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Abstract. Fuel feeding and inhomogeneity of fuel typically cause pro-
cess fluctuations in the circulating fluidized bed (CFB) boilers. If control
systems fail to compensate the fluctuations, the whole plant will suffer
from fluctuations that are reinforced by the closed-loop controls. Accu-
rate estimates of fuel consumption among other factors are needed for
control systems operation. In this paper we address a problem of online
mass flow prediction. Particularly, we consider the problems of (1) con-
structing the ground truth, (2) handling noise and abrupt concept drift,
and (3) learning an accurate predictor. Last but not least we emphasize
the importance of having the domain knowledge concerning the consid-
ered case. We demonstrate the performance of OMPF using real data
sets collected from the experimental CFB boiler.

1 Introduction

Online estimation of fuel consumption in mechanical devices is a challenging
task due to noise, presence of outliers and non-stationarity of the signal. Me-
chanical devices typically are comprised of moving parts. The movements cause
interference in the observed sensor data. The challenge is to filter out the true
signal from the measured noise. In this study we develop a generic approach for
online prediction of the true signal values from the sensor measurements under
concept drift assumption. In particular, we address online mass flow estimation
problem for a circulating fluidized bed (CFB) boiler.

Different amounts of fuel can be added to the boiler at irregular time inter-
vals resulting in sudden drifts in a signal. Since the fuel is added mechanically
(feeding), the start and the end time of this process is not necessarily (as in
our case) available from the sensors as a direct measurement. Hence, in order to
estimate accurately the amount of fuel in the container at each moment in time
the algorithms should be able explicitly or implicitly handle these changes.

There is a lot of work on change detection and outlier detection, see e.g. a
recent review [3]. However, the boiler problem exposes specific combination of
change points and outliers at which existing change detection methods may fail.
Statistical change detection methods, which are based on comparing pieces of raw
data (e.g. [2]) do not take signal trends into account, which contain significant
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part of discriminatory information in the boiler problem. The noise and outliers
are not normally distributed making it hard to use statistical methods that
assume a particular distribution of the data [1]. Learner based change detection
(e.g. [5]) is not directly suitable for this problem due to the nature of the signal:
noise, trends and specific outliers. Burning and feeding stages, which are observed
in the fuel mass signal, are very different in nature and timing.

We design an online signal prediction method, which takes into account the
properties of mass flow signal (noise, trends, specific outliers, switch between
operational stages). The method is equipped with a tailored change detection,
which is needed to drop out the old signal from the training sample of the
predictor. In this study we take a data mining approach, we use no additional
input data from the boiler except the noisy signal itself.

For evaluation of the performance of signal estimators labeled data is needed.
There is no hard evaluation method for the actual amount of fuel present. It
could be generated by the domain experts. It is difficult to extract the actual
signal, since the data includes the effects of external influencers. In our approach
we use an offline best fit method as internal validation for the estimators.

The rest of the paper is organized as follows. In Section 2 we overview the
problem of a mass flow prediction in CFB boiler. In Section 3 we present our
solution for online mass flow prediction. In Section 4 the experimental evaluation
is presented and the results are discussed. We conclude and point out open
problems in Section 5.

2 Problem Description and Related Work

To better understand and control the operation of CFB boiler it is important
to know how much fuel mass is in the furnaces. Direct measurement is hardly
possible in practice from the technological perspective. Therefore, this is done by
estimating mass flow in the system that is equivalent to predicting the amount
of fuel in the fuel feeding system at each point in time.

We start by briefly explaining how the input signal is generated, discuss the
properties of the data and available solutions.

2.1 The Input Signal

The automatically available mass signal is a noisy estimate of fuel mass at each
operation time point. The mass of the fuel inside the container is measured by
a scale, sampled with a sample rate of 1 Hz.

