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ABSTRACT
The plasticity property of biological neural networks allows them
to perform learning and optimize their behavior by changing their
configuration. Inspired by biology, plasticity can be modeled in
artificial neural networks by using Hebbian learning rules, i.e. rules
that update synapses based on the neuron activations and reinforce-
ment signals. However, the distal reward problem arises when the
reinforcement signals are not available immediately after each net-
work output to associate the neuron activations that contributed to
receiving the reinforcement signal. In this work, we extend Hebbian
plasticity rules to allow learning in distal reward cases. We propose
the use of neuron activation traces (NATs) to provide additional
data storage in each synapse to keep track of the activation of the
neurons. Delayed reinforcement signals are provided after each
episode relative to the networks’ performance during the previous
episode. We employ genetic algorithms to evolve delayed synaptic
plasticity (DSP) rules and perform synaptic updates based on NATs
and delayed reinforcement signals. We compare DSP with an anal-
ogous hill climbing algorithm that does not incorporate domain
knowledge introduced with the NATs, and show that the synaptic
updates performed by the DSP rules demonstrate more effective
training performance relative to the HC algorithm.

CCS CONCEPTS
• Theory of computation → Evolutionary algorithms; Bio-
inspired optimization;

KEYWORDS
Evolving plastic artificial neural networks, Hebbian learning, de-
layed plasticity, distal reward problem

1 INTRODUCTION
The plasticity property of biological neural networks enables the
networks to change their configuration (i.e. topology and/or connec-
tion weights) and learn to perform certain tasks during their lifetime.
The learning process involves searching through the possible con-
figuration space of the networks until a configuration that achieves
a satisfactory performance is reached. Modelling plasticity, or rather
evolving it, has been a long-standing goal in Neuro-evolution (NE), a
research field that aims to design artificial neural networks (ANNs)
using evolutionary computing approaches [6, 12, 25].

Neuro-evolutionarymethods can be divided roughly in direct and
indirect encoding approaches [6]. In direct encoding, the topology

and/or connection weights of the ANNs are directly represented
within the genotype of the individuals. However, the number of
possible network configurations (i.e. connectivity) increases expo-
nentially depending on the number of neurons in a network. There-
fore, it may be challenging to scale direct encoding approaches to
large networks [14, 29]. In indirect encoding on the other hand, this
drawback is overcome by encoding in the genotype rather than the
network parameters per se, the rules to construct and/or optimize
the ANNs, usually during their lifetime [12, 22]. Indirect encoding
has also the additional advantage of being biologically plausible,
as evidence has showed that biological neural networks undergo
changes throughout their lifetime without the need to change the
genes involved in the expression of the neural networks.

Among the indirect encoding approaches, evolving plastic ar-
tificial neural networks (EPANNs) [2, 22] implement plasticity by
modifying the networks’ configuration based on some plasticity
rules which are activated throughout the networks’ lifetime. These
are encoded within the genotype of a population of individuals, in
order to optimize the learning procedure by means of evolutionary
computing approaches. One possible way of modelling plasticity
rules in EPANNs is by means of Hebbian learning, a biologically
plausible mechanism hypothesized by Hebb [9] to model synap-
tic plasticity [13]. According to this model, synaptic updates are
performed based on local neuron activations. Previous works on
EPANNs have implemented this concept by using evolutionary
computing to optimize the coefficients of first-principle equations
that describe the synaptic updates between pre- and post-synaptic
neurons [2, 7, 16]. Others have used machine learning models (i.e.
ANNs) that can take the activations of pre- and post-synaptic neu-
rons as inputs to compute the synaptic update as output [17, 18].

Reinforcement signals (and/or the output of other neurons, as in
neuromodulation schemes [4, 20]) can be used as modulatory sig-
nals to guide the learning process by signaling how and when the
plasticity rules are used. To allow learning, these signals are usually
required right after each output of the network, to help associating
the activation patterns of neurons with the output. If the reinforce-
ment signals are available only after a certain period of time, but
not immediately after each action step, it may not be possible to
directly associate the behavior of the network to the activation
patterns of the neurons. Thus, the distal reward problem [10, 23]
arises, which cannot be addressed using Hebbian learning in its
basic form, but requires a modified learning model to take into
account the neuron activations over a certain period of time.
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In this work, we propose a modified Hebbian learning mech-
anism, which we refer to as delayed synaptic plasticity (DSP), for
enabling plasticity in ANNs in tasks with distal rewards. We in-
troduce the use of neuron activation traces (NATs), i.e. additional
data storage in each synapse that keep track of the average pre-
and post-synaptic neuron activations. We use discrete DSP rules to
perform synaptic updates based on the NATs and a reinforcement
signal provided after a certain number of activation steps, that we
refer to as an episode. The reinforcement signals are based on the
performance of the agent relative to the previous episode (i.e. if
the agent performs better/worse relative to the previous episode,
a positive/negative reinforcement signal is provided). We further
introduce competition in incoming synapses of neurons to stabilize
delayed synaptic updates and encourage self-organization in the
connectivity. As such, the proposed DSP scheme is a distributed
and self-organized form of learning which does not require global
information of the problem.

