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Abstract
The bottleneck-complexity (BC) of secure multiparty computation (MPC) protocols is a measure of
the maximum number of bits which are sent and received by any party in protocol. As the name
suggests, the goal of studying BC-efficient protocols is to increase overall efficiency by making sure
that the workload in the protocol is somehow “amortized” by the protocol participants.

Orlandi et al. [28] initiated the study of BC-efficient protocols from simple assumptions in the
correlated randomness model and for semi-honest adversaries. In this work, we extend the study
of [28] in two primary directions: (a) to a larger and more general class of functions and (b) to the
information-theoretic setting.

In particular, we offer semi-honest secure protocols for the useful function classes of abelian
programs, “read-k” non-abelian programs, and “read-k” generalized formulas.

Our constructions use a novel abstraction, called incremental function secret-sharing (IFSS), that
can be instantiated with unconditional security or from one-way functions (with different efficiency
trade-offs).
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1 Introduction

Secure Multi-party Computation (MPC) [31, 19, 6, 11], allows a set of mutually distrusting
parties to perform a joint computation of their private inputs in a secure way, which essentially
means that no adversary corrupting a subset of parties can learn more information than the
output of the joint computation (privacy), nor can they affect the correctness of the output
(other than by choosing their own inputs).
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11:2 MPC with Low Bottleneck-Complexity: Information-Theoretic Security and More

The complexity of MPC protocols is most commonly analyzed in terms of three fun-
damental metrics, namely communication complexity (that measures the total number of
bits communicated in the protocol), round complexity (number of sequential interactions
in the protocol) and computation complexity (that captures the computational resources
parties need to execute the protocol steps). In this paper, we focus on a more fine-grained,
comparitively less-explored metric called bottleneck complexity (BC) which was introduced by
Boyle et al. [9]. This metric, which can be informally defined as the maximum communication
complexity of any party captures the load-balancing aspect of MPC protocols – for e.g. a
protocol where everyone sends a bit to a central party would have O(n) BC (incurred by the
central party, where n denotes the number of parties) as opposed to a protocol where everyone
sends a single bit to its neighbour in a chain-like fashion, which has O(1) BC. Notably, both
these protocols have the same communication complexity but the communication in the
latter is more balanced among the parties as captured by its lower bottleneck complexity.

The works of [9, 28] focused on designing MPC protocols with bottleneck complexity
sublinear in the number of parties, which is particularly interesting for large-scale settings
where n is huge. [9] presented a FHE-based compiler that transforms insecure protocols into
secure protocols while preserving the bottleneck complexity. However, FHE is still relatively
inefficient, and is only known under a more limited set of assumptions - roughly, variants
of LWE. In light of this, [28] initiated the study of designing protocols with low bottleneck
complexity in the preprocessing model, under minimal computational assumptions (such
as one-way functions and linearly homomorphic encryption, which can in turn be based on
traditional assumptions such as discrete logarithm and factoring).

In this work, we extend the study of [28] in two primary directions: (a) to a larger and
more general class of functions and (b) to the information-theoretic setting. We additionally
consider a more extended notion of g-BC-efficiency to capture protocols which have BC
of poly(g(n), λ), where λ denotes the security parameter1. More specifically, [28] focused
on protocols with O(1)-BC-efficiency (i.e. with poly(λ) BC, independent of n) and log-BC-
efficiency (i.e. with poly(log(n), λ) BC); while we consider a more general notion of g-BC
efficiency, where g is any sublinear function. This allows us to work with a somewhat
extended parameter setting – Consider a function f(x1, ..., xn) where each xi has ℓ bits, and
the (common) output is z bits. The notions of BC-efficiency become meaningful only if these
parameters ℓ and z are typically small. In the prior work of [28], these are assumed to be
constant or polylogarithmic in n. In this work we extend our quest to settings where ℓ and z

are sublinear in size (o(n)), as this would still allow for constructions satisfying the extended
notion of BC-efficiency. Moreover, the constructions of [9, 28] have BC that scales with the
security parameter λ (where λ is typically ω(log(n))) in computational settings), which is
avoided by our information-theoretic constructions.

Related Work. The most relevant work to ours is [9, 28] (whose results we discuss above).
There are several works in the MPC literature that focus on optimizing communication
complexity, some of which we mention below. The works of [12, 15, 24] focus on designing
communication-efficient protocols in the information-theoretic setting with correlated ran-
domness. Interestingly, the notion of bottleneck complexity and communication complexity
are the same for the two-party setting. The work of [27] presented a compiler that transforms
an insecure protocol to secure one while preserving communication complexity. [13, 14, 29, 1]
focus on optimizing communication complexity related to the circuit size.

1 For information-theoretic protocols with perfect security where there is no dependency on λ, g-BC
efficiency refers to BC of poly(g(n)).
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The constructions of [21, 23, 20] involve a chain-like interaction pattern (similar to our
constructions). However, these constructions achieve a weaker notion of security (namely,
residual security) as they are restricted to a single chain traversal (unlike our constructions
which typically involve multiple traversals over chain). The efficient non-interactive multiparty
computation (NIMPC) constructions in [22, 16, 4] also achieve this weaker security.

Our goal of minimizing bottleneck complexity is somewhat similar in spirit to the
massive parallel computation model of [18, 17] which focuses on minimizing the storage
and communication of servers. The works of [8] and [25] design protocols that optimize
metrics that are closely related to bottleneck complexity (namely, communication locality
and message complexity).

For further related work, we refer to references therein.

1.1 Our Contribution
Our main contribution is constructing BC-efficient protocols in the correlated randomness
model for various interesting function classes. Further, we introduce a new primitive, namely
Incremental Function Secret Sharing (IFSS), which not only serves as a neat abstraction
of BC-efficient computation, but also allows us to cast our constructions in a generalized
framework that captures both computational and information-theoretic variants.

All our constructions are secure against a semi-honest (passive) adversary who can
corrupt up to n − 1 among the n parties. Our computational constructions are based on
garbling schemes, which rely on one-way functions. Our information-theoretic constructions
(satisfying perfect security) are a BC-friendly extension of the OTTT (one-time truth-tables)
construction from [24]. We elaborate on our contributions below.

New primitive: Incremental Function Secret Sharing (IFSS). In Section 4, we introduce a
new primitive, namely, Incremental Function Secret Sharing (IFSS), which essentially allows
a set of parties to evaluate a hidden function on a joint public input. This tool is a clean
abstraction of the core ideas of BC-efficient evaluation in our constructions.