The boiler is fed with fuel from the fuel container (‘bunker’) as depicted in
Figure 1. The fuel inside the container is mixed using a mixing screw. There
is a feeding screw at the outlet of the container, which transfers the fuel from
the container to the boiler. During the burning stage the mass of fuel inside the
container decreases (reflected by a decreasing amount of fuel in the data signal,
as pointed by arrow (1)). As new fuel is added to the container (the burning
process continues), the fuel feeding stage starts that is reflected by a rapid mass
increase (arrow (2)).
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Fig. 1. The origin of the input signal

There are three main sources of changes in the signal.
First, fuel feeding is a manual and non standardized process, which is not

necessarily smooth, it can have short interruptions (see Figure 2). Each operator
can have different habits. Besides, the feeding speed depends on the type of fuel.

Second, the feeding screw rotation adds noise to the measured signal. Besides,
fuel particle jamming often happens, slowing down the screw for some seconds
and distorting the signal estimate. Therefore, the reported mass inside the con-
tainer is not accurate, the signal contains extreme upward outliers in the original
signal, that can be seen in Figure 3.

Third, there is a low amplitude rather periodic noise, which is caused by the
mechanical rotation of the system parts. These amplitudes may become higher
depending on the burning setup.

2.2 Data Properties

Due to the processes described above, the fuel mass signal has the following
characteristics:

1. There are two types of change points: an abrupt change from burning to
feeding and slower but still abrupt change from feeding to burning.

2. There are asymmetric outliers, oriented upwards. In online settings the out-
liers can be easily mixed with the changes from burning to feeding.

3. There is a symmetric high frequency signal noise.

Non stationarity of a signal can be regarded as a form of concept drift [15,8]. We
focus on analyzing abrupt changes of a signal, which are caused by interchange
of the boiler operation stages (burning and feeding).
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Fig. 2. An example of a short burning
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Fig. 3. Upward outliers due to jamming
of the screw

Algorithmic change detection is not trivial as it might seem from the visual
inspection of the signal. The signal would be elevated if approximated directly
due to the asymmetric nature of the outliers (no opposite negative outliers).

Besides, there are short burning periods within the feeding stages, due to
possible pauses in a feed, which depend on human operator behavior. These
interruptions can vary from 5 to 20 seconds are difficult to identify.

We assume that the mass flow signal has a nonzero second derivative. It
implies that the speed of the mass change depends on the amount of fuel in the
container. The more fuel is in the container, the higher is the acceleration, thus
the more fuel gets into the screw. The weight of the fuel at higher levels of the
tank compresses the fuel in the lower levels and in the screw, the fuel density
is increased. Besides, compression and thus the burning speed depends on the
type and quality of the fuel.

Our ultimate goal is to learn an accurate online prediction of the signal given
that we can (1) catch and handle the changing behavior due to a process change,
and (2) ignore the noisy patterns generated by anomalous behavior or the
influence of moving parts.

2.3 Connection to the Related Work

Data mining approaches can be used to develop better understanding of the
underlying processes in CFB boilers, or learning a model to optimize its effi-
ciency [13]. Fundamental studies develop mathematical models for boiler opera-
tion [12,10,7,14], incorporating operational parameters in the models.

In this study we take a data driven approach for modelling the signal for
online operation using only the historical data. A straightforward approach to
non stationary time series prediction would be SARIMA model [4]. Seasonal pe-
riodicity is expected there, but in case of boiler mass flow prediction fuel feeding
periods are not regular. The patterns might differ in every feeding round as well
as the periods between two feedings. Our preliminary experiments confirmed
that SARIMA indeed did not give satisfactory results.

In our previous work [1], performance of several change detection methods
was compared in terms of detection accuracy and lag. In this study we develop
a tailor made online method for the signal prediction and do a thorough quan-
titative evaluation.
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Our present study differs from the previous works in the following way.

1. A change detection method tailored for trendy noisy drifting time series is
proposed.

2. Experiments with two different fuel types are carried out.
3. Quantitative comparison of the alternative prediction methods is performed.

3 Online Mass Flow Prediction

In this section we present our solution to online mass flow prediction. We start
with setting up a general framework, followed by depicting the base model,
change and outlier detection mechanisms.

3.1 General Framework

Let’s have the original signal X = (x1, x2, . . . , xt, . . . , xn). Having X as input we
want to obtain the actual mass flow signal Y that can be achieved by learning
a functional mapping of noisy sensor measurements to the true actual signal, so
that Y = F(X).