We employ genetic algorithms (GA) to evolve DSP rules to per-
form synaptic changes on recurrent neural networks (RNNs) that
have to learn to navigate in a triple T-maze to reach a goal location.
To test the robustness of the evolved DSP rules, we evaluate them
for multiple trials with various goal positions.We then note how the
process of training RNNs for a task using DSP can be seen as anal-
ogous to optimizing them using a single-solution metaheuristic, ex-
cept for the fact that in contrast to general-purpose metaheuristics,
the DSP rules take into account the (domain-specific) knowledge
of the local neuron interactions for updating the synaptic weights.
Therefore, to assess the effect of the domain knowledge introduced
with DSP, we compare our results with a classic hill climbing (HC)
algorithm. Our results show that DSP is highly effective in speeding
up the optimization of RNNs relative to HC in terms of number
of function evaluations needed to converge. On the other hand,
the NATs data structure introduces an additional computational
complexity.

The rest of the paper is organized as follows: in Section 2, we
discuss Hebbian learning and the distal reward problem; in Sec-
tion 3, we introduce our proposed approach for DSP and provide
a detailed description of the evolutionary approach we used to
optimize DSP; in Section 4, we present our experimental setup;
in Section 5, we provide a comparison analysis of our proposed
approach and the baseline HC algorithm; finally, in Section 6, we
discuss our conclusions.

2 BACKGROUND
ANNs are computational models inspired by biological neural net-
works [3]. They consists of a number of artificial neurons arranged
in a certain connectivity pattern. Adopting the terminology from
biology, a directional connection between two neurons is referred
to as a synapse, and the antecedent and subsequent neurons relative
to a synapse are called pre-synaptic and post-synaptic neurons. The
activation of a post-synaptic neuron ai can be computed by using
the following formula:

ai = ψ
(∑

j
wi, j · aj

)
(1)

where aj is the activation of the j-th pre-synaptic neuron,wi, j is
the synaptic efficiency between i-th and j-th neurons, andψ (·) is an

activation function (i.e. a sigmoid function [3]). The pre-synaptic
neuron a0 is usually set a constant value of 1.0 and referred to
as the bias. Let us introduce also the equivalent matrix notation,
that will be used in the following sections: considering that all
the activations of pre- and post-synaptic neurons in layers k and l
can be represented, respectively, as a column vectors Ak and Al ,
then the activation of post-synaptic neurons can be calculated as:
Al = ψ

(
W lk · Ak

)
, whereW lk is a matrix that encodes all the

synaptic weights.

2.1 Hebbian Learning
Hebbian learning is a biologically plausible learning model that
performs synaptic updates based on local neuron activations [13].
In its general form, a synaptic weightwi, j at time t is updated using
the plain Hebbian rule, i.e.:

wi, j (t + 1) = wi, j (t) +m(t) · ∆wi, j (t) (2)

∆wi, j (t) = f
(
ai (t),aj (t)

)
= η · ai (t) · aj (t) (3)

where η is the learning rate andm(t) is the modulatory signal.
Using the plain Hebbian rule, the synaptic efficiency between

neurons i and j,wi, j is strengthened/weakened when the sign of
their activations are positively/negatively correlated, and does not
change when there is no correlation. The modulatory signalm(t)
can alter the sign of Hebbian learning implementing anti-Hebbian
learning if the modulatory signal is negative [1, 21].

The plain Hebbian rule may cause indefinite increase/decrease
in the synaptic weights because strengthened/weakened synaptic
weights increase/decrease neuron correlations, which in turn cause
synaptic weights to be further strengthened/weakened. Several
versions of the rule were suggested to improve its stability [27].

2.2 Evolving Plastic Artificial Neural Networks
Plasticity in EPANNs makes them capable of learning during their
lifetime by changing their configuration [2, 15, 22]. Hebbian learn-
ing rules are often employed to model plasticity in EPANNs. On the
other hand, the evolutionary aspect of EPANNs typically involve the
use of evolutionary computing approaches to find a near-optimum
Hebbian learning rules to perform synaptic updates.

In the literature, several authors suggested evolving the type and
parameters of Hebbian learning rules using evolutionary comput-
ing. For instance, Floreano and Urzelai evolved four Hebbian learn-
ing rules and their parameters in an unsupervised setting where
synaptic changes are performed periodically during the networks’
lifetime [7]. Niv et al., [16] evolved the parameters of a Hebbian rule
that defines a complex relation between the pre- and post-synaptic
neuron activations on a reinforcement learning setting. Others sug-
gested evolving complex machine learning models (i.e. ANNs) to
replace Hebbian rules to perform synaptic changes [11, 19]. Orchard
and Wang [17] compared evolved plasticity based on a parameter-
ized Hebbian learning rule with evolved synaptic updates based
on ANNs. However, they also included the initial weights of the
synapses into the genotype of the individuals. Risi and Stanley [18]
used compositional pattern producing networks (CPPN) [24] to per-
form synaptic updates based on the location of the connections.
Tonelli and Mouret [26] investigated the learning capabilities of
plastic ANNs evolved using different encoding schemes.
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2.3 Distal Reward Problem
When reinforcement signals are available after a certain period of
time, it may not be possible to associate the neuron activations that
contributed to receiving the reinforcement signals. This is referred
to as the distal reward problem, and has been studied in the context
of time dependent plasticity [8, 10, 23].

From a biological viewpoint, synaptic eligibility traces (SETs)
have been suggested as a plausible mechanism to trace the acti-
vations of neurons over a certain period of time [8] by means of
chemicals present in the synapses. According to this mechanism, co-
activations of neurons may trigger an increase in the SETs, which
then decay over time. Therefore, their level can indicate a recent
co-activation of neurons when a reinforcement signal is received,
and as such be used for distal rewards.