At a high-level, this primitive can be viewed as a variant of function secret sharing
(which additively shares a function among a set of evaluators, enabling them to compute
output shares which can be aggregated to obtain the output), with the difference that the
output shares are aggregated incrementally on a chain, in a BC-efficient manner. IFSS can
be instantiated with garbled circuits or one-time truth tables (OTTT), enabling us to unify
our computational and information-theoretic variants. We believe this primitive to be of
independent interest and a useful building block for BC-efficient protocols.

Abelian Programs. Recall that an abelian program h can be expressed as h(X1, . . . , Xn) =
f(

∑n
i=1 Xi) for some f : G → {0, 1}, where G denotes an abelian group. In Section 5,

we use our IFSS primitive to generalize the approach of [28] that constructs BC-efficient
(computational) protocols for abelian programs. Plugging in the information-theoretic OTTT-
based instantiation of IFSS yields an information-theoretic BC-efficient protocol for abelian
programs with BC of O(log |G|). For completeness, we additionally demonstrate how using
the garbled-circuit based instantiation of IFSS results in the computational protocol of [28].

As an interesting application of BC-efficient abelian programs, we demonstrate how it
could be used to compute the maximum among n values as y = max(X1, X2, . . . , Xn) in a
BC-efficient manner. This can be extended to compute f(max(X1, X2, . . . , Xn)), where f is
any arbitrary function.

ITC 2023
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“Read-k” Non-Abelian Programs. Briefly, a non-abelian program extends the notion of an
abelian program to non-abelian groups. Here, h(x1, . . . , xn) : {D}n → {0, 1} is represented
as h(x) = g(π1,xi1

· . . . · πt,xit
), where each πj,xij

is an element of a group G that depends
only on j, xij

(where ij ∈ {1, . . . , n}), and f : G → {0, 1}2. In a read-k program, group
elements depending on some xi appear up to k times in the above representation.

We present a BC-efficient protocol for any function f , that can be represented as a
read-k non-abelian program over a group G. The computational and information-theoretic
variants of these constructions incur a BC of O(log |G|(λ + k)) and O(k log |G|) respectively
and will therefore have sublinear BC as long as each of the parameters k and log |G| are
“sufficiently small”. More specifically, we can allow k log |G| to be of size o(n). Even for e.g.,
|G| = 2nϵ

, k = O(1) for ϵ ∈ (0, 1), we obtain sublinear BC. The details of our results for
non-abelian programs appear in the full version [26].

“Tree-based” read-k generalized formulas. In Section 6, we present a BC-efficient protocol
for any function f that can be represented as a “tree-like” formula, which may have multi-
input (and output) gates. More concretely, nodes in this formula are either inputs Xi

(which may belong to some finite group, not necessarily boolean domain), and gates with 2
inputs that output a single output 3. The inputs, intermediate outputs (which are inputs
to other gates) and the output are assumed to be bounded by ℓ bits (where ℓ = log |G| in
our constructions). For a formula that is read-k (i.e. each input variable appears at most k

times) and has depth d 4, our computational and information-theoretic variants result in BC
of O(k · d · ℓ · λ) and O(k · d · ℓ) respectively.

As long as the above parameters of k, d, and ℓ are “sufficiently small” (i.e. k · d · ℓ is of
size o(n)), the protocols remain BC-efficient. Even with these restrictions, such formulas are
quite expressive. Notably, we allow for “generalized” gates in terms of the functions they
compute – the above restrictions are only with respect to the size of the inputs and outputs
of these gates but the structure of the functions computed by these gates may be quite
complex. For example, consider a generalized formula of depth O(log(n)), and k = ℓ = n0.4,
where each gate (having two inputs and an output of length ℓ = n0.4), evaluates a function
with circuit complexity of Ω(2n0.5). The BC complexity of the protocol above only would be
Õ(n0.8) 5 for our information theoretic implementation.

Lastly, we point out that while our information-theoretic constructions have better BC
than the computational variants, the size of the correlated randomness for our information-
theoretic constructions grows exponentially with the number of parties (due to the OTTT
approach). However, the BC still remains sublinear in the number of parties for all our
constructions.

In Section 2, we compare the expressiveness of the above function classes of abelian,
non-abelian programs and tree-based formulas.

Open Problems. It remains an open question to determine the complete characterization
of functions for which BC-efficient protocols exist. In fact, since BC-efficient protocols are
known to be impossible for general functions even when no security is required [9], it would
also be interesting to understand which functions can be computed in the clear with low
bottleneck complexity.

2 Note that unlike abelian programs, some πxi depending on xi may crucially appear more than once, as
the group G is not commutative.

3 The construction is actually more general, and could allow for “generalized gates” with larger fan-in,
but we stick with 2 for simplicity.

4 Note that for balanced trees, d = log2(k · n), which is sublinear in n.
5 Õ ignores logarithmic factors.
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1.2 Technical Overview

Our constructions have the following common two-step approach: (1) First, the private
inputs are aggregated in a BC-efficient way to obtain a joint common public input that “hides”
the private inputs. (2) Next, we consider an augmented version of the function f , say f ′

(that may be required to be kept secret) such that evaluating f ′ on the common public input
essentially corresponds to an evaluation of f . The evaluation of f ′ is carried out via IFSS.

Overview of IFSS. Before describing details of our protocols, we give a high-level overview
of the IFSS primitive. In a nutshell, IFSS allows a set of parties to evaluate a hidden function
f on a common public input x such that nothing beyond f(x) is revealed (as long as one of
the evaluators is honest). This evaluation is done in an incremental manner, where each party
computes its “share” and these shares are aggregated over a chain. In the garbled-circuit
based instantiation, these “shares” are additive shares of the label corresponding to the
common input x. Once this label is reconstructed (via aggregation over chain), the garbled
circuit computing f (given as part of the setup) is evaluated to compute the output. This is
the crux of BC-efficient evaluation in the constructions of [28], which satisfy computational
security.

For the information-theoretic instantiation, we use an approach based on secret-sharing
the truth-table inspired by the one-time truth table (OTTT) protocol of [24]. As already
noted by [7], this leads to information-theoretic FSS. We detail the construction and show
how it fits the IFSS framework.