This problem has connection to the problem of concept drift [8,15] that refers
to unforeseen changes over time in the phenomenon of interest. Once a change
in the system stage happens (reasons are described in Section 2) the functional
mapping F might become outdated. The learners capable of handling concept
drift can be classified into proactive (explicitly detecting the change and drop-
ping out the old training sample) or reactive (using forgetting heuristics at each
time step to have the best adapted learner) [9]. The boiler data exhibits abrupt
changes, thus we employ a proactive approach.

The intuition behind the model is the following: at each point in time t we
fit a model F(x), using all or a subset of the historical data X. If a change
is detected, the old portion of the historical data is dropped out. A simplified
estimation procedure is presented in Figure 4, the steps are explained in more
detail in the following subsections.

3.2 Elimination of Outliers

The outliers are asymmetric, they do not have zero mean with respect to the
signal. If not eliminated before fitting the model (step 1 in Figure 4), they can
lead to significant distortion of the prediction, which as a result, will be elevated.

We know that the outliers are oriented upwards. For online detection of the
outliers we check if the difference between the given point and moving average
of the signal exceeds a threshold Trout. We replace the detected outliers with an
average of the two nearest neighbors.

Note that in an online setting the nearest neighbors for calculating moving
average are available only from the past, but not from the future, thus the
detection accuracy is expected to be lower than it would be offline. It is obvious
at the start of a feeding stage, when the distinction between the change and the
outlier can be noted only after some time lag.
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Online Mass Flow Prediction (OMFP) for a time point t + 1

input: historical signal X = {x1, . . . , xt}.

1. Eliminate the outliers from X to obtain X∗ = {x1, . . . , x
∗

oi, . . . , x
∗

oj , . . . , xt},

where x∗

oi =
xi−1+xi+1

2
is a replacement for an outlier.

2. Find the last change point c.
3. Learn the model F(x), using {xc, . . . , xt} as a training sample.
4. Cast the prediction ŷt+1 = F(xt+1).

output: ŷt+1.

Fig. 4. Online Mass Flow Prediction
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Fig. 5. Change detection using Lth order signal differences d(L) and moving averages
(MA). The upper (black) line represents the original signal and the lower (blue) is the
differentiated signal. Dashed line (green) is the threshold for a change. Circles indicate
the ground truth change.

3.3 Change Detection

The data exhibits trends, therefore change detection based on comparison of
raw data subsets fails, when applied directly. We are interested in detecting the
feeding stages, which are characterized by a steep increase in the signal value.
An intuitive solution would be to take the first order differences of the signal
d
(1)
t = xt − xt−1 and threshold these values. If d

(1)
t > 0 the system is at feeding

stage, if d
(1)
t < 0 the system is at burning stage.

Unfortunately, due to signal noise, the stages are undistinguishable directly
(see Figure 5a). We can try replacing the original signal with the moving average,
before taking the first order differences, this already gives apparent feed regions,
but that still is noisy (see Figure 5b).

We propose using Lth order differences d
(L)
t = xt − xt−L, applied on moving

averaged signal for detection of stage changes. The more noisy the signal is, the
larger lag is needed. In this case study we use L = 10 (see Figure 5c). Then we
use a threshold Trch to discriminate between feeding and burning stages. We
use a high threshold Trch = 100 to avoid false positives. The values were chosen
based on preliminary experiments with the training set.

Trch for changes is not to be mixed with Trout for outliers. The first is applied
to a differentiated signal, while the second is applied to raw data.



278 I. Žliobaitė, J. Bakker, and M. Pechenizkiy

Change detection might be equipped with a prior probability of switching the
stages, based on the total amount of mass present in the container.

3.4 The Predictor

The functional mapping F (step 3 in Figure 4) is designed as follows.
In Section 2 we assumed that the mass flow signal has a nonzero second

derivative. The true signal in a single stage can be modeled using the following
equation:

yt =
a · t2

2
+v0 ·t+m0+A·sin(ωfeed ·t+αfeed)+B ·sin(ωmix ·t+αmix)+e(t), (1)

where yt denotes the output of the scales at time t, a is acceleration of the
mass change, v0 stands for the speed of the mass change at time t0, m0 is the
initial mass at time t0; A and B, ωfeed and ωmix, αfeed and αmix are amplitude,
frequency and phase of the fluctuations caused by feeding and mixing screws,
respectively; e(t) denotes the random peaked high amplitude noise caused by
the jamming of the fuel particle at time t. We assume t0 was the time of switch
in the feeding/burining stages (change point Xc).