3 METHODS
In this work, we focus on a navigation in triple T-maze environment
(see Section 4) that requires memory capabilities. Thus, we use a
RNN model illustrated in Figure 4b.

Our RNN model consist of input, hidden and output layers con-
nected with four sets of connections. All the neuron activations are
set to zero at the initial time step t = 0. Then the activation of the
neurons in the hidden and output layers at each discrete time step
t + 1, respectively Ah (t + 1) and Ao (t + 1), are updated as:

Ah (t + 1) =ψ
(
W hi ·Ai (t + 1) + αh ·W h ·Ah (t)

+ αo ·W ho ·Ao (t)
) (4)

Ao (t + 1) = ψ
(
W oh ·Ah (t + 1)

)
(5)

where:
1) W hi and W oh are feed-forward connections between input-
hidden and hidden-output layers,W h is the recurrent connection
of the hidden layer, andW ho is the feedback connection from the
output layer to hidden layer. The recurrent and feedback connec-
tions provide inputs of the activations of the hidden and output
neurons from the previous time step. We do not allow self-recurrent
connections inW h (the diagonal elements ofW h equal to zero).
2) αh and αo are coefficient used to scale the recurrent and feedback
inputs from the hidden and output layers respectively.
3)ψ (·) is a binary activation function defined as:

ψ (x) =
{

1, if x > 0;
0, otherwise. (6)

3.1 Learning
The learning process of an RNN is a search process that aims to find
an optimal configuration of the network (i.e., its synaptic weights)
that canmap the sensory inputs to proper actions in order to achieve
a given task. In this work, we use independently the proposed DSP
rules, and the HC algorithm [3], to perform the learning the RNNs
for the specific tripe T-maze navigation task, and compare their
results. Both of these approaches perform synaptic updates based
on the progress of the performance of an individual agent in consec-
utive episodes; however, the DSP rules incorporate the knowledge
of the local neuron interactions, while HC uses a certain random
perturbation heuristic that does not incorporate any knowledge.

𝑨𝒈𝒆𝒏𝒕 (RNN)

𝑰𝒇 𝐸𝑃𝑒 ≤ 𝐸𝑃𝑒−1 𝒕𝒉𝒆𝒏 𝑚 = 1
𝑬𝒍𝒔𝒆 𝑚 = −1
𝑰𝒇 𝐸𝑃𝑒 < 𝐸𝑃𝑏𝑒𝑠𝑡 𝒕𝒉𝒆𝒏
𝑨𝒈𝒆𝒏𝒕𝒃𝒆𝒔𝒕 = 𝑨𝒈𝒆𝒏𝒕

𝐸𝑃𝑒

Neuron Activation
Traces

𝑚

𝑨𝒈𝒆𝒏𝒕𝒃𝒆𝒔𝒕(RNN)

𝑊ℎ𝑖𝑙𝑒 𝑒 ≤ 𝑁𝑒𝑝𝑖𝑠𝑜𝑑𝑒𝑠

Delayed Synaptic 
Plasticity RuleSynaptic Update

Environment

(a)

Environment
𝑨𝒈𝒆𝒏𝒕 (RNN) 𝑰𝒇 𝐸𝑃𝑒 < 𝐸𝑃𝑏𝑒𝑠𝑡 𝒕𝒉𝒆𝒏

𝑨𝒈𝒆𝒏𝒕𝒃𝒆𝒔𝒕 = 𝑨𝒈𝒆𝒏𝒕

𝐸𝑃𝑒

𝑨𝒈𝒆𝒏𝒕𝒃𝒆𝒔𝒕(RNN)

𝑊ℎ𝑖𝑙𝑒 𝑒 ≤ 𝑁𝑒𝑝𝑖𝑠𝑜𝑑𝑒𝑠

Perturbation
HeuristicsSynaptic Update

(b)

Figure 1: (a) The learning process by using the delayed
synaptic plasticity, and (b) the learning process by optimiz-
ing the parameters of the RNNs using the hill climbing algo-
rithm.

Here, we assume that the progress of the performance of an agent
can be measured relative to its performance in a previous episode.
We refer to the measure of the performance of an agent in a single
episode as “episodic performance” (EP). We should note that we
formalize our task as a minimization problem. Therefore, in our
experiment an agent with a lower EP is better.

The illustration of the optimization processes of the RNNs us-
ing the DSP rules and the HC algorithm are given in Figures 1a
and 1b respectively. Both algorithms run for a pre-defined number
of episodes (Nepisodes ), starting from an RNN with randomly ini-
tialized synaptic weights, and record the best encountered RNN
throughout the optimization process.

In the DSP-based algorithm illustrated in Figure 1a, the synap-
tic updates are performed after each episode —thus, the synaptic
weights of the RNN during an episode are fixed— using DSP rules
which take the RNN, NATs, and a modulatory signal as inputs. The
NATs provide the average interactions of post- and pre-synaptic
neurons during an episode. The structure of the NATs alongside
with the DSP rules are explained in Section 3.2 in detail. The mod-
ulatory signal is used as a reinforcement which depends on the
performance of the agent in the current episode relative to its
performance during the previous episode. If the current episodic
performance EPe is lower than the previous episodic performance
EPe−1, then the modulatory signalm is set to 1 (reward), otherwise
m is set to −1 (punishment).

