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Abstract
Nearly all secret sharing schemes studied so far are linear or multi-linear schemes. Although these
schemes allow to implement any monotone access structure, the share complexity, SC, may be
suboptimal – there are access structures for which the gap between the best known lower bounds
and best known multi-linear schemes is exponential.

There is growing evidence in the literature, that non-linear schemes can improve share complexity
for some access structures, with the work of Beimel and Ishai (CCC ’01) being among the first to
demonstrate it. This motivates further study of non linear schemes.

We initiate a systematic study of polynomial secret sharing schemes (PSSS), where shares are
(multi-variate) polynomials of secret and randomness vectors ~s, ~r respectively over some finite field
Fq. Our main hope is that the algebraic structure of polynomials would help obtain better lower
bounds than those known for the general secret sharing. Some of the initial results we prove in this
work are as follows.

On share complexity of polynomial schemes. First we study degree (at most) 1 in randomness
variables ~r (where the degree of secret variables is unlimited). We have shown that for a large
subclass of these schemes, there exist equivalent multi-linear schemes with O(n) share complexity
overhead. Namely, PSSS where every polynomial misses monomials of exact degree c ≥ 2 in ~s

and 0 in ~r, and PSSS where all polynomials miss monomials of exact degree ≥ 1 in ~s and 1 in
~r. This translates the known lower bound of Ω(nlog(n)) for multi linear schemes onto a class
of schemes strictly larger than multi linear schemes, to contrast with the best Ω(n2/ log(n))
bound known for general schemes, with no progress since 94’. An observation in the positive
direction we make refers to the share complexity (per bit) of multi linear schemes (polynomial
schemes of total degree 1). We observe that the scheme by Liu et. al obtaining share complexity
O(20.994n) can be transformed into a multi-linear scheme with similar share complexity per bit,
for sufficiently long secrets. For the next natural degree to consider, 2 in ~r, we have shown
that PSSS where all share polynomials are of exact degree 2 in ~r (without exact degree 1 in ~r

monomials) where Fq has odd characteristic, can implement only trivial access structures where
the minterms consist of single parties.
Obtaining improved lower bounds for degree-2 in ~r PSSS, and even arbitrary degree-1 in ~r PSSS
is left as an interesting open question.

On the randomness complexity of polynomial schemes. We prove that for every degree-2 polyno-
mial secret sharing scheme, there exists an equivalent degree-2 scheme with identical share
complexity with randomness complexity, RC, bounded by 2poly(SC). For general PSSS, we
obtain a similar bound on RC (preserving SC and Fq but not degree). So far, bounds on
randomness complexity were known only for multi linear schemes, demonstrating that RC ≤ SC

is always achievable. Our bounds are not nearly as practical as those for multi-linear schemes,
and should be viewed as a proof of concept. If a much better bound for some degree bound
d = O(1) is obtained, it would lead directly to super-polynomial counting-based lower bounds
for degree-d PSSS over constant-sized fields. Another application of low (say, polynomial) ran-
domness complexity is transforming polynomial schemes with polynomial-sized (in n) algebraic
formulas C(~s, ~r) for each share, into a degree-3 scheme with only polynomial blowup in share
complexity, using standard randomizing polynomials constructions.
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1 Introduction

Secret sharing is a primitive allowing a dealer to share a secret s among n players. The
secret sharing scheme implements a (monotone) access structure A ⊆ 2[n] if any A ∈ A can
learn the secret from their joint share vector (A is called qualified set), and any set B /∈ A
learns nothing about the secret (B is called unqualified set). Secret sharing was introduced
in ’79 by Shamir [19] and Blakley [9] for threshold access structures, and was followed by
thousands of works exploring the primitive itself, and its many applications found since.
Quite early on [7,15] put forward a first construction realizing any monotone access structure.
As a notable application, secret sharing is used as a key building block in various secure
Multi-Party Computation (MPC) constructions [6, 12].

Arguably, the most important complexity measure of a secret sharing scheme is its share
complexity (SC). Share complexity is the maximum, over the parties’ share length, received
from the dealer by any of the parties. A somewhat relaxed measure is its information
rate, which is the share complexity per shared bit. It can be viewed as “amortized” share
complexity, which is a useful measure if secrets are allowed to be long.

Unfortunately, there is a huge gap in our understanding of this measure. Namely, the
best known lower bound on share complexity for a general scheme is Ω(n/ log(n)) [10],
while the best known constructions for certain access structures have exponential complexity
O(20.637n) [2]. In [10], techniques from information theory are used, characterizing the
existence of a secret sharing scheme in terms of requirements on the entropy of various
distributions. The lower bound in [10] is on information rate (making it stronger) and
states an explicit access structure for which it holds. It is important to note that counting
arguments do not work for general secret sharing schemes.1

In spite of extensive research attempting to improve [10]’s lower bound, the best known
lower bound for general schemes has not improved since (even for implicit access structures).
A major motivation for this work is the hope that departing from previous approaches
relying mostly on information theoretic techniques, making use of algebraic techniques
could potentially yield improved lower bounds for large classes of schemes, and hopefully
eventually for general schemes. See [4] and references therein, for example, for a more
thorough discussion of the many positive and negative results on share complexity of secret
sharing schemes, as well as their numerous applications.

1 In a nutshell, even if randomness domain is polynomially bounded in the share complexity, we still get a
double-exponential number of secret sharing schemes of share complexity O(n/ log(n)), which is about
the number of monotone access structures.
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(Multi-)linear schemes

On the other hand, much more is known about the share complexity of the well studied family
of linear secret sharing schemes, and more generally multi linear secret sharing schemes.
In a nutshell, a linear scheme is a scheme, where each share is a linear combination of
elements from a finite field F, each of which is either the secret or a random variable, while
a multi-linear scheme is a scheme where the secret can be vector of elements from F and
the shares are a linear combination of these elements and the random variables. Linear
schemes are relatively easy to design, often exploiting the insights and intuition we have into
linear algebra. Perhaps a more important reason for their popularity is their “homomorphic”
property. In MPC, for example, linear schemes are a useful building block, as they allow
computing a sharing of the sum of shared secrets by locally adding the corresponding shares.
Even more importantly, for (multi) linear schemes better lower bounds on share complexity
are also known. In particular, counting arguments yield exponential lower bounds for non-
explicit access structures, and recently, an exponential lower bound has been obtained on the
share complexity of linear schemes for an explicit access structure. See next section for more
details. For now, the observation important for discussion is that as well as upper bounds,
lower bounds for (multi) linear secret sharing schemes heavily exploit the (linear-)algebraic
structure of the sharing scheme.

Motivated by the hope to narrow the gap between upper and lower bounds for share
complexity and information rate in secret sharing schemes, in this work, we continue the
work of [5], which initiates a study of the power of non-linear secret sharing schemes. The
main motivation in [5] for studying non-(multi) linear schemes is that most constructions
of secret sharing schemes so far were either linear or multi linear, so new insights both on
upper and lower bounds may be gained. Indeed [5] put forward several innovative secret
sharing schemes for access structures for which linear schemes of comparable complexity are
not known, or even do not exist under reasonable assumptions. In [5] the authors explore
both arbitrary non-linear schemes, and a specific generalization of linear schemes, they refer
to as quasi-linear schemes.

We have the additional motivation of obtaining new lower bounds for a broader class of
schemes than linear and multi linear ones, making a step forward towards improved lower
bounds for general schemes, which proved notoriously hard so far.