Since we are not interested in estimating the signal generated by the oscilla-
tions of the screw and the noise signal, we make a simplifying assumption that
these parts can be treated as a signal noise. Thus we choose the following model:

ŷt =
a · t2

2
+ v0 · t + m0 + E(t), (2)

where E(t) is the aggregated noise component and the other terms are as in (1).
In our estimator we use a linear regression approach with respect to the second

order polynomial given by (2). The model is inspired by the domain knowledge
of the underlying process in the boiler, therefore seem more reasonable choice
than alternative autoregressive models.

3.5 Learning the Predictor

To learn a regressor, the Vandermonde matrix [6] V, which elements vi,j are
the powers of independent variable x, can be used. In our case the independent
variable is time xi = ti−1 − t0, i = 1, . . . , T , where T denotes the number of
the time steps. If the linear regression is applied for a polynomial of order n
(pn(x) = pnxn + pn−1x

n−1 + . . . + p1x + p0), V is computed from the observed
time series of the independent variable as follows:

vi,j = xn−j+1
i , i = 1, . . . , T, j = 1, . . . , n + 1, (3)

where i and j run over all time samples and powers, respectively. Provided with
V the problem of polynomial interpolation is solved by solving the system of
linear equations Vp ∼= y with respect to p in the least square sense:

p̂ = argminp

T
∑

i=1

(
n+1
∑

j=1

Vi,jpn−j+1 − yi)2 (4)
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Here, p = [pn pn−1 . . . p1 p0]T denotes the vector of the coefficients of the
polynomial, and y = [y(x1) y(x2) . . . y(xT )]T = [y1 y2 . . . yT ]T is the time series
of the dependent variable that is indication of the scales. Provided that the n+1
columns of the matrix V are linearly independent, this minimization problem
has a unique solution given by solving the normal equation [11]:

(VTV)p̂ = VTy. (5)

This procedure is used to estimate the mass flow signal between change points.
If the process switches from fuel feeding to fuel burning or the other way around,
a new model is learnt on the new data.

3.6 Constructing the Ground Truth

The mass flow prediction is an unsupervised learning task in a way that the need
for prediction arises from the fact that there is no method to measure the ground
truth. However, to verify the validity of the model we still need a benchmark.

To obtain an approximation to the ground truth we use all the data set at once
offline. We employ similar procedure as presented in Section 3.2. We identify the
outliers by comparing the difference between the signal and the moving average
against a threshold Trout. Then we take a moving average of the modified signal
to obtain an approximation to the ground truth, which we associate as Y.

Next we identify the change points from burning to feeding stage and vice
versa (Cfeed and Cburn). We employ different approach than in the online change
detection. We use ADWIN method [2], which showed to be robust to false posi-
tives in semi-online settings [1]. We do not use it in online settings, because the
lag needed to detect the change after it happened is too large.

Given a sequence of signals, ADWIN checks whether there are statistically
significant differences between the means of each possible split of the sequence.
If statistically significant difference is found, the oldest portion of the data back-
wards from the detected point is dropped and the splitting procedure is repeated
recursively until there are no significant differences in any possible split of the
sequence. More formally, suppose m1 and m2 are the means of the two sub-
sequences as a result of a split. Then the criterion for a change detection is
|m1 − m2| > εcut, where

εcut =

√

1
2m

log
4n

δ
, (6)

here m is the harmonic mean of the windows m = 1
1

n1
+ 1

n2

, n is total size of the

sequence, while n1 and n2 are sizes of the subsequences respectively. Note that
n = n1 +n2. δ ∈ (0, 1) is a hyper-parameter of the model. In our experiments we
used δ = 0.3, n = 200 which were set during the preliminary experiments using
the training data.