In this protocol, parties are given an additive sharing of the (permuted) truth table of the
function being evaluated, as a part of the correlated randomness setup. Roughly speaking,
the parties first identify the relevant entry of the truth table (using their input and correlated
randomness) i.e. the one that corresponds to the correct output. The pointer to this entry
can be interpreted as the common input of the IFSS. Now, the evaluation is nothing but
aggregating the additive shares of the relevant entry (determined by this common input),
which can be done in a chain-like fashion to maintain BC-efficiency. This is the main idea of
the information-theoretic instantiation of IFSS.

Next, we describe our constructions. Note that for protocols to be BC-efficient, the
interaction involved in the above outlined common two-step approach must satisfy the
following two properties: (a) Each intermediate value that is communicated must be “small”.
(b) Privacy of the inputs must be maintained.

Abelian Programs. The structure of abelian programs (say h(x1, . . . , xn) = f(
∑n

i=1 xi)) is
such that it naturally supports property (a).

This is because the sum of inputs can be computed incrementally in a chain-like fashion
with the property that the size of the intermediate sums does not blow up. However, to
satisfy (b), the protocol of [28] makes parties aggregate their masked inputs instead (using
masks received as part of setup) to compute a masked sum (say z = y + R, where y denotes
the sum of inputs and R denotes the mask). Generalizing their construction, we view this
“masked sum” as the common input, and use IFSS for evaluation. More specifically, we
consider a (private) augmented function f ′R(z) = f(z−R) (with secret R hard-coded), which
first unmasks this masked sum to retrieve the sum y, upon which h is computed. We use
IFSS to compute f ′, yielding computational and information-theoretic BC-efficient protocols
(depending on whether the IFSS is instantiated using the garbling-based or OTTT based
approach).

ITC 2023
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“read-k” Non-Abelian Programs. Similar to abelian programs, non-abelian programs (say,
h(x) = f(π1,xi1

·. . .·πt,xit
)) support property (a) as the input value to f (i.e. π1,xi1

·. . .·πt,xit
)

can be computed incrementally in a chain-like fashion (where party i1 forwards π1,xi1
to i2

who computes π1,xi1
· π2,xi2

and forwards this value to i3 and so on) while making sure that
the intermediate values remain “small”. To maintain property (b), the aggregation could
be done over masked inputs instead. However, unlike the case of abelian groups (which is
commutative), we need to be slightly more careful in case of non-abelian groups (which may
be non-commutative) to ensure that this aggregation of masked inputs happens in a specific
order. In our protocol, the aggregated common input corresponds to

(
rt · . . . (r2 · (r1 · π1,xi1

) ·
π2,xi2

) · . . . · πt,xit

)
; accordingly each party ij must compute its intermediate value by using

its random value as a prefix and πj,xij
as a suffix to the intermediate value received from

its neighbour on the chain. Once, parties have computed this common public input, we use
IFSS to compute the augmented function f ′, where f ′ first uses a (secret hard-coded) prefix
r−1
1 · r−1

2 . . . · ·r−1
t to unmask this common input and then compute f .

“Tree-based” read-k generalized formulas. Next, consider the case of “tree-like” formulas.
Consider one of the “generalized gates” say f(x1, . . . , xm) (whose number of inputs and output
size is “sufficiently small” 6 but could have any arbitrarily complicated structure). Unlike
the previous cases, we cannot exploit the structure of the function to support incremental
aggregation (that supports property (a)). Instead, every party involved in f must compute
its masked input (using a random value given as part of the setup) and communicate it in a
chain-like fashion without any incremental computation. These masked inputs are simply
appended (therefore the size of the intermediate values grows in this case) and this set of
masked values forms the aggregated common input. Note that the size of this aggregated
common input grows with the number of inputs to this “generalized” gate, which brings in
the need for restricting the size and number of inputs to these gates to be “small” (i.e. o(n))
for sublinear BC.

Once the common input is determined, we proceed to evaluation. For this, we consider
an instance of IFSS for each “generalized” gate and combine the intermediate outputs in a
tree-like fashion. For simplicity, consider a gate at the first level, computing f(1,2) that takes
two leaf nodes (corresponding to inputs x1 and x2) as input. As mentioned previously, the
aggregate common input corresponds to z = z1||z2, where zi = xi + ri for i ∈ [2], where ri are
random masks given during setup. An instance of IFSS with hidden function f ′(1,2) (that has
ri values as hard-coded inputs) and single common input z is initiated, that first unmasks
the random values from the set of masked inputs z and then computes the output of f(1,2).
This instance involves only the subset of parties holding one of these inputs x1 or x2 as
evaluators, not the set of all parties. Note that this does not violate security because even if
one of the parties contributing an input to f(1,2) is honest, by IFSS security, the parties will
not learn anything except of the output of f(1,2). Otherwise, if all parties are corrupted, they
know all their inputs anyway, so there is nothing to hide. More generally, the IFSS instance
corresponding to a root of a subtree involves only the parties whose input is one of the leaf
nodes of this subtree. This is crucial to maintain BC-efficiency.

However, this approach would result in parties learning the output of f(1,2) which may
not necessarily be leaked by the output of f . Therefore, instead of computing the original
f(1,2), we compute the modified function f ′(1,2) that “masks” the output of f(1,2) with a
random mask r(1,2) chosen during setup. We ensure correctness of computation by defining

6 More specifically, these parameters are bounded by ℓ such that k · d · ℓ is of size o(n).
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the functions at the levels above accordingly – for instance, consider another function f(3,4)
at level 1 (with its similarly defined f ′(3,4) that “masks” the output of f(3,4) with random
mask r(3,4)). Suppose the “tree-like” formula had a function f(1,4) at level 2 that is supposed
to take as input y(1,2) and y(3,4) (respectively the outputs of f(1,2) and f(3,4)). We now
define f ′(1,4) as the function with hard-coded masks r(1,2),r(3,4) and r(1,4) that receives instead
masked inputs (y(1,2) + r(1,2)) and (y(3,4) + r(3,4)), unmasks them, evaluates f(1,4), and finally
masks the output with r(1,4) (unless this node corresponds to the root). The evaluations
are done level-by-level in an upward fashion until the function corresponding to the root
of the tree is computed. This demonstrates how the outputs of various instances of IFSS
computations are combined; completing the high-level description of this construction.