More specifically, we chose to explore the arguably natural extension of multi linear
schemes, we call polynomial schemes, or PSSS. A PSSS is defined as multi linear scheme over
a finite field F, where each share is some polynomial over F in the secret and randomness
elements, rather than necessarily a degree-1 polynomial (corresponding to a multi linear
scheme). We hope that the rich algebraic structure of polynomials - especially of polynomials
of low degree, say 2, would help develop techniques for lower bounds of more algebraic nature,
as they proved useful for linear and multi linear schemes. A slightly more general notion of
polynomial schemes is one where where the secret domain S is a subset of Fk, rather than
the entire set Fk. We refer to such schemes as generalized polynomial schemes.

Besides the potential for useful analytic techniques, we believe PSSS is a useful set of
schemes to study as it is very broad. In particular, as any function f : Fn → F can be
represented by an n-variate polynomial over F, it takes a moment to think why not every
secret sharing scheme can be represented by a PSSS with the same share complexity. The
reason is that a secret sharing scheme is a randomized mapping Sh : S ×R→ S1 × . . .× Sn,
rather than a deterministic function. In Sh, the randomness is uniformly sampled from a
finite set R. Now observe that in any PSSS scheme Sh′ : Fs

p × Fr
p over a finite field Fp, the

probability of outputting any share vector is a multiple of p−r. The straightforward way to
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convert from Sh into an equivalent scheme Sh′ as above is to embed S and R into Fs
p,Fr

p

for some s, r respectively, and evaluate the shares as polynomials corresponding to every
share Shi(s, r) (which are guaranteed to exist). More precisely, arbitrarily partition Fr

p into
|R| equal parts R′1, . . . , R′|R|, the embedding labels every element of R′j by rj and sets Sh′
accordingly. The problem with this approach in perfect secret sharing is that pr may not
be divisible by |R| for any prime p and any r. For instance, for |R| = 6 in Sh there is no
such embedding, as 1/6 can not be written as a

pr for any prime p and a ∈ N. We note that
the above approach of transformation into PSSS (over any field Fp) does work for statistical
secret sharing, by choosing a sufficiently large r and Rj ’s of almost equal size, making the
privacy “leakage” arbitrarily small, and keeping correctness perfect. In this work we focus
on the standard notion of perfect secret sharing schemes, though.

1.1 Our Results
Feasibility and share complexity lens

On the negative side, we show that a large subclass of PSSS with r-degree 1 is equivalent to
multi-linear schemes in the sense that for each such scheme, a multi-linear scheme for the
same access structure with (almost) the same share complexity per secret bit and over the
same field exists.

I Theorem 1 (Informal). LetM be a PSSS of degree 1 in ~r, where all share polynomials are
either missing monomials of (exact) degree c ≥ 2 in ~s and 0 in ~r, or all share polynomials
miss monomials of exact degree ≥ 1 in ~s and 1 in ~r. Then there exists an equivalent multi
linear schemeM′ with share complexity at most n times that ofM.

We conjecture that all schemes with ~r-degree 1 are as weak as multi-linear schemes, and
leave it as an interesting open problem. See Theorem 9 and Theorem 11 for a formal statement
and a proof of the above theorem. The proofs of both theorems are constructive, transforming
the r-degree 1 schemes into multi linear schemes. The validity of the constructions is proved
by rather simple linear algebraic techniques, but the constructions themselves, especially
that of Theorem 9 are somewhat surprising, in our opinion.

Moving to the next natural class of ~r-degree 2, we show that a certain natural subclass of
such PSSS only allows to implement a small subset of access structures (regradless of share
complexity).

I Theorem 2 (Informal). PSSS of degree exactly 2 in ~r over fields of odd characteristic
capture only access structures where all minterms are singletons.

That is, somewhat intuitively, linear terms are required in degree-2 schemes for implementing
useful access structures. The proof here relies on facts regarding the number of solutions of
equations of the form p(x1, . . . , xn) = b, where b is a quadratic form.

To contrast with the bounds in [14] on functions representable by polynomial-sized
randomizing polynomials with r-degree 2 and any constant degree in s (over small fields),
indicating the corresponding functions are relatively simple, falling in NC3. The reason why
their bound does not directly imply that PSSS of r-degree 2 and polynomial share complexity
works for relatively simple schemes, is that their bound holds for representations polynomial
in input size. In particular, they assume the randomness vector’s size is polynomially bounded
in the input vector’s size. For PSSS with poly(n) randomness and share complexity we could
indeed obtain a similar bound on the type of access structures for which such PSSS exists.
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However, lacking bounds on the randomness complexity (see the following section), assuming
only polynomial share complexity does not seem to suffice. 2

On the positive side, we observe that a surprising recent result indicating all monotone
access structures have a scheme construction share complexity O(20.994n) [18] can be replaced
with a multi-linear construction (instead of a non-polynomial scheme).

We show that there exists (multi) linear secret sharing schemes based on the multi-linear
CDS [1] with information rate O(1) for a certain class (not all) of access structures for a
sufficiently large share domain.3

I Observation 1. Let n > 0 be an integer. Then all monotone access structures on n parties
admit a multi-linear scheme over S = FO(2n)

2 with information rate O(20.994n) per party. (in
our language, degree-1 polynomial scheme over F2).

This observation demonstrates the power of amortization (increasing k) all else kept equal.
Additionally, we can obtain a polynomial scheme of (possibly) high degree with the same
share complexity.

I Observation 2. Let n > 0 be an integer. Then all monotone access structures on n parties
admit a polynomial scheme over S = F2O(2n) with information rate of O(20.994n) per party.

This is a direct corollary of Theorem 1. This holds due to the simple observation that
any polynomial scheme over Fk′

q , where q is a prime power (of any degree) can be replaced by
a scheme where S = Fqk′ , (that is, a scheme with k = 1) and the sharing polynomials are of
possibly higher degree than the original ones. This is done by thinking of the vector of field
elements in parties’ shares and the vector of random field elements as vectors of elements over
Fk′

q , and the secret as an element of Fqk′ . Then, the fact that any finite field F and function
F1+r′ → F can be represented as a multi-variate polynomial over F implies that the original
scheme can be implemented as a polynomial scheme with k = 1 over Fqk′ . The overall share
complexity overhead of this transformation is at most n, as the overall share complexity is at
least log2(|S|) to maintain perfect correctness. This general observation implies that there is
certain redundancy regarding the usefulness of various parameters (k, |F | and total degree)
of polynomial schemes towards reducing share complexity. Namely, if we are free to adjust F
and the degree arbitrarily, then without loss of generality k can be fixed to 1 without loss of
generality.

Randomness complexity lens

An additional aspect that we have studied is the randomness complexity of PSSS. Here we
study what is the best upper bound on the randomness complexity, as a function of the
share complexity of a scheme – RC(SC). That is, for every scheme in the (sub) class of
polynomial schemes with share complexity SC, there exists an equivalent scheme in the class
with the same share complexity and randomness complexity at most RC(SC). For linear

2 Still, if we had polynomial in share complexity upper bounds on randomness complexity, a modification
of [14]’s result would yield bounds on this type of limited constant degree PSSS which are stronger than
just counting-based bounds for constant-degree PSSS given suitable bounds on randomness complexity.
Namely, not only do access structures that cannot be implemented efficiently exist, but there are
candidates in relatively low complexity classes (under standard assumptions). See full version for details.

3 The following pair of results are simple observations, which may be described and understood within
the limits of the introduction, and we think they hope gain intuition on. The full proof of the first
observation relies on particular details of [1]’s construction and is deferred to the full version. The proof
of the second is simple and appears below.

ITC 2020
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and multi-linear schemes it is known that their randomness complexity is (without loss of
generality) upper bounded by SC (the equivalent scheme is also over the same field). To
the best of our knowledge, no such bounds appear in the literature for other broad classes
of schemes. In particular, we have not found a bound for general (perfect) secret sharing
schemes (we believe it was likely previously known).