The HC algorithm that is illustrated in Figure 1b performs instead
synaptic updates after each episode using a perturbation heuristic
that does not assume any knowledge of the neuron activations.
We use a Gaussian perturbation with a zero mean and unitary
standard deviation and scale it with a parameter σ to perturb all the
synaptic weights of the RNN of the best agent. The synaptic update
procedure generates a new candidate Aдent that is tested in the
environment for the next episode and replaced with the best RNN
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if it performs better. Conventionally, in standard HC the measure of
the performance of an agent in an episode would be called “fitness”.
However, in this work we refer to it as EP, to make it analogous to
the algorithm that uses DSP rules.

3.2 Evolving Delayed Synaptic Plasticity
We propose delayed synaptic plasticity to allow synaptic changes
based on the progress of the performance of an agent relative to its
performance during the previous episode, i.e.:

∆wi, j (e) = DSP(NATi, j ,m,θ ) (7)

w ′i, j (e) = wi, j (e) + η · ∆wi, j (e) (8)
where the synaptic change∆wi, j (e) between neurons i and j after an
episode e is computed based on their NATs, the modulatory signal
m (which can either be 1 or −1, see Section 3.1), and a threshold
θ that is used to convert NATs into binary vectors. The resulting
DSP synaptic changes can be of three types (decreased, stable, or
increased), i.e. at each time step DSP(NATi, j ,m,θ ) ∈ {−1, 0, 1}. In
Equation (8), the synaptic change is scaled with a learning rate η.

Subsequent to the synaptic updates of all synapses, the synaptic
weights for the next episodewi, j (e + 1) are computed as:

wi, j (e + 1) =
w ′i, j (e)
| |w ′i (e)| |2

(9)

wherew ′i (e) is a row vector encoding all incoming synaptic weights
of a post-synaptic neuron i and | | · | |2 is the Euclidean norm. Here,
the synaptic weights are scaled to have a unitary length, thus pre-
venting an indefinite increase/decrease, and allowing self-organized
competition between synapses [5]. Alternatively, a decay mech-
anism and/or saturation limits for weights can be introduced to
prevent an indefinite increase/decrease of the weights [21].

𝑤𝑖𝑗

𝑎𝑗 𝑎𝑖

𝑓𝑎𝑖=0,𝑎𝑗=0 𝑓𝑎𝑖=1,𝑎𝑗=0 𝑓𝑎𝑖=0,𝑎𝑗=1 𝑓𝑎𝑖=1,𝑎𝑗=1𝑁𝐴𝑇𝑖𝑗 =

Figure 2: The neuron activation trace NATi, j of the pre- and
post-synaptic neuron activations aj and ai .

The NAT data structure is illustrated in Figure 2. It keeps track
of the frequencies of the pre- and post-synaptic neuron activation
states throughout an episode. We use four-dimensional vectors for
each synapse—since there are four possible states for the activations
of pre- and post-synaptic neurons— to store the number of times the
pre- and post-synaptic neurons were in one of the following states:
00, 01, 10, and 11, where the first and second bits represent the pre-
and post-synaptic neuron activations, and 0 and 1 represent non-
active and active states of neurons respectively. At the beginning
of an episode, all NATs are initialized as zeros; and the end of an
episode, they are divided by the number of total activations to
convert them into frequencies.

The NATs are used in their binary forms to discretize the search
space. Each frequency in a NAT is converted to either 0 or 1 based

Table 1: A delayed synaptic plasticity rule visualized in a tab-
ular form.Depending on a certain thresholdθ for converting
the binary forms of specific NATs, the DSP rule provides the
synaptic changes x1,x2, . . . ,x32 for all possible combinations
of binary NATs andm states.

NAT θ
m ∆w00 01 10 11

0 0 0 0 −1 x1
0 0 0 0 1 x2
. . . . . . . . . . . . . . . . . .

1 1 1 1 1 x32

on a threshold θ (1 for the frequencies more than θ , and 0 for the
ones that are below θ ). Thus, a DSP rule, as illustrated in Table 1, is
a combined form of 32 synaptic change decisions provided for all
possible states of the binary forms of the NATs and the signalm.

We use genetic algorithms (GAs) to evolve three possible synap-
tic changes ∆w = {−1, 0, 1} (decrease, stable, increase) for each
possible states of the NATs andm. In total, there are 32 possible
states that can take three possible values. Thus, there is a total of
332 number of possible DSP rules. In addition to the discrete part,
we optimize four continuous parameters (η,θ ,αh ,αo ) by including
them into the genotype of the individuals. We used suitable evolu-
tionary operators separately for discrete and continuous variables.
The details of the GA are provided in Section 4.3.

4 EXPERIMENTAL SETUP
In the following sections, we provide the details of our experimental
setup including the test environment, the architecture of the agent,
and the details of the GA.

4.1 Triple T-Maze Environment

Figure 3: Triple T-maze environment. The walls, starting po-
sition of the agent, goal and pits are color-coded using black,
red, blue and green.