Lastly, we point that in our constructions, the common input used in the IFSS could
be dictated by the adversary and still “unknown” to the honest party when the evaluation
of IFSS begins. For e.g. consider the case of abelian programs, where the common input
is the sum of masked inputs and computed over a forward-pass of the chain. Suppose the
adversary corrupts a set of parties at the end of the chain and the evaluation of IFSS is
executed over the subsequent backward pass of the chain. In such a case, this common
input is in some sense still “uncommitted” (as the adversary can consider various versions
of the common input and try to recompute the IFSS incremental evaluations in her head).
Even though the adversary is passive, she can try to learn more information by trying to
obtain multiple evaluations of IFSS corresponding to different common inputs (referred to
as a residual function attack); which would breach security 7. Security of IFSS does not
help in this case as it holds only if all evaluators agree on the common input. However, our
constructions ensure that the common input gets “committed” as soon as the backward pass
reaches the first honest evaluator. The incremental computation by this honest evaluator
would “fix” the common input (in a way that it is not possible to recompute evaluations on
other common inputs any further), which creates the effect of “fixing” the corrupt evaluators’
inputs. We refer to respective technical sections for further details.

2 Comparison of the function classes

In this section, we discuss what kind of functions are captured by the function classes
considered in this work.

Abelian versus Non-Abelian Programs. We observe that indeed non-abelian programs
appear to be more expressive than abelian programs within our BC constraints. As a nice
simple example, fix the regular language L accepted by a “permutation” DFA (deterministic
finite automaton) that has {0, 1} as the set of input symbols, {q0, q1, q2} as the set of states
(with q0 as the start state and q2 as the accepting state) and δ as the transition function
specified by δ(qi, 1) = qi+1 mod 3, δ(q0, 0) = q1, δ(q1, 0) = q0, δ(q2, 0) = q2.

Consider a function h(x1, . . . , xm) (where each xj is a bit, where j ∈ {1, . . . , m}) that
outputs 1 if x ∈ L, and 0 otherwise. Assume each xj is assigned to some party and each party is
assigned at most k = o(n) bits at fixed (not necessarily consecutive) positions. To evaluate this
function, one can devise a simple non-abelian program h(x1, . . . , xm) = f(π1,xi1

· . . . · πt,xit
),

7 Note that even if the IFSS computes a “masked” output (like in the case of a non-root gate in the
construction for tree-like formulas), this would still violate security as the adversary could learn additional
information about private inputs of honest parties involved in this gate just by comparing these multiple
masked outputs corresponding to different common inputs.

ITC 2023
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where all πt,xt ’s are in the group S3 (where S3 denotes a permutation group, whose elements
are permutations of a set M = {1, 2, 3}, and the group operation is the composition of
permutations), and for each t, πt,0 = (1, 2)(3) and πt,1 = (1, 2, 3) 8. The function f(π)
outputs 1 if and only if π(1) = 3 9. Note that this non-abelian program is over a “small”
group. However, it is not clear how to devise an abelian program that works with “small”
groups of similar size for this function.

We point that it is always the case that a function h : Dm → {0, 1} can be expressed as
an abelian program that works over the group Zm

|D| – Each party Pi simply computes xie⃗i,
where e⃗i is the i’th vector in the standard basis, which can be aggregated to compute the
sum, denoting the entire input. The problem is that this group is too large, and it is not
clear (to us) how to do much better with abelian programs for the above DFA example.

Non-Abelian Programs versus “Tree”-based Formulas. In terms of feasibility (within the
o(n) domain), the formula-based construction is more expressive, within our BC constrains.
This holds since we can simulate a non-abelian program involving k · n terms via a (nearly)
balanced tree of depth d = log(k) + log(n), using associativity of multiplication in the group.
So, a read-k program would result in a read-k formula. Plugging in our constructions using
the two approaches would result in their BC being very close, with only polylogarithmic
overhead for the formula-based construction.

Next, we discuss whether there also exists a transformation in the other direction i.e.
from formula to non-abelian programs. Given a generalized read-k formula, it is not always
clear how to devise a (non)-abelian program with small overhead as above. In particular, the
generic transformation due to Barrington [2] transforming a formula into a BP results in a
BP of length in quadratic in formula size, and constant width, which is already Ω(n2) for
non-trivial formulas (with size at least n), and is prohibitively expensive for BC. In fact, the
resulting BP is already a permutation BP, but this does not help us, due to the large k (size
of formula Ω(n2) implies that k must be Ω(n)). Despite the fact that non-abelian programs
allow computing an arbitrarily complicated function f after a sequence of compositions on
non-abelian group elements (where the sequence can be visualized as a permutation BP), it
is not clear how this would help in the above transformation.

Next, we observe that the formula-based solution works for branching programs 10

(BP’s). This is because the formulas with the “generalized gates” can support arbitrary
transformations induced by inputs between the BP layers, which can be composed due to
associativity of the function. As long as the width and parameter k of a “k-read BP’ is
“small”, the formula-based approach would be BC-efficient.

The above raises a question regarding if non-abelian programs support BPs. We observe
that they would support a special kind of BPs, namely, permutation BPs 11. In such a
program of width w, the transition from root forward can be viewed as a composition of

8 We use the cycle notation to express permutations. E.g. π = (12)(3) denotes the permutation where
π(1) = 2, π(2) = 1 and π(3) = 3 as (1, 2) denotes the cyclic permutation and 3 is left unchanged.

9 For e.g. consider the x = x1, . . . , x6 = 001011, where each Pi (i ∈ {1, 2, 3}) holds xi and xi+3. One can
check that x ∈ L and g(π1,0 · π2,0 · π3,1 · π4,0 · π5,1 · π6,1) = 1.

10 A directed acyclic graph in which the nodes are labeled by input variables and every nonterminal node
has two outgoing edges, labeled by 0 and 1

11 In a nutshell, these are layered branching programs, where every level’s transitions, for each input
value xi = b constitute a permutation πi,b [3]. Another difference between it and standard BP’s is
the way acceptance is defined. There is no root and accept/reject nodes, but rather a single resulting
composed permutations, and acceptance/rejection is defined by belonging to one of two sets of output
permutations, partitioning Sw. The width of such a program is the number of nodes, w, in each layer
except for the first and last ones.
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permutations in Sw, which defines a non-abelian program. The output is then determined
based on whether the composed permutation maps 1 to an accept node (where the first and
last transition are adapted to be permutations in a natural way). If w = n, the resulting
group elements are too large for sublinear BC (even when transferring a single element). If
all permutations actually fall in a subgroup of Sw, we could work in that subgroup and hope
to obtain efficiency. Notably, non-abelian programs would not support general branching BP,
as it may not be possible to map the transformations between layers in a general BP to a
group structure (as it may not have an inverse or identity element). Lastly, we point that
permutation BPs are somewhat restricted, and moving from (regular) BP to a permutation
BP may have large costs in terms of w.