In this work we put forward an upper bound for randomness complexity for general secret
sharing schemes as well as various types of PSSS.

I Theorem 3 (Informal). LetM be a secret sharing scheme. Then, there exists an equivalent
schemeM′ with the same share complexity SC and randomness RC = 2poly(SC) such that if
M′ is a PSSS of degree 2, then so isM′, and ifM is a PSSS then so isM. Also, in the
two latter cases,M andM′ are defined over the same field.

The full proof of the theorem appears in the full version. To prove the bound for degree-2
PSSS, we restate the privacy requirements into sets of equality of distributions restrictions for
single polynomials obtained using a variant of Vazirani’s XOR lemma (already satisfied byM).
In particular, we prove there exists (via an explicit construction) a linear mapping from the
vector space span(r1, . . . , rt) to a (much) smaller span(r1, . . . , rt′) and every share polynomial
p(~s, ~r) is replaced by p(~s, L(r1), . . . , L(rn)) so that privacy is still satisfied. The proof is
based on a somewhat involved case analysis based on the theory on output distributions of
quadratic forms. The bound for general secret sharing is proved using the following approach:
given a PSSS scheme, we state the correctness and privacy requirements for any secret
sharing scheme for the same access structure as an LP. Curiously, the LP formulation makes
use of the scheme we already have at hand (with potentially high RC), rather than just a
formulation of correctness and privacy. A solution to the LP determines the probabilities of
mapping each secret s to each share vector (~sh1, . . . , ~shn), which easily extends into a PSSS
over the same field and same share complexity. Briefly, the LP variables are probabilities
pi,k where ~si is a secret and ~shk is a share vector. Privacy implies that for all maxterms A,
and share vectors ~shA it must hold that∑

all k for which the projection

of ~shk on A is ~shA

pi,k −
∑

all k for which the projection

of ~shk on A is ~shA

pj,k = 0.

From correctness, it follows that for every minterm A, for every value ~shA all but at most
~s, the projection value ~shA is seen with probability 0. This constraint would result in
a degree-2 inequality in the p~s, ~sh’s. To make it linear, the trick is to require that the
0 probabilities are exactly as in the scheme M. That is, of every (A, ~shA) we require:∑
all k for which the projection

of ~shk on A is ~shA

and j /∈I

pj,k = 0, where I is either {i} for some i, or empty, and is fixed

according toM. Finally, the requirement that (pi,1, . . . , pi,l) is a probability vector is also
expressed by linear inequalities. We look for solutions with small randomness vector length
- as the LP has small integer entries, it easily follows that the probabilities are a multiple
of some 1/L, where L is not very large (exponential in LP dimensions). In particular,
this implies a scheme with R of size L and same share complexity. This alone, already
yields a bound on the randomness complexity (log(|R|)) of general (perfect) secret sharing
schemes. GivenM is a PSSS, to obtain a PSSS with the required parameters it is necessary
and sufficient that additionally the probabilities in the solution are powers of q = |F|. In
Theorem 14 we prove the former part, the proof of the stronger statement forM which is a
PSSS is deferred to the full version.
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All of the bounds above are exponential in SC and may serve as a proof of concept. A
strong motivation here is that good upper bounds on randomness complexity RC(SC) for
constant-degree PSSS would lead to good existential bounds on the share complexity of such
PSSS which we do not currently have (over small enough F). More concretely, for constant F
and poly(SC) randomness complexity there exist access structures with share complexity
2Ω(n) of PSSS over F.

We stress that all our upper bounds on randomness complexity are for perfect secret
sharing schemes, and are therefore require new techniques even in the general secret sharing
and unbounded degree PSSS settings. For general non-PSSS (or PSSS) statistically secure
schemes, partial derandomization techniques from the literature can be applied. In more detail,
for ε-statistical secret sharing, bounds of `(h) = O(SC + log ε) on randomness complexity
can be easily obtained by replacing the randomness with the output of a non-boolean PRG
(nb-PRG) [11] against the sharing algorithm, mapping from `(h) random bits to h random
bits as used by the sharing algorithm. By standard analysis similar to that in the proof of
Claim 2 in [3]’s full version, a random function from ` to h bits is a suitable nb-PRG. Such
results however are not useful for lower bounds, however. It is unclear whether nb-PRGs
can be applied to constant-degree PSSS to yield even statistical secret sharing schemes, as
the resulting sharing scheme does not necessarily remain low-degree (as the nb-PRG itself
may be of high degree). Thus, good lower bounds for low-degree PSSS even in the statistical
setting are left as an interesting open problem.

Roadmap

In Section 2 we provide the precise (standard) definition of secret sharing that we use, and
introduce some new definitions and notations for PSSS. In Section 3, we present our results
on feasibility and share complexity. Precise theorems and proofs of the randomness-related
results and a broader survey of previous work from the perspective of PSSS implicit in it are
deffered to the full version.

1.2 Open questions
In this work we have obtained some preliminary results on PSSS but many fundamental
questions remain open.

I Question 1 (Informal). Do there exist access structures, that have non-polynomial schemes
much more efficient than any PSSS?

See a discussion on this question in the full version, with certain evidence in the positive
direction. In a nutshell, it considers secret sharing constructions based on large matching
vectors families such as [17], which are known to exist over rings Zm of composite size but
provably do not exist when m is a prime.

Other interesting questions concern understanding the effect of various parameters of
PSSS on their power, in terms of achievable share complexity and information rate. There
are various interesting parameters. One useful parameter is k - the length of the vector space
Fk constituting the secret domain S. The distinction between k = 1 and arbitrary k is the
difference between linear and multi-linear schemes, when considering PSSS of total degree
d = 1. Generally, as we discuss below, the distinction between small secrets - k = 1 (or small
k) appears meaningful in terms of achievable information rate - see further discussion in the
full version. An Additional question to study is the effect of the particular field Fp on the
power of the induced PSSS class.

ITC 2020
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A concrete natural question is obtaining lower bounds for low degree PSSS, say of
degree d = O(1). A simple approach for k = 1 would be to bound |R| as a function of the
share complexity, and then rely on the fact that there are few different degree-d polynomials
in R + 1 variables (exponentially many in the share complexity) for a constant Fp. The
number of monotone access structures is double-exponential in n. For linear schemes, it is
well known that wlog. log(|R|) ≤ share complexity, leading to a 2Ω(n) lower bound on share
complexity of linear schemes over any fixed Fp. However, for any d > 1, there are no known
explicit bounds on |R| in terms of |share complexity|, so this approach does not currently
work. In this work we make a first step in the direction of filling in the missing component,
obtaining certain upper bounds on |R| (as a function of share complexity). This leaves the
following interesting question open.

I Question 2 (informal). Fix some finite field Fq, and d = O(1). Does there exist a
polynomial bound h(·) on |R| as a function of share complexity, such that any PSSS over
Fq of degree d has an equivalent PSSS over Fq and degree q with the same share complexity,
and |R| ≤ h(SC).4

2 Preliminaries

General notation

In this work we consider finite fields F. We write Fq to denote a field of size q (some prime
power). For matrices M1,M2 (of the proper sizes) over some field F, we denote by (M1|M2)
the matrix resulting from concatenating M2 to the right of M1, and (M1;M2) results from
concatenating M2 below M1. Vectors are denoted by ~v or just v when there is no risk of
confusion (with scalars), and are by default column vectors. We let Mi denote the i’th row
of M , and M i its i’th column. We let MI (M I) denote a submatrix with rows (columns)
restricted to I. For a matrix M ∈ Fn×n, we denote by N ∈ Fm×m the matrix resulting from
removing all row-column pairs such that M i = (MT

i ) = ~0.