A visual illustration of the triple T-maze environment is given
in Figure 3. The triple T-maze environment consists of 29 × 29
cells. Each cell can be occupied by one of five possibilities: empty,
wall, goal, pit, agent, color-coded in white, black, blue, green, red

4



Left

Straight

RNN

Stop

Right

Left

Right

Front

Sensory Input Action Output

(a)

Input
𝑊ℎ𝑖

𝐴𝑖(𝑡 + 1)

Hidden

𝐴ℎ(𝑡 + 1)

𝐴ℎ(𝑡)

Output

𝐴𝑜(𝑡 + 1)

𝑊ℎ

𝑊𝑜ℎ

𝑊ℎ𝑜Copy

𝐴𝑜(𝑡)

Copy

(b)

Figure 4: (a) The sensory inputs and action outputs of the re-
current neural networks and (b) the architecture of the net-
works that are used to control the agents.

respectively. The starting position of the agent is illustrated in
red. There are eight final positions, illustrated in blue or green.
Among eight final positions, one of them is assigned as the goal
position (in blue), and the rest as pits (in green). Starting from the
initial position, an agent navigates the environment for a total of
100 action steps. To solve the task, it is required to find a set of
connection weights of the recurrent neural network that can allow
the agent to achieve the goal from the starting position.

4.2 Agent Architecture
An illustration of the architecture of the agents used for the triple
T-maze environment is provided in Figure 4. An agent has a certain
orientation in the environment, facing one of the four possible
directions along the x and y axes of the environment (i.e. north,
south, west, east), and can only move one cell at a time horizontally
or vertically. It can take sensory inputs from the nearest cells from
its left, front and right, depending on its orientation. We let the
agent sense only an empty cell, or a wall (i.e., the agent is not aware
of the presence of the goal or pits), so the sensory inputs are encoded
using one bit, representing an empty cell with 0 and a wall with
1. Thus, there are three bits as input, that the agent uses to decide
one of four possible actions: stop, left, right, and straight. In case
of stop, the agent stays in the same cell with the same orientation
for an action step; in cases of left and right, the agent changes its
orientation accordingly and proceeds one cell straight; in case of
straight, the agent keeps its original orientation and proceeds one
cell straight. If the cell the agent wants to move in is occupied with
wall, then the agent stays in its original position. We use RNNs to
control the agents since our task requires memory capabilities, and
may not be solved by a static architecture such as a feed-forward
ANN. The recurrent and feedback connections between the hidden-
hidden and output-hidden layers help agents to keep track of the
sequences of actions they perform throughout an episode. The RNN
networks used in all experiments consist of 20 hidden neurons
unless otherwise is specified. Therefore, the networks consist of

(3+ 1) × 20 = 80 input to hidden connections, 20× 19 = 380 hidden
to hidden connections (except self), (20 + 1) × 4 = 84 hidden to
output connections, and 4 × 20 = 80 output to hidden connections,
in total of 624 connections between all layers (+1 refers to the bias).

4.3 Genetic Algorithm
We use a standard GA to evolve DSP rules with the exception of
a custom-designed mutation operator. The genotype of the DSP
rules consists of 32 discrete (∆w for all possible states of the NATs
andm, see Section 3.2) and four continuous values (η ∈ [0, 1],θ ∈
[0, 1],αh ∈ [0, 1],αo ∈ [0, 1]). Therefore, we encode a population of
individual genotypes represented by 36-dimensional discrete/real-
valued vectors.

The pseudo-code for the evaluation function is provided in Al-
gorithm 1. To find the DSP rules that can robustly learn the triple
T-maze navigation task independently of the goal position and start-
ing from a random RNN state, each evaluation called during the
evolutionary process consists of testing each rule for five trials for
each of the eight possible goal positions (for total of 40 independent
trials). The final positions (one goal in blue, seven pits in green) of
the triple T-maze environment are shown in Figure 3. We switch
the position of the goal with one of the pits to have eight distinct
goal positions in total. For all distinct goal positions, the rest of
the final positions are assigned as pits. Due to the computational
complexity, the maximum number of episodes per trial is set to 100.

The EP of an agent in an episode is computed as follows:

EP =

{
steps(Aдent), if the goal is reached;
Nsteps + d(XY (Aдent),XY (д)), Otherwise.

(10)
For each episode, the agent is given 100 action steps (Nsteps ) to
reach the goal. We aim to minimize the number of action steps
that the agents take to reach the goal (in case they do reach it);
otherwise, we aim to minimize their distance to the goal. Thus, if
the agent reaches the goal, the EP is the number of action steps the
agent took to reach to the goal (steps(Aдent)). Otherwise, the EP is
Nsteps+d(XY (Aдent),XY (д)), that is themaximum number of total
action steps, plus the distance between the final agent’s position
and the goal’s position. The distance between the agent and the
goal is found by the A* algorithm [30], which finds the closest path
(distance) taking into account the obstacles. Additionally, the EP
of an agent is increased by 5 every time the agent steps into a pit
(recalling that the EP is minimized).

Finally, the fitness value (the lower the better) of a DSP rule is
obtained by averaging EPbest found in each trial (i.e. for 5 trials and
8 distinct goal positions, in total of 40 trials). We should note that
the proposed design of the EP and fitness is chosen to introduce
a gradient into the evaluation process of agents. For instance, the
selection process is likely to prefer agents that on average reach
the goal with a smaller number of action steps, and with the least
number of interactions with pits.