ADWIN identifies Cfeed approximately. To get the exact change points we
search for a maximum and minimum of the moving average in the neighborhood
of the points identified by ADWIN. We validate the estimated ground truth by
visual inspection of a domain expert.
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Fig. 6. The three complete data sets A, B, and C used in the experiments

4 Experimental Evaluation

4.1 Data sets

In this study we use three mass signal data sets A,B and C, which are plotted
in Figure 6. The total length of A is different from B and C. A summary of the
data sets is provided in Figure 7. Number of feeds means the number of feeding
stages in the data set.

Data set A is used for training the model and selecting the model parameters.
Data sets B and C are used as testing sets, the model trained on A with the
same set of parameters is applied. Note that the level of noise and outliers in the
data sets are different. B and C represent two fuel tanks, operating in parallel,
therefore there are nearly twice as much of noise sources as in A.

Using training data set A we construct a representation of an average feeding
stage pattern, which is depicted in Figure 8. This pattern is obtained by parti-
tioning the approximated ground truth data into separate feeding sections. Then
the partitions are matched by the change points from burning to feeding and
averaged across.

Name Size Number Fuel
of feeds

A 50 977 24 bio
B 25 197 9 bio
C 25 197 6 coal

Fig. 7. Data sets used

0 100 200 300 400
0.8

1

1.2

1.4

1.6
x 10

4

Time (s)

M
as

s 
(g

)

Fig. 8. An average feeding stage pattern

4.2 Experimental Setup

We conduct numerical experiments to test for prediction accuracy and for change
detection accuracy. We chose moving average prediction as a ‘naive’ method to
compare the performance.

In addition to next step (t + 1) prediction experiments, we conduct a set of
experiments allowing a delay D in predictions. For example, having D = 5 we
would predict (filter) the signal xt, but will have the historical data available up
to time xt+4 inclusive. This gives a smoother moving average (nearest neighbors
from both sides are available) as well as it allows more firm verification of outlier
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Table 1. Mean average prediction accuracies. The best accuracies for each delay are
bold; the best overall accuracy over a single experiment is underlined.

Delay t+1 now t-2 t-4 t-9 t+1 now t-2 t-4 t-9 t+1 now t-2 t-4 t-9

Data A B C

Overall performance

OMFP 34.1 29.4 27.8 27.6 29.0 23.8 20.9 16.6 16.3 31.4 12.9 13.0 10.3 10.1 16.3
MA3 64.0 64.0 66.4 48.5 47.2 46.9 36.3 35.6 35.2
MA5 63.1 51.9 39.9 49.7 45.3 41.7 35.9 33.9 32.5
MA10 59.1 54.8 33.2 58.1 53.7 34.9 39.3 37.2 28.5
win50 53.0 45.0 44.4 44.4 44.4 40.3 34.3 32.0 32.0 32.0 19.7 16.7 15.2 15.2 15.2

all 1271 1269 1267 1265 1261 1313 1310 1308 1306 1301 1022 1021 1019 1019 1016
known 34.8 32.0 30.6 31.3 41.8 50.7 47.9 45.1 44.6 65.5 18.0 16.5 15.7 16.3 22.0

Feeding stages

OMFP 463 325 229 231 321 1531 952 601 682 968 519 334 182 180 325
MA3 308 181 115 733 510 434 260 163 119
MA5 438 294 77 1118 713 359 374 236 105
MA10 781 640 60 2081 1714 171 714 578 61
win50 751 646 577 577 577 1867 1602 1248 1248 1248 860 735 645 645 645

all 1757 1753 1748 1744 1731 3259 3253 3248 3242 3225 2264 2259 2255 2250 2237
known 441 315 236 244 290 1493 924 561 594 752 464 306 249 269 296

Burning stages

OMFP 30.0 28.7 28.5 28.2 28.1 22.1 19.7 16.9 17.2 34.9 10.7 11.4 10.5 11.3 19.1
MA3 60.8 62.4 65.8 48.1 46.9 46.8 35.6 35.0 34.8
MA5 57.7 48.4 39.4 48.3 44.4 41.5 34.5 32.8 32.1
MA10 48.3 45.9 32.8 54.6 50.6 34.9 36.0 34.3 28.3
win50 42.8 37.0 37.1 37.7 39.1 39.4 33.1 32.4 33.3 35.5 15.6 12.9 12.8 13.8 16.3

all 1264 1262 1261 1260 1257 1320 1317 1315 1314 1311 1015 1013 1013 1013 1013
known 29.1 28.0 28.1 29.3 40.7 50.6 47.7 45.7 46.0 69.1 16.2 15.0 15.5 16.9 25.1

and change detection. D is not to be mixed with L, which is a lag used by change
detection method itself (Section 3.3).