Secret sharing

We use standard definitions of secret sharing schemes, following [4].

I Definition 4 ( [4]). Access Structure: For a set of parties {p1, ..pn} a subset A ⊆ 2{p1,..,pn}

is called monotone if B ∈ A and B ⊆ C implies C ∈ A. Sets in A are called authorized and
sets not in A are called unauthorized.

I Definition 5 ( [4]). Distribution Scheme: Let S,|S| ≥ 2 be a finite set of secrets. A secret
sharing scheme with secrets domain S, is a tuple M =< Sh, µ > where µ is a probability
distribution over some finite set R (called the set of random strings) and Sh is a mapping
from S×R to a set of n-tuples S1 × S2 × . . .× Sn, where Sj is called the domain of shares
of pj. For a set A ⊆ {p1, . . . , pn}, we denote Sh(s, r)A as the restriction of Sh(s, r) to its
A-entries. Sh satisfies the following properties:

Perfect Correctness. The secret s ∈ S can be reconstructed by any authorized set of
parties. That is, for any set B ∈ A (where B = {pi1 , . . . , pi|B|}), there exists a reconstruction
function ReconB : Si1 × . . .× Si|B| → S such that for every s ∈ S,

Pr[ReconB(Sh(s, r)B) = s] = 1 (1)

4 A sufficiently small super-polynomial bound on |R| would still imply non-trivial bounds on share
complexity, say better than the best known bound of Ω(n/ log n) for general schemes.
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We refer to sets in A as qualified, and to minimal qualified B in the sense that B is qualified
and no B′ ( B is qualified as minterms of A. We refer to maximal unqualified sets, in the
sense that B is unqualified but for all Pi /∈ B, {Pi} ∪B is qualified as maxterms of A.

Perfect Privacy. Every unauthorized set cannot learn anything about the secret (in the
information theoretic sense) from their shares. Formally, for any set T /∈ A, for every two
secrets a, b ∈ S, and for every possible vector of shares < ~shj >pj∈T :

Pr[Sh(a, r)T =< ~shj >pj∈T ] = Pr[Sh(b, r)T =< ~shj >pj∈T ] (2)

Observe that wlog., each share polynomial qi,j has free coefficient 0 (as any constant may
be locally added by Recon). We will assume this implicitly throughout the paper.

Sometimes, we will be interested in ε statistical secret sharing, where ε error in correctness
is allowed, and the distributions Sh(a, r)T and Sh(b, r)T are for unqualified T may be at
statistical distance up to ε. Our default notion throughout the paper is that of perfect secret
sharing as in Definition 5.

(Multi)Linear secret sharing schemes

The most studied and most commonly used class of secret sharing schemes is the linear secret
sharing schemes class. This class is subclass of multi-linear secret sharing schemes.

A secret sharing scheme is said to be multi-linear, if S = Fk, R = Fm for some finite field F,
and each share ~shi consists of g linear combinations li,1(s1, . . . , sk, r1, . . . , rm) . . . , li,g(s1, . . . ,
sk, r1, . . . , rm) over F. The scheme is called linear if additionally k = 1.

Complexity measures of secret sharing schemes

The information rate, IR of a secret sharing schemeM, is the ratio between the maximum
length of the shares and the length of the secret. Formally, IR(M) =
(maxi∈[n] log(|Si|))/| logS|, where the maximum is taken over all dealer’s random strings r.

The share complexity of secret sharing scheme,M, is SC(M) = maxi∈[n] log(|Si|).
We denote the randomness complexity of a secret sharing scheme M by RC(M)) =

dlog2(|R|)e - the number of bits required to represent an element of R.

2.1 Polynomials over finite fields
In this work we focus on the set Fq[y1, . . . , yn] of multivariate polynomials over finite fields.
We say a polynomial p(y1, . . . , yn) is of degree i if all monomials in the polynomials have
a cumulative degree of at most i. We say p has degree exactly i if all monomials in p are
of cumulative degree exactly i. Similarly, for a subset I ⊆ [n], we say p is of degree i in
xI = {xj |j ∈ I} if every monomial of p has cumulative degree at most i in the variables
from xI (similarly, for exact degree in xI). In a finite field F = Fp` , where p is prime, let
TrF(α) =

∑`−1
i=0 α

pi is the trace mapping from F to itself.5

2.1.1 Output distributions of degree-2 polynomials
Some of our results require some theory on degree-2 polynomials over finite fields. In
particular, we will reduce understanding the output distributions of (various subclasses of)
degree-2 PSSS to understanding the output distribution of a single degree-2 multivariate

5 In fact, the image of T rF is always contained in Fp.
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polynomial. For (any) polynomial in p(x1, . . . , xn) ∈ Fq[x1, . . . , xn], we let Nf,b denote the
number of solutions in Fn

q for the equation f(x1, . . . , xn) = b. Polynomials in F[x1, . . . , xn]q
where all monomials are of exactly degree 2, called quadratic forms. It is convenient to
represent quadratic forms f(x), by a matrix A ∈ Fn×n

q , where f(x) = xTAx. That is, Ai,j

is the coefficient of xixj . We will need the following existing theory characterizing Nf,b

for f which are quadratic forms over a finite fields, and general degree-2 polynomials over
fields of characteristic 2. All required theory and discussions appears in chapter 6 in [16],
and is included here for self containment. Also, some of the theorems we state here are
straightforward corollaries of [16], but were not explicitly stated there.

Fields of odd characteristic

Fix some finite field F of odd charactersitic. We let η denote the quadratic character on F∗.
That is, η(x) = 1 if x is a quadratic residue modulo q, and −1 otherwise. We extend its
definition to 0 via η(0) = 0.

We also let ν : F→ Z be ν(b) = −1 for b ∈ F∗, and ν(0) = q− 1. Recall a quadratic form
f over a characteristic field F in variables x1, . . . , xn is a polynomial where all monomials
are of degree exactly 2. It is known that a quadratic form f(x) in variables x = (x1, . . . , xn)
has a representation of the form f(x) = xTC ·Mf · CTx, where C is an invertible matrix
in Fn×n, and Mf ∈ Fn×n

q is diagonal, and all rank(Mf ) non-zero elements in the diagonal
are at entries M [i, i] for i ≤ rank(Mf ). Such a representation Mf is called canonical. Here,
Mf represents a quadratic form p′(v) = vTMfv in a new vector ~v = (v1, . . . , vn) of variables,
obtained from ~x via ~v = CTx. The number m ≤ n of non-zero elements on Mf ’s diagonal
is an invariant for all canonical representations of f . The function η(det(M−f )) is another
invariant, independent of the concrete canonical representation Mf . (see Theorem 6.21 in
[16] and discussion beforehand for more intuition). We denote the type of a quardatric form
f(x1, . . . , xn) over Fq of odd characteristic as (n,m, η), where (m, η) are the corresponding
values of the above invariants of equivalent canonical forms.

To understand the expression for Nf,b for a quadratic form f , it suffices to understand
Ng,b for the quadratic form g(v1, . . . , vn) in a new vector of variables v = (v1, . . . , vn), where
g(v) = vTMfv where Mf is a canonical representation of a quadratic form, as Nf,b = Ng,b

for all b ∈ Fq. We refer to such g as canonical forms. This holds as v(x) = CTx is a
bijection between the domain of f(x) and the domain of g(v) satisfying f(x) = g(v(x)) for
all x ∈ Fn

q . We say that f is equivalent to a canonical form g as above. We define the type
of a quadratic form f(x1, . . . , xn) of odd characteristic via the triple (n,m, η(det)) (with
m, η(det) invariants of canonical forms equivalent to f).