The above discussion argues that formulas are generally more expressive. However, there
are still situations where using the non-abelian program approach is more useful. For instance,
consider functions for which the resulting BC for the non-abelian program based protocol
is constant (as in the permutation DFA example above). In such a case, moving from the
non-abelian program construction to the formula-based construction, incurs a super-constant
overhead. In particular, a O(k · d)/O(k) = log(n) overhead for the information-theoretic
construction is incurred. So, the former construction would still be preferred if one wishes to
achieve the “ideal” best possible notion of BC-efficiency, namely constant BC.

3 Preliminaries

Notation. The cryptographic security parameter will be denoted by λ. The n parties
{P1, . . . , Pn} are pair-wise connected by secure and authentic channels, where n is polyno-
mially bounded. We operate with semi-honest security and assume that any adversary can
passively corrupt up to n− 1 parties.

We evaluate functions f : X → Y from a function class F . We often assume that X and
Y are groups endowed with an operation. We consider both abelian and non-abelian groups.

Security Model. We prove the security of our protocols based on the standard real/ideal
world paradigm and refer to Section A for the details.

3.1 Definitions
▶ Definition 1 (Bottleneck Complexity of a Protocol). Let CCi(Π) denote the expected number
of bits sent or received by Pi in an execution of Π, with worst case inputs. The bottleneck
complexity of an n-party protocol Π is defined as BC(Π) = maxi∈[n] CCi.

We use the formal definition of [9] for bottleneck complexity. Informally, the bottleneck
complexity of a protocol is the maximum communication complexity required by any party
in the protocol execution. We consider a protocol Π to be BC-efficient if the BC is sublinear
in the number of total parties.

▶ Definition 2 (Abelian Programs). Let G be an abelian group, S1, . . . , Sn be subsets of G,
and HG

S1,...,Sn
be the set of functions h : S1 × · · · × Sn → {0, 1} of the form h(x1, . . . , xn) =

f(Σn
i=1xi), for some f : G→ {0, 1}. We call such functions h abelian programs.

▶ Definition 3 (Non-Abelian Programs). Let (G, ·) be a non-abelian group, x1, . . . , xn be
inputs from domain D, and HG

D be the set of functions h : {D}n → {0, 1} of the form
h(x1, . . . , xn) = f(π1,xi1

· . . . · πt,xit
), where each πj,xij

is an element of a group G that
depends only on j, xij (where ij ∈ {1, . . . , n}) for some f : G → {0, 1}. We call such
functions h non-abelian programs.
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3.2 Primitives

Garbled Circuits. A garbling scheme, introduced by Yao [30] and formalized by Bellare
et al. [5], enables a party to “encrypt” or “garble” a circuit in such a way that it can be
evaluated on inputs – given tokens or “labels” corresponding to those inputs – without
revealing what the inputs are.

▶ Definition 4 (Garbling Scheme). A projective garbling scheme is a tuple of efficient
algorithms GC = (garble, eval) defined as follows.
garble(1λ, C) → (GC, K): The garbling algorithm garble takes as input the security para-

meter λ and a boolean circuit C : {0, 1}ℓ → {0, 1}m, and outputs a garbled circuit GC and
ℓ pairs of garbled labels K = (K0

1 , K1
1 , . . . , K0

ℓ , K1
ℓ ). For simplicity we assume that for

every i ∈ [ℓ] and b ∈ {0, 1} it holds that Kb
ℓ ∈ {0, 1}λ.

eval(GC, K1, . . . , Kℓ) → y: The evaluation algorithm eval takes as input the garbled circuit
GC and ℓ garbled labels K1, . . . , Kℓ, and outputs a value y ∈ {0, 1}m.

We require the following properties of a projective garbling scheme:

Correctness. We say GC satisfies correctness if for any boolean circuit C : {0, 1}ℓ → {0, 1}m

and x = (x1, . . . , xℓ) it holds that Pr[eval(GC, K[x]) ̸= C(x)] = negl(λ) where (GC, K) ←
garble(1λ, C) with K = (K0

1 , K1
1 , . . . , K0

ℓ , K1
ℓ ), and K[x] = (Kx1

1 , . . . , Kxℓ

ℓ ).
Next, we formally define the security notions we require for a garbling scheme. When

garbled circuits are used in such a way that decoding information is used separately, oblivi-
ousness requires that a garbled circuit together with a set of labels reveals nothing about the
input the labels correspond to, and privacy requires that the additional knowledge of the
decoding information reveals only the appropriate output. In our work, we do not consider
decoding information separately (but rather, consider it to be included in the garbled circuit),
so we do not need obliviousness.

Privacy. Informally, privacy requires that a garbled circuit together with a set of labels
reveal nothing about the input the labels correspond to (beyond the appropriate output
and the side-information). For our constructions, we assume the side-information to be the
topology of the circuit, denoted as θ(C).

More formally, we say that GC satisfies privacy if there exists a simulator simGC such
that for every PPT adversary A, it holds that Pr[A wins] ≤ 1

2 + negl(λ) in the following
experiment:

Adversary A Challenger C

C : {0, 1}ℓ → {0, 1}m

x = (x1, . . . , xℓ) ∈ {0, 1}ℓ

b← {0, 1}
if b = 0:

(GC, (K0
1 , K1

1 , . . . , K0
ℓ , K1

ℓ ))← garble(1λ, C)
Ki = K

xi
i

for i ∈ [ℓ]
if b = 1:

(GC, K1, . . . , Kℓ)← simGC(1λ, θ(C), C(x))
GC, K1, . . . , Kℓ

b′

A wins if b = b′
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4 Incremental Function Secret-Sharing

We begin by defining incremental function secret-sharing (IFSS), which allows a set of parties
to evaluate a hidden function on a joint input. Diverging from the original definition of
function secret sharing [7], IFSS requires shares to be aggregated incrementally on a chain,
in a BC-efficient communication pattern. IFSS can be instantiated with garbled circuits or
one-time truth tables and can be used in BC-efficient protocols for particular function classes.