To limit the runtime of the algorithm, we use a small population
size, 14 individuals in total. We employ a roulette wheel selection
operator with an elite number of four, which copies the four in-
dividuals with the highest fitness values to the next generation
without any change. The rest of the individuals are selected with
a probability proportional to their fitness values. We use 1-point
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Algorithm 1 Evaluation of an individual DSP rule

1: procedure Evaluate(x , trials,Nepisodes )
2: f itness ← 0
3: for each t ∈ trials do
4: for each д ∈ дoalPositions do ▷ Nдoals positions
5: EP0 ← in f , EPbest ← in f , e ← 1
6: RNN ← initializeRandom
7: while e ≤ Nepisodes do
8: EPe ← testNetwork(RNN )
9: m ← −1
10: if EPe ≤ EPe−1 then
11: m ← 1
12: end if
13: EPbest ←min(EPe ,EPbest )
14: RNN ← synapticUpdate(RNN ,x ,m)
15: e ← e + 1
16: end while
17: f itness ← f itness + EPbest
18: end for
19: end for
20: return f itness

/
(trials · Nдoals )

21: end procedure

crossover operator with a probability of 0.5. We designed a custom
mutation operator which re-samples each discrete dimension of
the genotype with a probability of 0.15, and performs a Gaussian
perturbation with zero mean and 0.1 standard deviation for the
continuous parameters. We run the evolutionary process for 300
generations and finally select at the end of the evolutionary process
the DSP rule that achieved the best fitness value.

4.4 Hill Climbing
We use the HC algorithm as a baseline to compare the results of the
DSP. The HC algorithm, visualized in Figure 1b, is a single-solution
local search algorithm [3]. It is analogous to the DSP, except the fact
that it is used as a direct encoding optimization approach where
domain knowledge (i.e. knowledge of the neuron activations) is not
introduced into the optimization process. Therefore, it provides a
suitable baseline to assess the effectiveness of the domain-based
heuristic used in the DSP.

A trial of the HC algorithm aims to find an optimum set of RNN
weights that allows the agent to reach a given goal position, starting
from the starting position. All the connection weights of the RNN
(644 in total) are directly encoded into a single real-valued vector
that represents an Aдent (candidate solution). At the beginning of
the algorithm, each variable of the Aдent is randomly initialized
in the range [−1, 1] with uniform probability. The Aдent is then
evaluated and assigned as Aдentbest , with fitness equal to EPbest .
After the evaluation, Aдentbest is perturbed using a perturbation
heuristic to generate a new Aдent as follows:

Aдent = Aдentbest + σ · N(0, 1) (11)

where N is a random vector whose length is the same as that of
Aдentbest , and each dimension is independently sampled from a
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Figure 5: The change of the best fitness during 15 indepen-
dent evolutionary processes for optimizing (a) the DSP rules
and (b) the HC parameters. The y-axes of figures are scaled
between 70–120 to allow a better visual comparison.

Gaussian distribution with zero mean and unitary standard devia-
tion, scaled by the parameter σ .

The Aдent is evaluated and if its EPe is smaller than EPbest ,
Aдentbest is replaced by the new Aдent . The perturbation and
evaluation processes are performed iteratively for 100 episodes
(evaluations). The overall performance of the HC algorithm is then
obtained by averaging the EPbest from 40 trials (consisting of 5
trials for 8 distinct goal positions), that is the same evaluation
procedure used to evaluate DSP rules.

The performance of the HC algorithmmay depend on the param-
eter of the perturbation heuristic. Thus, to provide a fair comparison
with DSP, we optimize the parameter σ ∈ [0, 1] with respect to the
hyper-parameters of the RNN model αh ∈ [0, 1] and αo ∈ [0, 1] by
using a GA with the same settings used to optimize the continu-
ous part of the DSP rules (see Section 4.3). We refer these three
parameters as HC parameters.

5 RESULTS
Figures 5a and 5b show the change of the best fitness value during 15
independent evolutionary optimization processes of the DSP rules
and the HC parameters respectively. We run all the experiments
on a single-core Intel Xeon E5 3.5GHz computer; therefore, we
fix the number of generations to 300, to keep the runtime of the
algorithm reasonably limited. In each generation, the best fitness
value obtained by the DSP rules and the HC algorithm with evolved
parameters are shown. A complete list of the evolved DSP rules can
be found on an extended version of this paper online1.

The initial DSP rules obtain an average fitness of 113.79, with a
standard deviation of 4.30; at the end of the evolutionary processes,
they achieve an average fitness of 81.39, with a standard deviation
of 4.02. On the other hand, the initial HC parameters obtain an
average fitness value of 98.71, with a standard deviation of 1.64;
and at the end of the evolutionary process, they achieve an average
fitness of 93.50, with a standard deviation of 0.87. We used the
Wilcoxon test to statistically assess the significance of the results
produced by the evolutionary processes [28]. The null-hypothesis
that the mean of the results produced by two processes are the same
is rejected if the p-value is smaller than α = 0.05. In our case, the
1An extended version of the paper with complete list of evolved DSP rules can be
found here: https://arxiv.org/abs/1903.09393.
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Figure 6: The distribution of the episodic performance of 40
trials using the best performing evolved DSP rule (a) andHC
parameters (b) trained for 100 episodes.

results of the evolutionary processes of DSP rules are statistically
different (better than the HC results) with a p-value of 3.3 × 10−6.

The distribution of the episodic performance of the best evolved
DSP rule and HC parameters are given in Figure 6. The trials with
an episodic performance smaller than 100 indicate that the goal is
achieved in that trial. Thus, 75% of the 40 trials reached the goal
when the agents are trained with the DSP rules. On the other hand,
only 35% of the trials reached the goal when the agents are trained
using the HC. A Wilcoxon rank-sum test (calculated on the EPs)
shows that the DSP rule is better with a p-value of 0.03. The results
show that the training process with 100 episodes does not seem
to be sufficient for the HC algorithm to provide results as good as
the results provided by the DSP rules. Moreover, it may be possible
to improve the success percentage of achieving the goal using the
DSP rule by increasing the number of episodes. To test this, we
separately tested the DSP rules and the HCwith evolved parameters
provided by the multiple runs of the GA on the same task settings
with 10000 episodes. The results are given in Figure 7 where we
show the change of the fitness values (average of 40 trials) w.r.t. the
episode number during the training of the DSP rules and the HC.