By the above discussion, we may assume wlog. that n = m, and calculate the number of
roots in that case. In the general case of f of type (n,m, η), compute the number of roots
for an equivalent canonical g of type (n = m,m, η), and multiply by qn−m.

The following theorem now follows directly by combining theorems 6.26, 6.27 from [16].
For a quadratic form f(x) we denote the number of solutions to the equation f(x) = b by
Nf,b,

I Theorem 6. Let p(x1, . . . , xn) denote a quadratic form over a finite field Fq of odd
characteristic of type (n,m, d). Consider a representation f(x) = vTMfv as above, x =
(x1, . . . , xn) ,and the vi’s are (independent, by choice of C) linear combinations of the xj’s.
Then
1. If m is even, then for every b ∈ F

Nf,b = qn−m(qm−1 + q(m−2)/2ν(b)η((−1)m/2)d).
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2. If m is odd, for every b ∈ F

Nf,b = qn−m(qm−1 + q(m−1)/2η(b(−1)m/2)d).

Following Theorem 6, we define the type of a quadratic form f(x1, . . . , xn) of odd
characteristic via (m,det). Evidently, the type of f determines the distribution of f(x) when
x is picked uniformly from Fn. Here we no longer assume m = n.

Fields of characteristic 2

Let F be a field of characteristic 2. Here we also have a canonical representation of quadratic
forms, albeit somewhat less simple. Namely, for every quadratic form f(x1, . . . , xn), there
exists a number m ≤ n, and a non-signular matrix C ∈ Fn×n such that f(x) = xTCMfC

Tx,
where Mf has one of the following forms:
1. (Type T = 1) m is even. Mf has 0’s everywhere except for entries M [2i − 1, 2i] for

1 ≤ i ≤ m/2 for some integer m ≤ n, which are all 1.
2. (Type T = 2) m is even. Mf has 0’s everywhere except for entries M [2i− 1, 2i] for all

1 ≤ i ≤ m/2 for some integer m ≤ n which are 1, M [m− 1,m− 1] = 1, and M [m,m] = a,
where TrF(a) = 1.

3. (Type T = 3) m is odd. Mf has 0’s everywhere except for entries M [2i − 1, 2i] for
1 ≤ i ≤ (m− 1)/2 which are all 1, and also M [m,m] = 1.

Similarly to the odd characteristic case, we refer to Mf as a canonical representation. By
Theorem 6.30 in [16], the number m and T of the canonical Mf is and invariant depending
only on f , and not on the particular representation f . Thus, we denote the type of a
quadratic form f(x1, . . . , xn) as (n,m, T ), according to n and the above invariants. For each
type, and b ∈ F, a characterization of Nf,b for quadratic forms is known, as follows from
Theorem 6.32 in [16].6

I Theorem 7. Let p(x1, . . . , xn) denote a quadratic form of type (n,m, T ) over a finite field
Fq of characteristic 2. Then
1. If T = 1, for every b ∈ Fq, Nf,b = qn−m(qm−1 + q(m−2)/2ν(b)).
2. If T = 2, for every b ∈ Fq, Nf,b = qn−m(qm−1 − q(m−1)/2ν(b)).
3. If T = 3, for all b ∈ Fq, Nf,b = qn−1.

2.2 Polynomial Secret Sharing Schemes (PSSS)
In this work, we put forward a natural generalization of (multi)-linear secret sharing schemes -
where shares are allowed to be general polynomials of ~s, ~r, rather than just linear combinations.
Namely:

I Definition 8 (PSSS). A polynomial secret sharing scheme (PSSS)M = (Sh, µ) is a secret
sharing scheme specified by (F, t, k, Sh) where F is a finite field, S = Fk is the domain of
secrets, µ is uniform over R = Ft, and t, k ∈ N+. The sharing function Sh(~s;~r)i returns
(pi,1(~s, ~r), . . . , pi,li

(~s, ~r)) as the i’th party’s share, where each pi,j(~s, ~r) is a (multivariate)
polynomial over F.

6 The theorem applies to m = n, but reasoning similar to the odd characteristic case implies Nf,b for
general m, n as a simple corollary.
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We will denote the corresponding classes of polynomial schemes over F via
PSSSregexp[s,r],F, where regexp is a (variant of) a regular expression in r, s, 1. The syntax
and semantics of the expression set is defined recursively as follows: r encodes the set of
polynomials {

∑
j∈[k] ajrj |aj ∈ F}, and s encodes {

∑
j∈[k] ajsj |aj ∈ F}, 1 encodes {a|a ∈ F}.

For a pair of regular expressions g1, g2; g∗1 encodes the set {p1 · . . . ·ph|h ∈ N,∀i ∈ [h], pi ∈ g1};
g1 + g2 encodes {p1 + p2|p1 ∈ g1, p2 ∈ g2}, and g1 · g2 encodes the set {

∑
j∈[h] p1,j · p2,j |h ∈

N,∀jp1,j ∈ g1, p2,j ∈ g2}. gi
1 is a shorthand for g1 · . . . · g1 with i appearances of g1. We also

say that a scheme M has degree at most (exactly) d in r (s), if each monomial contains at
most (exactly) d ri’s (si’s).

For polynomial schemesM, we measure share complexity in field elements, rather than
in bits. Formally, these measures will be denoted by SCF(M etc. (it always the case
IRF(M) = IR(M), as this measure is normalized by secret size).

Our definition is a generalization of the notion of multi linear secret sharing in a natural
direction, which potentially adds power over multi-linear schemes. We try to keep it as close
as possible to the definition of multi-linear schemes, and insist that the domain where secrets,
randomness and computation are performed is a finite field.7

A slightly more general notion of polynomial schemes is one where S ⊆ Fk, rather than
the entire set Fk.8 We refer to such schemes as generalized polynomial schemes.

3 On Feasibility and Share Complexity of PSSS

In the next two sections, we present our negative results. Our positive result on the power of
multilinear schemes is a rather simple observation based on existing work, and is deferred to
the full version.

3.1 Bounds on efficiency of degree 1 in r PSSS
We show that a large sub-class of polynomial schemes of degree at most 1 in r (PSSSs∗·r+s∗)
are not more powerful than multi-linear schemes, in the sense that they can not reduce share
complexity super-polynomially over multi-linear schemes.

Our first result proves that PSSSs∗·r+s can be replaced by a multi-linear scheme without
any loss in parametres.

I Theorem 9. For every schemeM = (F, t, k, Sh) in PSSSs∗·r+s, there exists a PSSSs+r

schemeM′ = (F, t, k, Sh′) for the same access structure and A with SC(M′) = SC(M).

Proof. Somewhat surprisingly, for any scheme PSSSs+r,F we build an equivalent multi-linear
scheme by replacing the coefficient polynomials of the ri’s in the shares (which have the
form p(s)) by constants resulting from substituting an arbitrary fixed vector s′ ∈ S into the
coefficients.

To prove this theorem, let us restate the sharing algorithm Sh more conveniently. For such
a scheme, Sh(s, r) can be represented as V s +Mr, where V ∈ Fa×k,M ∈ F[s1, . . . , sn]a×t.
Here each entry of M is a formal polynomial pi,j in s, a the total number of polynomials in

7 Note that some of the schemes appearing in [5] are quite close to “polynomial” schemes, but the domains
employed there are rings R which are (crucially) not fields, and the secrets and randomness do not
necessarily come from domains of the form Rt, Rk.