We do the following verification: the stage (feeding or burning) is defined to
be consistent if it lasts for not less than D time steps. Say at time t the system
is at burning stage and at time t + 1 we detect the feeding stage. Having a
delay D = 5 we are able to see the next four examples before casting the signal
prediction for time t + 1. Thus we check if the feeding stage sustains at time
t + 2, . . . , t + 5. If positive, we fix the change point, if negative, we cancel the
detected change and treat this as an outlier.

The domain experts suggested that maximum possible delay (D) in prediction
could be 10 sec.

Once a change is detected, old portion of the data is dropped out of the
training sample. We do not start using the 2nd order polynomial model until we
pass 10 samples after the change. For the first 2 samples we use simple moving
average rule: xt+1 = xt + s, where s is a linear intercept term obtained using
an average feeding stage pattern of the training data (A), which is presented in
Figure 8. For burning stage sc = −2 is used, for feeding stage sf = 81. If from
2 to 10 historical data points are available after the change, we fit the 1st order
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polynomial model, since the 2nd order approximation is too noisy with this few
amount of points.

4.3 Prediction Accuracy

The mean absolute errors (MAE) with respect to our approximation to the
ground truth (described in Section 3.6) are listed in Table 1. We present MAE
for the whole data sets and then present MAE’s for feeding and burning stages
separately. Delay t + 1 means prediction of change one second ahead, ‘now’
means real time signal estimation and t − 2, t − 4 and t − 9 means estimation
with respective delay of 2, 4 or 9 seconds.

For online prediction we set the following parameters. For outlier detection a
moving average with a lag of 9 and a threshold Trout = 400 is used. For change
detection a moving average with a lag of 8 and a threshold Trch = 100 was
used. the parameters were obtained from the preliminary experiments with the
training data set A.

‘MA3’, ‘MA5’ and ‘MA10’ stand for simple prediction by moving averages, the
number indicates how many instances are averaged. ‘win50’ uses the 2nd order
prediction model presented in Section 3, but instead of change detection a simple

Table 2. Confusion matrixes of detecting changes to feeding (ϕ) and burning (κ) stages
and outlier detection (o). P - positive, N - negative, T - true, F - false.

Training data set A

ϕ P N κ P N o P N

t+1 T 24 50946 T 12 50934 T 659 49784
F 26 0 F 38 12 F 543 10

now T 24 50946 T 12 50934 T 659 49784
F 26 0 F 38 12 F 543 10

t-2 T 24 50967 T 10 50953 T 659 49783
F 5 0 F 19 14 F 544 10

t-4 T 24 50969 T 10 50955 T 658 49783
F 3 0 F 17 14 F 544 11

t-9 T 24 50972 T 8 50956 T 660 49782
F 0 0 F 16 16 F 545 9

Testing data set B Testing data set C

ϕ P N κ P N o P N ϕ P N κ P N o P N

t+1 T 6 25162 T 2 25158 T 475 24597 T 6 25176 T 2 25172 T 362 24750
F 26 3 F 30 7 F 104 21 F 15 0 F 19 4 F 75 10

now T 6 25162 T 2 25158 T 475 24597 T 6 25176 T 2 25172 T 362 24750
F 26 3 F 30 7 F 104 21 F 15 0 F 19 4 F 75 10

t-2 T 6 25165 T 2 25161 T 477 24597 T 6 25177 T 1 25172 T 364 24750
F 23 3 F 27 7 F 104 19 F 14 0 F 19 5 F 75 8

t-4 T 6 25165 T 2 25161 T 477 24597 T 6 25177 T 1 25172 T 364 24750
F 23 3 F 27 7 F 104 19 F 14 0 F 19 5 F 75 8

t-9 T 6 25183 T 2 25179 T 489 24594 T 6 25191 T 1 25186 T 372 24746
F 5 3 F 9 7 F 107 7 F 0 0 F 5 5 F 79 0
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moving window of the 50 last instances is used for the model training at each
time step. ‘all’ uses the 2nd order prediction model with no change detection at
all, it retrains the model at every time step. Finally we include a benchmark of
the 2nd order model assuming known change points (‘known’). We assume with
this method that the change detection is 100% accurate.