The best DSP rule achieved fitness of 54.27 and 44.10, and the
HC with the best parameters achieved fitness of 69.35 and 42.5 in
1000 and 10000 episodes respectively. The results indicate that the
DSP rules converge at a better fitness value faster than the HC.
However, when the number of episodes is increased (for 10000),
the HC achieves slightly (a fitness value difference of 1.6) better
performance than the best DSP rule. The p-values for the Wilcoxon
tests for the results at episodes 1000 and 10000 are 0.02 and 0.3; thus,
at 1000 episodes DSP rule is significantly better than HC, whereas
at 10000 there is no significant difference between their results.

We observe that some of the DSP rules seem to get stuck at a
local optimum after around 100 episodes, which may be due to the
fact that they were optimized for 100 episodes. Thus, to reduce this
effect we used an iterative re-sampling approach to randomly reset
all the weights of the networks (from the initial domain) at every
100 episodes without resetting the best found fitness value. Thus,
in the visualization, the fitness value does not appear worse than
the best fitness due to each re-initialization. The training process
generated by the iterative re-sampling based DSP rules is provided
in Figure 8. The best DSP rule achieves fitness values of 48.72 and
39.32 at 1000 and 10000 episodes. A perfect agent (an average of the

(a) (b)

(c) (d)

Figure 7: (a) The fitness values of the best evolved DSP rules,
and (b) the fitness values of the best evolved HC param-
eters, both independently tested for 40 trials with 10000
episodes. Figures 7c and 7d are magnified views between 1–
1000 episodes of (a) and (b) respectively.

(a) (b)

Figure 8: The fitness values of the best evolved delayed plas-
ticity rules tested for 40 trials for 10000 episodes, with itera-
tive re-sampling every 100 episodes. Figure 8b is amagnified
view of the same results between episodes 1–1000.

distances of starting and 8 goal positions found by the A* algorithm)
achieves a fitness value of 38.5. For completeness, we also performed
additional experiments for the HC using the iterative re-sampling
approach. However, we observed in this case that their results were
not better than the standard HC with the tested settings.

The distributions of the episodic performance of the best per-
forming DSP rule, HC with best parameters and DSP with iterative
approach at 1000 and 10000 episodes are given in Figure 9. We fixed
the minimum and maximum values of the x-axes of all figures to
35–125 for a better visual comparison. At 1000 episodes, all of the
agents in 40 trials reach the goal with the smallest number of steps
when the DSP rule with iterative re-sampling is used. On the other
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Figure 9: The distribution of the episodic performance of 40
trials using the best DSP rule, HC, and DSP rule with iter-
ative re-sampling approach at episodes 1000 and 10000 are
given in (a) (b), (c) (d), and (e) (f) respectively.

hand, 39 and 30 of the agents in 40 trials reach the goal when we
use the DSP rule and HC respectively. At 10000 episodes, all of
the agents in 40 trials reach the goal when the best heuristic from
each approach is used. However, in the case of the DSP rule with
iterative re-sampling, the agents reach the goal with the smallest
number of steps on average. Figure 10 shows the comparison of the
best evolved DSP2, iterative DSP, HC and iterative HC heuristics
with best evolved parameters. Iterative HC performs worse than
the HC. On the other hand, the HC was able to outperform the DSP
at around 5000 generations, while it could not perform better than
the iterative DSP.

6 CONCLUSIONS
When the reinforcement signals are available after a certain period
of time, it may not be possible to associate the activations of the
neurons during this period with the reinforcement signals, and
perform synaptic updates using Hebbian learning. In this work, we
proposed the NATs, i.e. additional data storage in each synapse to
keep track of neuron activations. We used DSP rules that take into
2 We have recorded the performance of the agents on the triple T-maze task after
training with the best evolved DSP rule for 100, 1000 and 10000 episodes. A video of
the experiment is available online at: https://youtu.be/J0WYMrAMSdU.
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Figure 10: The fitness of the best evolved DSP (standard and
iterative re-sampling variants) rule and the HC with best
evolved parameters (standard and iterative re-sampling vari-
ants) tested on 10000 episodes.

account the NATs and delayed reinforcement signals to perform
synaptic updates. We used relative reinforcement signals that were
provided after an episode based on the relative performance of the
agent in a previous episode. Since the NATs introduce knowledge of
neuron activations into the DSP rules, we compared their results to
an analogous HC algorithm that performs random synaptic updates
without any knowledge of the network activations.

We observed that the DSP rules were highly efficient at training
networks with a smaller number of episodes compared to the HC,
as they converge quickly at a better fitness than the HC. When they
were tested on a larger number of episodes on the other hand, they
seemed to be outperformed slightly by HC. We hypothesized that
this could be due to the fact that the DSP rules were optimized for a
relatively small number of episodes (100). When we tried a iterative
re-sampling approach, the DSP rules provided the best results. On
the other hand, the DSP rules introduce an additional complexity
that requires storing/updating four parameters per synapse during
the network computation, and looking-up the update rule based on
the activation patterns for each synaptic update.