8 If no restriction on the s-degree are made, we may replace the subset S with any other subset of the
same size, without affecting the other parameters.
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the share vector, and V a constant. Ms is a shorthand for M(s) - substituting a concrete
value s as the secret vector, into the matrix of polynomials.

A function ρ : {1, ..., a} −→ {p1, ..., pn} labels each row by a party, so that party Pi

receives the shares corresponding to rows Hi = j|ρ(j) = i. For a set A of parties, we
abbreviate the submatrix pf M involved in generating A’s shares on secret vector s (aka
∪i∈AHi) as As = (VA|Ms,A).

B Claim 10. LetM = {F, t, k, (V |M)}, in PSSSs∗r+s,F, be a secret sharing scheme for an
access structure A. The schemeM′ where M is substituted by a constant matrix M~s1 for
some fixed secret ~s1 is a (multi-linear) secret sharing scheme for the same access structure.

Proof. Fix some secret vector ~s1 as in the statement of the claim. We prove the scheme
remains valid.

Correctness: Consider any ~s0 ∈ Fk. Now we will look at authorized set A. Let us look at
the two share distributions (VA|A~s1) · (~s1|~r1) and (VA|A~s0) · (~s0|~r0) of secrets ~s1 and ~s0,
where ~r1, ~r0 ∈ Ft are independent random vectors. The correctness ofM is equivalent to
stating that for all pairs ~r0, ~r1, we have:

(VA|A~s1) · (~s1|~r1) 6= (VA|A~s0) · (~s0|~r0)
⇓

VA · (~s0 − ~s1) 6= A~s1 · ~r1 −A~s0 · ~r0.

(3)

It is correct in particular for ~r0 = ~0. Which means that:

VA · (~s0 − ~s1) 6= A~s1 · ~r1 (4)

for all ~r1. Due to the fact that Equation 4 is correct for any ~s0 ∈ Fk and by the structure
of the secret domain, for any two distinct secret vectors ~s2, ~s3 ∈ Fk there exists ~s0 for
which ~s2 − ~s3 = ~s0 − ~s1. From equation 4:

VA · (~s2 − ~s3) 6= A~s1 · r1 (5)

For all ~r1 ∈ Ft. Let ~r2, ~r3 ∈ Ft. Writing ~r1 = ~r3− ~r2 we conclude that (as r1 in Equation 5
is arbitrary),

VA · (~s2 − ~s3) 6= A~s1 · ~r1

⇓
(VA|A~s1) · (~s2|~r2) 6= (VA|A~s1) · (~s3|~r3)

(6)

Which is precisely the definition of correctness for the new scheme (as ~r2, ~r3, ~s2 6= ~s3 are
otherwise arbitrary).

Privacy: Consider some secret ~s0 6= ~s1 ∈ Fk. It follows directly from privacy that for each
unauthorized set A, for any ~r0 ∈ Ft there exists ~r1 ∈ Ft for which:

(VA|A~s1) · (~s1|~r1) = (VA|A~s0) · (~s0|~r0)
⇓

VA · (~s0 − ~s1) = A~s1 · ~r1 −A~s0 · ~r0

(7)

In particular this is true for ~r0 = ~0. Then for any ~s0 there exists ~r1 ∈ Ft for which:

VA · (~s0 − ~s1) = A~s1 · ~r1 (8)
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Let ~s2, ~s3 denote a pair of secrets. Fix ~s0 for which ~s2 − ~s3 = ~s0 − ~s1. From 8 it follows
there exists ~r1 for which:

VA · (~s2 − ~s3) = A~s1 · ~r1 (9)

So for any vector r3 ∈ Ft we get:

VA · (~s2 − ~s3) = A~s1 · r1

⇓
VA · (~s2 − ~s3) = A~s1 · (~r3 − (~r3 − ~r1))

⇓
(VA|A~s1) · (~s2|~r3 − ~r1) = (VA|A~s1) · (~s3|~r3)

(10)

We prove that this implies privacy. Picking ~r3 at random, the vector ~r3 − ~r1 is a random
vector as well. Thus, the left hand size, where ~r3 is picked at random is distributed precisely
as the shares seen by A when sharing ~s2 inM′. This value is uniform over the affine subspace
VA~s2 + colSpan(A~s1). Similarly, the right hand side is also a random element of an affine
subspace of the form VA~s3 + colSpan(A~s1), and is distributed precisely as a share of ~s3 seen
by A at M ′. By Equation 10, these affine subspaces intersect, so they must be the same
subspace, since both are cosets of colSpan(A~s1). This concludes the proof. C

J

Next, we prove that a PSSSs∗+r scheme can be replaced by a multi-linear scheme up to
a small loss in rate due to a small reduction in the dimension k of the secret space. Here, it
will be convenient to specify Sh(s, r) by a pair (v(s),M), where v(s) = (v1(s), . . . , v`(s)) is a
vector of (multivariate) polynomials in s, and M is a constant matrix, and

Sh(s, r) = Mr +
∑
i∈[k]

si
v(i)

si
(s) = Mr + v(s) (11)

Such an expression exists as we assume all share polynomials have a non-zero free coefficient.
Here every v(i)(s) is a vector of formal polynomials, comprised of sums of all monomials in v
in which si’s degree is at least 1, and that were not included in v(j) for j < i (we construct
the v(i)’s iteratively, starting from i = 1).9 In this representation, si appears only in v(j)

with j ≤ i. We will sometimes denote Sh in PSSSs∗+r schemes as a pair (v,M) as above.

I Theorem 11. For every schemeM = (F, t, k, (v,M)) in PSSSs∗+r there exists a multi-
linear schemeM′ = (F, t, k − n, Sh) for the same access structure A with share complexity
SC(M′) ≤ n · SC(M).

Proof. We construct a multi-linear schemeM′ = (F, t, k′, (V ′|M)), by constructing a basis
B for V ′’s column space, where Sh(s, r) = (V ′|M)(s, r) is the sharing algorithm of the
multi-linear scheme (note V ′ here is constant). By Equation 11, for s′ = ~0, the distribution
of Sh(s′, r) is therefor uniform over the zero coset of Mr = colSpan(M). We conclude the
following:

9 Unlike in the previous section, it is more convenient to denote the formal polynomial vector by v, rather
than vs, in analog to Ms in the previous section, to simplify notation. We let v(s) denote the evaluation
of v on a specific vector s.
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B Claim 12. For all s′ ∈ Fk and every unqualified A, the vector vA(s′) is in colSpan(MA).

Proof. To see this, consider a representation of Sh as in Equation 11 of the form Sh(s′, r) =
Mr+v(s′) as above. Let vA denote v restricted to entries held by A. We have vA(0, s′2, . . . , s′k)
= vA(s′)− v(1)

A (s′) (since only v(1)
A depends on s1). Since by privacy ofM both vA(s′) and

vA(0, s′2, . . . , s′k) must belong to colSpan(MA) (as this holds for s′ = ~0), so does v(1)
A (s′). Since

s′ is arbitrary, we conclude that s′′1v
(1)
A (s′′) is in colSpan(MA) for all s′ = s′′. Now, comparing

Sh(s′, r) and s′′ = (s′1, 0, s′3, . . . , s′k), by similar reasoning to the above, we conclude that
v

(2)
A (s′) is also ~0 in F#rows(MA)/colSpan(MA). This follows from the fact that v(j)

A ’s for j > 2
are independent of s2, and the fact that v(1)

A (s′) and v(1)
A (s′′) are 0 in F#rows(MA)/colSpan(MA)

as we proved before, so it does not effect the coset. Similarly to the case of j = 2, by
induction on j we can prove that v(j)

A (s′) equals ~0 in F#rows(MA)/colSpan(MA). Now, as
vA(s′) =

∑
i v

(i)
A (s′), it also equals ~0, as required. C

From Claim 12, it follows that taking any V ′ with columns in span({v(s′)|s′ ∈ Fk}, (V ′|M)
immediately satisfies privacy. We will indeed pick our basis B out of span({v(s′)|s′ ∈ Fk}, so
we will only need to worry that the resulting scheme satisfies correctness. The construction
is as follows.