MAE in ‘overall performance’ is rather close to MAE in ‘burning stages’ and
very different from ‘feeding stages’. This is because of uneven distribution of the
stages in the data. ‘Burning stages’ comprise less than 2% of the data.

4.4 Change Detection Accuracy

We report the performance of the change detection in online settings in Table 2.
For each method we present confusion matrixes of detecting sudden changes in
feeding (ϕ) and burning (κ) stages and detecting of outliers (o). For ϕ and κ
we allow 10 sec deviation. If a change is detected within the allowed region it is
considered as identified correctly. We require the outlier detection to be precise.

We visualize change and outlier detection in Figure 9. The solid (blue) lines
represent the true positives (TP) divided by the actual number of changes, the
dashed (red) lines represent the number of false positives (FP) divided by the
actual number of changes. The dotted black lines show the level of true changes
(i. e. 24 change points for data set A, 9 for B, 6 for C).
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Fig. 9. Change detection accuracy as a function of the prediction delay for A (top
row), B (middle row) and C (bottom row) data sets. Solid lines (blue) represent true
positives, dashed lines (red) represent true negatives.
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The number of FP is decreasing along with the increase in allowed prediction
delay. A delay allows to inspect the following signal values after the detected
change and if necessary cancel the alarm within the delay period.

The number of false negatives (FN) is relatively large. However, this does not
mean that the changes from feed to burn were not detected at all. In this setting
it means that they were not detected in time (within 10 sec interval).

4.5 Discussion

OMFP outperforms the competitive methods in terms of overall accuracy. How-
ever, for the feeding stage, simple moving average is the most accurate. Note that
the approximation to the ground truth was constructed using moving averages,
thus it could be expected that moving average performs well in this test setup.

OMFP method performance gets worse having a large delay in predictions.
This is likely due to a fixed number of the nearest neighbors for moving average
calculations, as we are using the same parameter settings for all the experiments.

Degradation of OMFP performance along with the increase in prediction de-
lay also suggests, that there might be more accurate cutting points than just
the change points themselves. Note that having a delay we allow canceling the
detected changes.

In Figure 10 extraction from the prediction outputs is provided. In t + 1
prediction (a) the prediction follows previous points almost as a straight line. It
is reasonable to expect, since in the fitted function 2nd order coefficient is mostly
0. Prediction t − 2 (b) is more curvy than t − 9 (c) likely due to more change
points identified and therefore more cuts in history.
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Overall accuracy indicates that OMFP method is more favorable than moving
average or alternative methods in the burning stage (see Table 1), while in the
feeding stage optimal model selection is yet to be seeked. Separate handling of
prediction in feeding and burning stages might be advantageous.

5 Conclusion

We developed and experimentally evaluated an online method for mass flow
prediction during the boiler operation. We evaluated the performance of the
method on three real data sets, including two distinct fuel types and two distinct
operating stages (single vs multiple fuel).

One of the challenges in this task is coming up with approximation for con-
structing the ground truth for the signal, which we handle by a combination
of moving average and responding for change and outlier points. We use this
approximation to evaluate the performance of the online predictors.

Change detection is sufficiently accurate in transition from the burning to the
feeding stage, where the incline in signal is rather sharp. However, the reverse
detection still has room for improvement.

OMFP method clearly outperforms the competitive methods in terms of over-
all accuracy, while at the feeding stage simple moving average is a more accurate
approach. The results suggest that separate handling of prediction in feeding and
burning stages is needed.

The next steps of the research would be to employ the presented method
in operational settings to see, what is the generalization on unseen cases. In
addition, the effects of the rotation screw on the signal will be explored. Further,
it would be interesting to come up with different models for different fuel types.
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