▶ Definition 5 (Incremental Function Secret-Sharing). An n-party incremental function secret-
sharing (IFSS) scheme for a function class F is a pair of PPT algorithms (Gen, Eval) with
the following syntax:

Gen(1λ, f): On input security parameter 1λ and function description f ∈ F , Gen outputs
keys (k1, . . . , kn);
Eval(i, ki, x, yi+1): On input party index i, a key ki, input string x, and the output of
the next party yi+1, the algorithm Eval outputs a value yi;

We require the following:
Correctness: For all (f : X → Y) ∈ F , x ∈ X we require that the following holds except

with negligible probability:

Eval(1, k1, x, Eval(2, k2, x, . . . , Eval(n, kn, x,⊥))) = f(x)

Privacy: Let H be the set of honest parties. Then if k⃗ ← Gen(1λ, f), we define k⃗−H to be k⃗

where we replace, for all i ∈ H, ki with ⊥. We also define EvalH(k⃗, x) to compute, for
i = n, . . . , 1, yi = Eval(i, ki, x, yi+1) (with yn+1 = ⊥), and then output yi for all i ∈ H.
We say that an IFSS satisfies privacy if, there exists a PPT simulator Sim such that for
all f ∈ F ,H ⊂ [n], x ∈ X :

{k−H, EvalH(k⃗, x) : k⃗ ← Gen(1λ, f)}λ,f,x, and {Sim(1λ,H, x, f(x))}λ,f,x

are (unconditionally or computationally) indistinguishable.
Bottleneck Complexity: We define the bottleneck complexity BC of an IFSS for F as the

expected size of the largest yi, for all i ∈ [n], f ∈ F , x ∈ X .

4.1 Instantiating IFSS
We show two instantiations of IFSS, one based on one-way functions and one with uncondi-
tional security.

With Unconditional Security. IFSS can be implemented with information theoretic security
using an approach similar to the OTTT protocol [24] (as observed in [7]). The construction
is as follows: Gen(1λ, f) chooses random vectors T1, . . . , Tn whose dimensionality is |Xf |, the
size of the input domain of f , such that for all possible inputs x ∈ Xf ,

∑
i Ti[x] = f(x). Gen

then outputs ki = Ti. The evaluation algorithm Eval(i, ki, x, yi+1) outputs yi = Ti[x] + yi+1
(for yi+1 ̸= ⊥ and yi = Ti[x] otherwise).

The protocol satisfies correctness since by construction y1 =
∑

i Ti[x] = f(x). It also
satisfies unconditional privacy: The simulator Sim(1λ,H, x, f(x)) samples k−H = {Ti}i ̸∈H
as a set of uniform random strings of length |Xf |, and random {zi}i∈H from Yf . Then it
simulates the outputs of the Eval function as follows: it sets y1 = f(x), and yi+1 = yi− ((i ∈
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H) ? zi : Ti[x]) 12 for all i < n, and finally outputs (k−H, {yi}i∈H). Indistinguishability
follows since in the simulation, like in the real protocol, the corrupt parties receive uniformly
random ki, and the yi values are uniformly distributed under the constraint that y1 is the
result of the computation.

Note that since the constructions leaks X ,Y , we assume that for all f ∈ F Xf = X ,Yf = Y .
For this IFSS, BC = O(log |Y|). (Note that the size of the keys can be exponential in the
input size, namely O(log |Y| · |X |), like the original OTTT protocol).

From One-Way Functions. IFSS can be implemented from garbled circuits (which in turn
can be implemented from one-way functions) by abstracting the “Phase 2” step of the
protocol for abelian programs presented in [28]. The construction is as follows: the algorithm
Gen(1λ, f) runs (GC, K)← garble(1λ, f). Then it picks uniformly random {Ki}i∈[n] under
the constraint that

∑
i Ki = K. Finally it outputs ki = Ki for all 1 ̸= i ∈ [n] and

k1 = (GC, K1). The evaluation algorithm Eval(i, ki, x, yi+1), for all i ̸= 1, selects the shares
of the encoding information of ki = Ki that correspond to x i.e., Ki[x] = ((Ki)x1

1 , . . . , (Ki)xℓ

ℓ )
where ℓ = ⌈log |X |⌉, and finally outputs yi = Ki[x] + yi+1 (for yi+1 ̸= ⊥ and yi = Ki[x]
otherwise). For i = 1 the Eval algorithm follows the instructions above to produce y1, and
finally outputs eval(GC, y1).

The protocol satisfies correctness since by construction y1 =
∑

i Ki[x] = K(x), and by
correctness of the garbling scheme eval(GC, K[x]) = f(x) except with negligible probability.

It also satisfies computational privacy: The simulator Sim(1λ,H, x, f(x)) runs the simu-
lator for the garbled circuits (GC, Y)← simGC(1λ, θ(F), f(x)), where Y is the set of ℓ labels
that make the simulated garbled circuit GC output f(x). The simulator then picks {Ki}i ̸∈H,
a set of uniform random strings of the same length as K, and random strings {zi}i∈H of
the same length as K[x]. Then it simulates the outputs of the Eval function as follows:
it sets y1 = Y and yi+1 = yi − ((i ∈ H) ? zi : Ki[x]) for all i < n, and finally outputs
(k−H, {yi}i∈H).

An adversary A that can distinguish between the real and simulated distribution can
easily be used to break the privacy property of the underlying garbling scheme. The reduction
B queries the GC challenger C on input f, x and receives (GC, Y) in return. It then picks
random Ki for all i ̸∈ [n] and computes the yi as the simulator described above. The resulting
distribution corresponds to the real protocol execution if the GC challenger sampled b = 0, or
the simulated one if b = 1, therefore the reduction B wins in the GC privacy game with the
same advantage as the IFSS adversary A distingushes between the real and simulated view.

Note that privacy of the GC scheme leaks some information θ(f) about the function f ,
therefore we assume for simplicity that for all f ∈ F , θ(f) = θ(F). However, given an upper
bound of the size of f ∈ F it is possible to remove this requirement using universal circuits,
albeit with an efficiency loss, and this is reflected in the Lemma below. For the GC based
IFSS, BC = O(λ · log |X |). Note that the size of the keys is polynomial in the input size for
this instantiation, namely O(λ · (log |X |+ |f |)) for the first party and O(λ · log |X |) for the
others.