1. Initialization: Initialize B = φ (recall span(B) is {~0}).

2. Iteration i > 0: Find some s′ ∈ S, so that for all minterms A ⊆ [n], v(s′) belongs to a
coset of F#rows(MA)/colSpan(MA) that differs from coset(v) for all v ∈ span(B). Halt if
no such s exists. If it does, add one such V s to B.

We prove by induction that at the end of every iteration i ≤ max(1, k − n), we B is a
size-i independent set in F#rows(M) such that (B|M)(s, r) is correct for A with secret domain
S = Fi (and private, which we observed before).

First, observe that the above procedure will yield at least a single vector. For every s′ 6= ~0,
and every minterm A, vA(s′) is non zero in F#rows(MA)/colSpan(MA) by correctness ofM.
Now, any product α~s′ for α ∈ F will yield a different coset in F#rows(MA)/colSpan(MA), as
vA is non-zero. Thus, we can add vs(s′) to our set. By the inductive hypothesis, at the end
of iteration i, we have |F|i vectors already in span(B) - for clarity, denote B at the end of
iteration i by B(i). We observe that for every minterm A all projections vA(s′) are distinct
for different values s′ - which follows from correctness ofM. Therefor, going over all A’s, at
most

(number of minterms)|F|i ≤ 2n|F|i ≤ |F|i+n

vectors are excluded as candidates for the next vs(s′) to join B. Finally, by the condition
imposed on the new vector to join B, it follows that B(i+1) is a size-i+ 1 independent set, as
satisfies that (B|M) is correct for secret domain S = Fi+1 (the formal argument is similar
to the base case, observing that vA(s′) is non-zero as a coset of (MA|B(i)

A )). As there are
|F|k vectors inM’s domain to begin with, we conclude (from the proof of the inductive step
above) that at least k−n iterations can be made before running out of vectors to add, which
concludes the proof. J
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3.2 P SSSs∗+s∗r2 is very weak

In this section we will show that if the shares are from the class PSSSs∗+s∗r2 (no r-degree 1
part) captures only the access structures consisting of a set of singletons as its minterms.10

I Theorem 13. Let F be a finite field of odd characteristic. Then the class PSSSs∗+s∗r2,F
can only implement a simple set of access structures where its minterms are all singletons.

Indeed, observe that we can not expect a similar result for all fields, as for F2, for instance,
we have r2

i = ri, so one can represent any multi linear scheme over F2 as a PSSSs∗+s∗r2,F
scheme, by replacing every variable ri by r2

i , which are equal over F2. However, linear schemes
over F2 do capture all monotone access structures (e.g, via the formula-based construction
of [8]). See 2 for required background and notation on quadratic forms.

Furthermore, we have

I Observation 3. Let f1(x1, . . . , xn), f2(x1, . . . , xn) be two quadratic forms over a field Fq

of odd characteristic of (possibly same) types (n1,m1, d1), (n2,m2, d2) respectively. Then for
all b ∈ F− {0}, Prx←Fn(f1(x) = 0) 6= Prx←Fn(f2(x) = b).

The observation follows by simple case analysis. In some more detail, by Theorem 6,
N(f1(x = 0)) is either a single qx or of the form qx1 ± qx2 ± qx3 for x1 > x2 > x3, while for
b 6= 0, N(f2(x = b)) is of the form qx1 ± qx2 for x1 > x2. So, the probabilities (after dividing
both numbers by qn) must differ. This is regardless of the values of m1,m2.

Now, consider a party Ph that receives a share of the form

f(~s, ~r) = p(~s) +
∑

i,j∈{1,..,n}
i≤j

pi,j(~s)rirj = p(~s) + q~s(~r).

where each q~s(~r) is a polynomial in ~r with coefficients in the ring Fq[s1, . . . , sn], and p(~s)
is non constant over Fn

q . First consider the case when p(~s) is non-constant over Fn
q . We

prove that there exists a pair of secrets ~s1, ~s2 that Ph can distinguish by itself. To see this,
fix two vectors ~s1, ~s2 such that p(~s1) 6= p(~s2). By observation 3, it directly follows that the
unique probability (over the choice of ~r) of f(~s1, ~r) hitting p(~s1) equals the probability of
q~s1(r) hitting 0, while the probability of hitting values b 6= p(~s1), equals the probability
of q~s1(r) hitting corresponding non-zero values (indeed, adding a constant permutes the
distribution). A similar situation occurs with f(~s2, ~r) and the “spacial” point p(~s2). Thus,
the points with the “special 0-probability for the q~si

-part” for ~s1 and ~s2 differ for f(~s1, ~r) and
f(~s2, ~r). We conclude that the two distributions f(~s1, r), f(~s2, r) are distinct. To see this,
note that the contribution of b = p(~s1) to the statistical distance between f(~s1, r) and f(~s2, r)
is 1/2|Pr[q~s1(~r) = 0]− Pr[q~s2(~r) = p(~s1)− p(~s2)]|, which is non-zero by Observation 3.

Finally, let us look at all the remaining parties with only shares where p(~s) is constant
(zero, wlog. since the free coefficient is 0). Such parties receive only shares of the form
f(~s, ~r) = q~s(~r), where every q~s is a quadratic form. Therefore, for any ~s ∈ S we have
fp(~s,~0) = 0. Thus, all these parties together can not reconstruct the secret with probability
1, implying that the singletons above are the only minterms of the access structure. J

10Note that our results only rule out perfect schemes.
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A Bounding the Number of Random Variables in (general) PSSS

In this section we will present a bound on the number of random variables in (perfectly
correct and private) PSSS and general secret sharing schemes.

I Theorem 14. Let M denote a secret sharing scheme implementing an access structure
A (with perfect privacy and correctness). Then there exists an equivalent secret sharing
scheme with RC(M) = 2Õ(SC(M)). Furthermore, if M = (Fqd , t, k, Sh) is a PSSS, then
there exists an equivalent PSSS schemeM′ = (Fqd , t′, k, Sh′) with SC(M′) = SC(M) and
RC(M′) = 2poly(SC(M)).

Notation and some facts on Linear programs

For a PSSS scheme M = (Fqd , t, k, Sh), let us denote by sc the number of polynomial
evaluations (field elements) output by Sh. Thus, sc ≥ k (since the set of sharings must be at
least as large as S). We will need some theory of linear programs (LP). Here we will only
care about the feasible region of a linear program (LP), and will not have a target function
to optimize. Without loss of generality we consider LP’s comprised of systems of inequalities
of the form Ax = b, x ≥ 0, where A, b are over R, all b’s components are non-negative. We
denote such LP’s by (A, b). We may also assume without loss of generality that A ∈ Rm×n,
where m ≤ n, and A has full rank (m). We say that a solution to the system is a basic feasible
solution (BFS) if x only has non zero coordinates corresponding to an invertible submatrix of
A (taking a subset of columns). For a finite set B ⊆ Rm of vectors, a convex combination of
B is a linear combination

∑
b∈B αbb, so that

∑
b∈B αb = 1, and ∀b ∈ B,αb ≥ 0. The convex

hall of a set A ⊆ Rm is the set of all linear combinations of finite subsets B ⊆ A. We denote
it as CH(A). We say a set A ⊆ Rm is convex if CH(A) = A. An extreme point of a convex
set A is a point y ∈ A such that if y is a convex combination of {x, z} ⊆ A, then either x = y

or z = y. It is well known that the set of solutions of an LP is convex. We say an LP has a
bounded solution set X, if there exists an integer N , such that `∞(x) ≤ N for all x ∈ X.
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For a set A = {a1, . . . , at} ⊆ Rm, the affine dimension of A, aff(A), is the dimension of
{a2 − a1, . . . , at − a1}. We say that a set A has full affine dimension if aff(A) = |A| − 1.