We aim to apply the DSP on different ANN network models
(i.e. continuous neuron activations) with various sizes, and test it
on tasks with various complexity. It would also be interesting to
investigate the adaptation capabilities of the networks with DSP
when the environmental conditions change.
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A EXTENDED RESULTS
A.1 Evolved DSP rules

Table 2: A complete list of the continuous parts of the 15 distinct evolvedDSP rules and their fitness values after 10000 episodes.
Their discrete parts can be found in Table 3.

RuleID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
η 0.0317 0.0754 0.0720 0.0470 0.0302 0.0152 0.0422 0.0927 0.0569 0.2396 0.2082 0.4536 0.0507 0.2315 0.9619
θ 0.2080 0.5574 0.3530 0.2763 0.1923 0.5547 0.5492 0.1277 0.8238 0.0534 0.2351 0.3967 0.6040 0.3909 0.3672
αh 0.1931 0.1654 0.1523 0.2253 0.0985 0.0454 0.2291 0.1319 0.2833 0.0947 0.1272 0.4958 0.1334 0.1859 0.5027
αo 0.2376 0.2255 0.6770 0.0214 0.0445 0.1633 0.0626 0.4402 0.2538 0.0947 0.2613 0.1028 0.4862 0.2039 0.5758

Fitness 44.10 45.65 45.83 46.98 51.65 54.28 54.35 62.05 67.85 76.25 78.70 79.10 79.85 84.98 86.08

Table 3: A complete list of 15 distinct evolved DSP rules given by the columns ∆w1 through ∆w15. Their continuous parts can be
found in Table 2. First four columns specify neuron activation traces where the first and second bits represent activations of
pre- and post-synaptic neurons (i.e. 00 is when pre- and post-synaptic neurons are in a non-active state.), and the fifth column
specify the modulatory signalm.

N AT θ
m ∆w1 ∆w2 ∆w3 ∆w4 ∆w5 ∆w6 ∆w7 ∆w8 ∆w9 ∆w10 ∆w11 ∆w12 ∆w13 ∆w14 ∆w1500 01 10 11

0 0 0 0 -1 1 1 0 -1 -1 1 1 -1 0 1 1 0 0 0 -1
0 0 0 0 1 1 1 1 0 -1 0 1 1 1 -1 1 -1 0 0 1
0 0 0 1 -1 0 -1 -1 0 -1 -1 -1 -1 0 0 1 0 0 0 0
0 0 0 1 1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
0 0 1 0 -1 1 0 1 0 0 0 0 -1 1 1 0 1 1 1 0
0 0 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1
0 0 1 1 -1 0 0 0 -1 1 0 1 0 0 1 0 0 1 1 0
0 0 1 1 1 -1 1 -1 0 -1 -1 1 1 0 -1 0 1 0 -1 -1
0 1 0 0 -1 0 -1 0 1 -1 -1 -1 0 0 -1 -1 1 -1 0 0
0 1 0 0 1 -1 -1 -1 -1 0 0 0 0 -1 -1 0 1 -1 0 0
0 1 0 1 -1 0 0 0 1 0 1 -1 0 1 1 0 0 0 1 1
0 1 0 1 1 1 -1 1 1 1 -1 1 0 -1 1 1 1 1 -1 1
0 1 1 0 -1 1 0 1 1 1 0 0 -1 1 1 0 0 0 0 -1
0 1 1 0 1 1 -1 -1 1 -1 0 1 -1 1 1 1 -1 0 0 1
0 1 1 1 -1 0 1 1 1 -1 0 0 -1 1 -1 -1 0 0 0 0
0 1 1 1 1 -1 0 1 1 0 0 -1 0 0 -1 0 0 1 1 0
1 0 0 0 -1 0 1 1 -1 0 0 0 1 -1 -1 -1 -1 0 0 1
1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0
1 0 0 1 -1 0 -1 0 1 -1 -1 -1 -1 1 -1 -1 0 0 0 0
1 0 0 1 1 1 -1 0 1 0 -1 1 0 0 -1 0 0 -1 -1 -1
1 0 1 0 -1 0 -1 -1 -1 0 0 -1 1 0 -1 0 -1 0 0 1
1 0 1 0 1 0 1 -1 0 1 1 1 1 -1 1 1 1 0 1 0
1 0 1 1 -1 0 -1 0 1 -1 -1 1 -1 1 0 1 1 0 1 -1
1 0 1 1 1 0 -1 -1 -1 1 -1 1 1 0 0 1 1 0 -1 -1
1 1 0 0 -1 1 0 0 1 1 0 1 0 -1 -1 -1 -1 0 -1 -1
1 1 0 0 1 0 0 1 -1 -1 0 -1 1 -1 -1 0 -1 -1 0 1
1 1 0 1 -1 0 1 -1 -1 -1 0 -1 1 0 1 -1 1 0 1 1
1 1 0 1 1 1 1 1 -1 1 0 0 -1 0 0 0 -1 0 0 1
1 1 1 0 -1 0 0 0 -1 -1 0 1 0 0 0 -1 0 0 0 -1
1 1 1 0 1 0 -1 -1 0 -1 -1 0 -1 0 1 1 -1 0 0 1
1 1 1 1 -1 -1 0 0 1 1 -1 0 -1 -1 1 1 0 1 1 0
1 1 1 1 1 0 0 -1 -1 0 0 1 0 1 0 0 0 0 1 1
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