The discussion in this subsection can be summarized in the following:

▶ Lemma 6. Let F be a class of functions f : X → Y, λ the security parameter. Then for
all n:

It is possible to implement IFSS for F with BC = O(log |Y|) with unconditional security.
If one-way functions exist, it is possible to implement IFSS for F with BC = O(λ · log |X |)

12 Here, a ? b : c is used to denote the folllowing – if a holds, then b; else c.
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In particular, the BC complexity in both cases is independent of n. Note however that the
size of the correlated randomness in the variant with unconditional security is exponential in
the input size.

Using IFSS in the compiler of [9]. The work of [9] presents a compiler that transforms
an insecure protocol to secure protocol while preserving BC. The compiler is based on the
tool of “incremental FHE”, which is similar to FHE except that its “joint” public key and
decryption of ciphertext can be computed by incrementally combining shares provided by
different parties. The main idea of the compiler is to execute the insecure protocol under
the hood of (incremental) FHE to compute the encryption of the output (say ciphertext ct).
Next, the parties combine their partial decryptions (computed locally by each party using its
share of secret key) corresponding to ct in an incremental manner to reconstruct the final
decrypted output.

We analyze whether this compiler can be viewed in terms of the common two-step
approach of our constructions (elaborated in the technical overview, where the first step
is to compute a “masked” aggregate common input and the second step is to use IFSS to
evaluate a hidden function on this input). Recall that in our constructions, the first step
involves masking the inputs using random values from setup (and either aggregating them
by incremental computation or concatenating them) and the second step involves using IFSS
to carry out the unmasking and compute the relevant function. On the other hand, in the
above compiler, the first step uses FHE to compute the encryption of output ct directly. We
observe that considering ct to be the common joint input, now IFSS can in fact be used to
carry out the “decryption” function of FHE. In some more detail, IFSS could be used to
evaluate the “hidden” function which has the secret decryption keys hardcoded and computes
the decryption of the ciphertext ct. The above approach would result in making the compiler
rely on correlated randomness, but would allow to instantiate it using any (non-incremental)
FHE scheme. This shows that IFSS can serve as a general useful building block in BC-efficient
constructions.

5 Low BC-complexity for Abelian Programs from IFSS

In this section, we generalize the results of [28] using the IFSS primitive defined above. Doing
so allows us to achieve an information-theoretic BC-efficient protocol for abelian programs.

Note that we can’t use IFSS directly in MPC protocols for two reasons: first, all parties
in IFSS would need to know all the inputs X⃗. This could be fixed by introducing a mask
R⃗, reveal X⃗ + R⃗ to all parties, and then modify the function so that it removes the mask
securely inside the IFSS. The second issue is that revealing (even a potentially masked) X⃗ to
all parties would lead to high BC since O(|X⃗|) = O(n).

Recall that an abelian program h can be expressed as h(X⃗) = f(
∑n

i=1 Xi) for some
f : G → {0, 1}, where G denotes an abelian group. We observe that the specific function
class of abelian programs has a special structure that allows us to view it as a single-input
function rather than an n-input function h. Exploiting this observation, we fix the above
problems as follows: first, the trusted dealer picks a (single) random R ∈ G, defines the
function f ′R(Z) = f(Z −R), and then gives all parties Pi an additive share ri of R, which
they can use to mask their inputs, and an IFSS key ki for the function f ′R.

In the protocol, the parties securely compute a masked sum of their inputs (say Z = X +R,
where R denotes the mask and X denotes the sum of inputs) in a BC-efficient way over a chain
(similar to the protocol of [28]). The parties mask their inputs Xi with ri as Zi = Xi + ri, add
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it to
∑i−1

j=1 Zj , which they received from the previous party Pi−1, and send the result to Pi+1.
The last party in the chain then can recover Z = X + R, and begins the second phase where
each party Pi sends Z together with yi = Eval(i, ki, Z, yi+1) to Pi−1, so that P1 can finally
retrieve f ′R(Z) = f(Z − R) = f(X) Intuitively, security follows from the use of the masks
and privacy of IFSS which hides which function (and therefore mask) was used. The BC of
the protocol is inherited from the IFSS plus the size of elements in G, both independent of n.

The formal protocol appears in Figure 1 and we state the theorem below (whose proof
appears in Section B).

Protocol Πabl

Private input. Each party Pi has input Xi ∈ G from group G.
Output. y = f(

∑n
i=1 Xi), where the output is a single bit.

Correlated Randomness Setup. The setup involves the following:

1. For each i ∈ [n], sample ri ∈ G, such that
∑n

i=1 ri = R.
2. Define the function f ′R(Z) that computes f(Z −R) on the input Z. Use an IFSS

scheme to compute (k1, . . . , kn)← Gen(1λ, f ′R).
3. Output (ri, ki) to Pi for each i ∈ [n].

The Protocol. The following steps are run in the online phase:
Phase 1 (Round 1 to Round n). (Input Masking) In round i, Pi does the following:

If i = 1, let Vi = ri + Xi.
If i ≠ 1, let Vi−1 denote the message received from Pi−1 during the previous
round. Compute Vi ← Vi−1 + Xi + ri.
If i < n, send Vi to Pi+1.
If i = n, set Z = Vn.

Phase 2 (Round n + 1 to Round 2n) (IFSS Evaluation) Each Pi does the following
in sequence, starting from i = n to 1:

If i = n, set yi = Eval(i, ki, Z,⊥).
If i ̸= n, parse the message received from Pi+1 in the previous round as (Z, yi+1).
Compute yi = Eval(i, ki, Z, yi+1).
If i ̸= 1 Send (Z, yi) to Pi−1.

Output Computation. P1 sets the output y = y1.
Phase 3 (Round 2n + 1 to 3n) (Output Transfer) For i starting from 1 to n, each Pi

does the following in sequence:

If i ̸= 1, let y denote the output received from Pi−1 in previous round.
If i ̸= n, send y to Pi+1.
Output y.

Figure 1 BC-efficient protocol for Abelian Programs.

▶ Theorem 7. Protocol Πabl securely computes the abelian program h against a semi-honest
adversary corrupting upto n− 1 parties. The BC of Πabl is O(log |G|) and O(λ log |G|) for
the information-theoretic and the computational variant respectively.
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Lastly, we refer to the full version [26] for several protocols, which directly use Πabl as a
subprotocol in a BC-efficient way. In particular, we present protocols to compute maximum
among a set of values and any function of the maximum.

