the number of groups
in a data set. Given observation i, denote the average dissimilarity to all other points
in its own cluster as ai. For any other cluster c, let d (i,c) represent the average
dissimilarity of i to all objects in cluster c. Finally, let bi denote the minimum of
these average dissimilarities. The silhouette width for the i-th observation is

swi =
(bi−ai)

max(ai,bi)
(3)

We can find the average silhouette width by averaging swi over all observations:

sw =
1
n

n

∑
i=1

swi (4)

Observations with a large silhouette width are well clustered, but those with small
values tend to be ones that are scattered between clusters. The silhouette width swi
in Equation 3 ranges from -1 to 1. If an observation has a value close to 1, then the
data point is closer to its own cluster than a neighbouring one. If it has a silhouette
width close to -1, then it is not very well-clustered. A silhouette width close to zero
indicates that the observation could just as well belong to its current cluster or one
that is near to it. We use the silhouette statistics [16] of the customer profiles in
each bin to select prototypes that are most representative of a category to train the
classifier models.

3.5 Solution for Multi-class Classification

Multi-class classification involves assigning one of many class labels to an input
instance. Formally, given a training dataset of the form (xi,yi), where xi ∈ Rn is
the ith example and yi ∈ ωA, . . . ,ωK is the ith class label, multi-class classification
algorithms aim to learn a model H such that H (xi) = yi for new unseen instances.

Classifiers such as k-nearest neighbours and multi-layered perceptrons can di-
rectly deal with multi-class problems. However, for complex classification prob-
lems involving a large number of classes, it has been often observed in [21], that
obtaining a classifier that discriminates between two classes outperforms the one
that simultaneously distinguishes among all classes. The proposed approach uses
the one-vs-all [21] method with error correcting encoding [8].
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4 Case Study in Food Sales Domain

To validate and support the proposed approach this section presents an experimental
case study using a real-world transactional data from the food sales domain. We first
introduce the case study, next we outline methodology and goals of this experimen-
tal analysis and then discuss the results and implications.

4.1 SLIGRO Data

The data was provided by Sligro Food Group N.V., a food retail and food service
company operating in the Dutch food and beverages market. The provided data con-
sist of 408625 aggregated Sligro customer transactions collected over three consecu-
tive years. Each aggregated customer transaction record contains information about
the customer number, the item number, the number of items purchased and the cus-
tomer category as stipulated by Sligro.

In total 148601 products were transacted by 65 customer categories. 148 top
selling products were used in this study. For this experimental analysis customer
profiles with over 3000 transactions were selected. Figure 1 shows the number of
distinct top selling items purchased per customer transaction. We can see that the
majority of transactions (note the logarithmic scale) are concentrated around pur-
chasing a few items.

Fig. 1: The distribution of Items per Transaction (Basket size).
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4.2 Experiments Protocol

The main goal of our experiments was to validate the proposed approach on a real-
world case study. More specifically, we were interested in determining the effect
of the number of items bought by each category on the classification performance
of four multi-class classifiers. We compared the performance of our approach with
the random sampling baseline, which randomly sub-samples customer profiles for
classification.

Experimental comparison were performed on four base classifiers (Logistic
regression, Decision Tree (J48), Naive Bayes and Support Vector Machine) in
WEKA’s [13] built-in OVA and ECOC. For each of the selected prototypes 10-fold
cross-validation was repeated 10 times.

4.3 Evaluation using the AUC score

The performance of predictive data mining algorithms is typically evaluated using
predictive accuracy in which each instance is classified into the class which has
the largest estimated probability of class membership over all classes. However,
this is not appropriate when the data is imbalanced [7], as the large difference in
representation between the classes can lead to a bias in which even a simple default
strategy of guessing would give a high predictive accuracy to the majority class.

The area under the Receiver Operating Characteristic (ROC) curve (AUC) is a
standard technique for summarizing classifier performance over a range of trade-offs
between true positive and false positive error measures [9]. It measures whether the
estimated probability of an instance belonging to class ci is larger than the estimated
probability of belonging to class c j. The AUC is used in this work for comparisons
because it is independent of any threshold used by the learning algorithm. It is not
influenced by decision biases and prior probabilities, and it places the performance
of diverse systems on a common, easily interpreted scale [14].

To compare classifier performance on the entire multi-class transactional dataset,
we use the weighted average AUC, where each target class ci is weighted according
to its prevalence [14]:

AUCweighted = ∑
∀ci∈C

AUC (ci)× p(ci) (5)

Weighting the AUC prevents target classes with smaller instance counts from
adversely affecting the results.
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Table 1: Identified Data Bins.

Class Bins
1..5 6..20 21..127 128+ Sum

100 551 470 699 1439 3159
190 4443 3957 2677 300 11377
230 9284 7963 6358 1125 24730
300 1454 1765 2697 2676 8592
310 972 1117 2069 3083 7241
331 970 1052 1713 3235 6970
360 898 957 1064 948 3867
380 714 768 1116 1037 3635
390 974 1071 1814 1593 5452
391 789 935 1140 586 3450
590 1088 1075 1334 900 4397
620 891 1104 1457 1189 4641
800 8718 8749 7904 1701 27072
820 1518 1431 1105 134 4188
840 4051 4396 4089 609 13145
890 1443 1513 1364 217 4537
900 2941 1928 1420 206 6495
Total 41699 40251 40020 20978 142948

Table 2: Selected Prototypes.