I Theorem 15 ( [13], chapter 2). The set of extreme points B of a bounded non-empty solution
set X of an LP (A, b) ∈ Rm×n×Rm×1 is non empty, and X = CH(B). Furthermore, the set
B is precisely the set of BFS’s of (A, b). Furthermore, Any solution p of (A, b) is a convex
combination of a subset {p1, . . . , p`} ⊆ B of full affine dimension, where ` ≤ m+ 1.

I Lemma 16 (Cramer’s rule). Let A ∈ Rm×m denote an invertible matrix. Then, A−1
i,j =

|Ai,j |/|A|. Here Ai,j is the (i, j)’th cofactor of A, obtained from removing the i’th column
and j’th row from A.

I Lemma 17. Let A ∈ Rm×m denote a matrix whose entries ai,j all satisfy |ai,j | ∈ {0}∪ [δ, 1]
for 0 < δ. Then every entry a′i,j in A−1 satisfies

|a′i,j | or |a′i,j | ≥ δm/mm.

Additionally, if the ai,j ’s are integers, then the |a′i,j |’s are multiples of a constant 0 < L ≤ mm.

The proof of the above lemma follows directly from Lemma 16. In the following we only
prove the bound for general schemes. The full proof for PSSS appears in the full version.

Proof of Theorem 14. Let us consider the given polynomial schemeM as in the theorem
statement. We denote Q = qd, SC = QSC(M), and sc = logQ(SC).

We denote the share vector output by Sh for any ~s ∈ S by ~sh = (sh1, ..., shn) ∈ Fsc
Q ).

For every secret ~si ∈ S, and for every possible ~shj ∈ Fsc
Q let us denote by pi,j the probability

to receive ~shj as the share vector on input ~si. (For each ~si, there are Qsc such probabilities.)
Now we will build a matrix that will hold all the constraints on the probabilities pi,j for

a schemeM′ with S, S1 × . . .× Sn for A. Let pM denote the probabilities vector induced by
M. Our set of requirements will be stronger than stating thatM′ is a secret sharing scheme
for A, as it will additionally require thatM′ is “similar” toM in a certain way. A solution
will be guaranteed to exist, as pM is such a solution (M is “similar” to itself).

The constraints are divided into 3 sets:
privacy: For any max unqualified set A, for every two secrets si, sj ∈ S the probability of
getting the same shares (for this specific set) should be equal. That is to say, for any two
secrets si, sj ∈ S and projection of shares on A, ~sh

′
(some specific share that parties in A

receive). ∑
all k for which the projection

of ~shk on A is ~sh
′

pi,k =
∑

all k for which the projection

of ~shk on A is ~sh
′

pj,k

Reorganizing, we get.∑
all k for which the projection

of ~shk on A is ~sh
′

pi,k −
∑

all k for which the projection

of ~shk on A is ~sh
′

pj,k = 0 (12)

correctness: For any minimal qualified set A, for every two secrets si, sj ∈ S there are no
share ~shk for which both pi,k and pj,k are not zero. That is to say, for every two secret si ∈ S
and projection of shares on A ~sh

′
(some specific share that parties in A receive), for each sj
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so that Pr(Sh(sj , r)A = ~sh
′
) = 0∑

all k for which the projection

of ~shk on A is ~sh
′

and j 6=i

pj,k = 0 (13)

By correctness, for each ~sh
′
, there are at least |S| − 1 such j’s.

probability restrictions: For any secret ~si ∈ S∑
j

pi,j = 1 (14)

That is to say, that for every secret the sum of all the probabilities to get any share is
1.Another constraint is for every i and j.

0 ≤ pi,j (15)

We stress that the privacy and probability constraints follow from the requirements on
any secret sharing scheme implementing A. The correctness constraints are constructed
based on the concrete schemeM.

The matrix M1 defining our LP will be built from these three sets of equations 12, 13, 14,
where the variables are the the pi,j-s. In addition we will remove all the rows that depend
on other rows, so our matrix M1 will have a full rank. Let us denote:

r = 2n|Fk
Q|SC ≤ SC3 (16)

Here the inequality holds since n, k ≤ sc. There are at most r columns in M1 thus and at
most r rows.11

This LP is solvable since pM is a solution for it. The right hand side b is the vector
obtained from Equations 12, 13, 14 (0, 0, . . . , 0, 1, . . . , 1) (with |S| 1’s at the end).

I Observation 4. In the LP (M1, b) above, all the entries in M1 and in b are 1, −1 or 0.

Now, any solution ~p′ to the LP specified by (M1, b) defines a secret sharing scheme for
the desired access structure. Namely, assuming all entries in a solution ~p are multiples of
some 1/L for some integer, we can set R to be of size L, and an arbitrary mapping Sh from
(~s, ~r)’s to share vectors in Fsc

Q that agree with the probabilities in ~p.
The problem is that if the elements in ~p′ will be not multiples of Q−t′ for some t′ it will

be impossible to present this secret sharing scheme with polynomials over FQ. We know one
solution pM that has probabilities which are multiples of Q−t for some, possibly very large,
t (the one induced byM). Now we want to show that there exists t′ = 22poly(SC) , for which
there is solution p′ to (M1, b) where all probability pi,j are multiples of Q−t′ , which will
prove the theorem. By theorem 15, there is a set of BFS’s G = {p1, ..., p`} for the system, so
that there exists a solution (the one induced byM) pM ∈ CH(G).12. Next, we prove that
the entries of all pi ∈ G are of “low” resolution.

B Claim 18. For every g ∈ G, there exists an integer 0 < L ≤ r2r, every entry gi of g is a
multiple of 1/L.

11The second inequality follows from correctness of the scheme.
12Note that (M1, b)’s solution set is indeed bounded, as all coordinates of a solution p are in the range

[0, 1].
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Proof. This follows from the fact that the BFS in G is of the form M−1
1,Hb, where M1,H is a

subset of M1’s columns corresponding to an invertible (square) matrix so that the entries
in b corresponding to the other columns are all 0’s. As M1, b have entries in {0, 1,−1} by
Observation 4, the claim follows from Lemma 17. C

For any G, if the resulting scheme M′ is not required to be a PSSS, then we are
also done, as we can take (e.g.) p1 ∈ G as a basis for the scheme, and set R of size
L ≤ 22r as guaranteed by Lemma 18. The randomness complexity of the resulting scheme is
log2(L) = 2Õ(SC(M)). Additionally, for the case ofM is a PSSS,M′ is as in the theorem if
|G| = 1, then p1 must be a single solution, and its entries are already multiples of qd, and we
are done, as M ≤ r2r ≤ 22Õ(SC(M)) . Therefor, the solution vector p1 induces a PSSS where
t = logQ(M) = 2Õ(SC(M)). This is also the case if some BFS pi ∈ G happens to have entries
which are all multiples of Q−t′ for some t′. Otherwise, we prove that CH(G) contains some
solution where all entries are multiples of Q−t′ where t′ = 2poly(SC). See the full version for a
proof, which is somewhat technically involved, but uses only some basic number theory. J
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