Class Bins
1..5 6..20 21..127 128+ Sum

100 23 17 12 115 167
190 105 185 47 31 368
230 246 381 94 112 833
300 80 72 82 268 502
310 55 36 7 305 403
331 39 39 23 320 421
360 30 43 12 93 178
380 24 22 13 103 162
390 36 42 21 158 257
391 41 42 16 59 158
590 42 56 25 90 213
620 18 60 21 109 208
800 287 328 101 171 887
820 38 51 11 14 114
840 121 199 43 61 424
890 25 69 21 22 137
900 72 68 17 21 178
Total 1282 1710 566 2052 5610

4.4 Data Analysis

Following the proposed approach outlined in Section 3, the customer profiles were
first binned, using the equal-frequency binning algorithm described in Section 3.3,
to obtain the homogeneous groups for each of the categories (i.e. classes) as shown
in Table 1. It can be seen that employing the equal-frequency binning algorithm
enables the proportions of the categories (i.e. classes) to be maintained across the
bins. The K-means prototype selecting algorithm as described in Section 3.4 was
then applied to the discovered bins to obtain the prototypes for each class in each
bin as shown in Table 2.

4.5 Analysis of the Predictive Performance

Figure 2 shows the plots of the predictive performance results. It can be seen from
all four plots that there is a critical number of items purchased o? at which the over-
all AUC classification performance is higher than that obtained from the baseline
approach of random sampling customer profiles for classification.

Identifying the critical point o? validates the contribution to predicting multi-
class customer profiles based on transactional data, in that, not only does it help in
overcoming the challenge of transactional data sparseness and skewness but it also
enables practitioners to build specialized classifier models that can more accurately
classify customers based on the number of items purchased.
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Fig. 2: Performance on the selected prototypes of customer profiles.

Customer profiles based on transactional data with their number of items pur-
chased similar to that at the critical point o? can be more confidently distinguished
by the specialized multi-class classifier, than would be by the global multi-class
classifier modelled on all or on a sample of the diverse customer profiles. The per-
formance of the global multi-class classifier tends to be adversely affected by the
inherent dominance of the large number of customers with fewer number of items
purchased. Finding the critical point o? at which customers can be more accurately
classified enables meaningful analysis to be undertaken that can lead to a better
customer relationship management.

4.6 Analysis from the Business Perspective

From a business perspective, the customers with profiles whose classification fall
above the critical point can be prime candidates for direct interactive/one-to-one
marketing campaigns while customers whose profiles fall below the critical point
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can be candidates for general market campaigns. In addition, the differences in clas-
sification performance on individual categories across the bins provide insight that
can be valuable for developing better relationship with the customers.

As an illustration, consider the top 10 items for the category codes 100 (small
supermarket) and 310 (cafeteria) across the four bins in Tables 3 and 4 show that
the highlighted product codes2 have a strong influence on the classification of the
customer profiles based on transactional data in that category.

These products could be included in product promotions and customer targeting
programmes as incentives for product growth and customer retention. The decoded
examples verify the profiles, as the products intuitively match the types of business
(e.g. small supermarkets/ corner shops buy a lot of cigarettes, cafeterias/bars buy
Coca-Cola).

Table 3: Top 10 Products within the Small supermarket category.

Bin1 Bin2 Bin3 Bin4
Product
Code

Total Product
Code

Total Product
Code

Total Product
Code

Total

93456 42 190855 56 190855 193 190855 1710
184532 22 93456 42 882627 180 882627 1657
81491 11 936251 36 936251 156 190499 765
663523 10 24224 12 93456 151 190960 696
637263 2 652378 12 900360 42 235346 677
284099 1 591881 9 397805 8 192653 618
882627 1 64787 8 736177 6 900360 601
190855 0 637263 3 226054 6 438554 557
432257 0 432257 2 433245 4 432257 537
900360 0 226054 2 81491 4 81491 500

Table 4: Top 10 products of the Cafeteria category.

Bin1 Bin2 Bin3 Bin4
Product
Code

Total Product
Code

Total Product
Code

Total Product
Code

Total

184532 111 184532 119 297296 146 192653 5062
93456 60 93456 70 93456 92 184532 4782
81491 8 64787 65 882627 63 190902 3689
394548 2 652378 36 936251 60 882627 2329
637263 1 190855 26 24224 54 265943 2130
192653 1 936251 24 736177 13 432257 1868
269117 1 591881 20 591881 11 255710 1578
476997 1 87353 9 282241 8 516140 1569
736177 1 432257 4 900360 7 231708 1483
882627 0 882627 3 192653 6 401963 1450

2 184532 drink, 192653 Coca-Cola, 882627 bread, 81491 bread, 882627 cigarettes, 190855 beer,
432257 energy drink, 900360 cigarettes
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5 Conclusion

We presented an investigation into the classification of multi-class customer profiles
using real-world transactional data in the food sales domain. We proposed and val-
idated a new approach for predicting customer profiling that can deal with sparse
realistic transactional data using the ‘divide-and-conquer’ principle. The proposed
approach first partitions data into homogeneous bins, then crystallizes each bin by
extracting the most representative prototypes to be used for training the predictive
models.

The experimental case study validates the approach on a difficult real world prob-
lem. The predictive performance is consistent across different base classifiers. The
overall accuracy improves with the number of items purchased. The analysis demon-
strates that it is possible to find a critical number of items to be purchased to ensure
accurate classification. Knowing this point allows for the filtering of customers and
for focused marketing activities to be undertaken on the ones where better predictive
accuracy can be expected. Our case study also illustrated that the proposed approach
can be used not only for the prediction of new customer profile classes, but also for
business analysis, as closer insights can be gleaned from the predicted customer
profiles thereby enabling better understanding of the customers of the business.
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