6 BC-efficient MPC for tree-structured circuits

In this section, we build on the ideas of our generalized protocol for abelian programs in
Figure 1 to formulate BC-efficient protocols for additional classes of functions.

We present a protocol that using IFSS allows to evaluate, in a BC-efficient way, functions
that can be expressed as a tree of sub-functions, each taking inputs only from a subset of
parties. This can be visualized as a tree with the leaves representing inputs and the non-leaf
nodes representing functions. More specifically, the root of a sub-tree would represent the
sub-function involving the values in the sub-tree. For our construction to be BC efficient,
we require that each sub-function involves at most o(n) inputs 13. Further, the resulting
tree depth d = logm(n) must also be sublinear in n. As a concrete example, the function
g = F

(
f1(x1

1, . . . , x1
m), . . . , fB(xB

1 , . . . , xB
m)

)
, can be expressed as 2-level tree with m =

√
n,

where the fi’s denote the sub-functions at level 1 and F denotes the function (represented
by the root) that aggregates the outputs of these sub-functions.

The main idea is that the subset of parties involved in computation of a single sub-function
first interact among themselves to compute the outputs of this sub-function, which are later
aggregated to compute the final output. In order to “hide” the outputs of these sub-functions
(since they may not necessarily be leaked by the output), the sub-functions are tweaked to
compute a “masked” output instead, using a mask chosen by the setup. When multiple
“masked” outputs are taken as inputs to another sub-function (at a higher-level of the tree),
the sub-function is further tweaked to unmask these values and then compute the function.

We observe that the above approach for an m-ary tree of depth d = logm n would result
in BC of Ω(m logm n) Note that this term m · logm n incurs the least communication when
m = 2. Since choosing m = 2 results in better BC-efficiency, we focus only on binary trees in
our formal protocol specification.

For ease of exposition, we use a slightly different naming convention and let the n parties
be P0, . . . , Pn−1, with n = 2d, and we consider a function f(x0, . . . , xn−1) that can be
decomposed with a binary tree of binary functions as explained below. Note that this can
be easily generalized to the k-read setting by letting each party “control” k different inputs
of the functions, but doing in the protocol description below would introduce unnecessarily
cumbersome notation.

We start by introducing some useful notation to explain our protocol: We label the
leaves of the binary tree with the bitstrings corresponding to the indices of the parties i.e.,
0d, 0d−11, . . . , 1d, and we assign the input of each party to its corresponding leaf. (We will
use integers and strings representing them interchangeably in the protocol description i.e.,
P0 = P0d , P1 = P0d−11, . . .). The internal nodes of the tree correspond to the functions into
which f can be decomposed. To label the internal nodes/functions, we introduce the wildchar
∗, and we label the n/2 parents of the leaf nodes as 0d−1∗, 0d−21∗, . . . , 1d−1∗, assigning one
function to each such node. We continue introducing an extra wildchar ∗ every time we

13 However, if there is a BC-efficient protocol independent of the number of inputs (such as our protocol
for abelian programs) that can be used to compute the sub-function, then our construction does not
require the number of inputs to this sub-function to be sublinear in n.
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climb a layer of the tree until we reach the root that gets labeled as ∗d, corresponding to
the function f∗d . For simplicity, we assume that all the inputs and the outputs of all the
functions in the tree are elements of the same group G.

We also introduce some notation to deal with strings with wildchars: We say a string
s ∈ {0, 1, ∗}d is valid if the wildchar ∗ is only followed by other ∗ wildchars (e.g., 0∗ is valid
while ∗0 is not). Then, given a valid string s, we denote by s|b the (valid) string s where the
first wildchar ∗ is replaced by the bit b. Finally, given a valid string s we define [s] ⊆ {0, 1}d

to be the set of all strings that can be obtained when replacing the wildchars ∗ in s with bits.
We can now conveniently describe how to decompose the function f(x1, . . . , xn): for

all valid strings s ∈ {0, 1, ∗}d (starting with the parents of the leaves) we compute xs =
fs(xs|0, xs|1), and finally we let the output be f(x1, . . . , xn) = f∗d(x∗d−10, x∗d−11) = x∗d . In
other words, we begin by pairing the leaf inputs two-by-two, then combine the results of
these computations two-by-two climbing the tree until we reach the root.

We now need to address two issues in order to evaluate such functions securely and in a
BC-efficient way. First, we need to make sure that no intermediate values are leaked. This
can be solved by assigning a mask rs|b on each edge of the tree, such that the child function
fs|b will mask its output with rs|b, and its parent function will de-mask the inputs before
evaluating the function. That is, instead of evaluating fs(xs|0, xs|1) we will evaluate using an
IFSS scheme f ′s(zs|0, zs|1) = fs(zs|0 − rs|0, zs|1 − rs|1) + rs (where the root has no mask i.e.,
r∗d = 0). Second, to make sure that the overall protocol is BC-efficient, we will only let the
parties Pi with i ∈ [s] participate in the secure evaluation of f ′s. Intuitively, this is fine since
if all parties i ∈ [s] are corrupt then they would already be able to compute all inputs and
outputs in the subtree of the function fs, thus it does not matter if those masks leak due to
the fact that all parties involved in those IFSS computations are corrupt.

The formal description and details of our protocol appear in Section C.
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A Security Model

We prove the security of our protocols based on the standard real/ideal world paradigm.
Essentially, the security of a protocol is analyzed by comparing what an adversary can do in
the real execution of the protocol to what it can do in an ideal execution, that is considered
secure by definition (in the presence of an incorruptible trusted party). In an ideal execution,
each party sends its input to the trusted party over a perfectly secure channel, the trusted
party computes the function based on these inputs and sends to each party its respective
output. Informally, a protocol is secure if whatever an adversary can do in the real protocol
(where no trusted party exists) can be done in the above described ideal computation. In this
work, the adversary is assumed to be passive (alternately, referred to as being semi-honest) –
the corrupt parties must follow the protocol specifications. However, the adversary attempts
to learn private information by observing the view of the passively corrupt parties. We refer
to [10] for further details regarding the security model.

In more detail, let Π be a protocol and F be a functionality. Let I denote the set of
parties that are corrupt (of size at most n− 1). The “ideal” world execution involves parties
{P1, . . . , Pn}, an ideal adversary S who controls the parties in I. The “real” world execution
involves the PPT parties {P1, . . . , Pn}, and a real world adversary A who corrupts the parties
in I passively. The view of a party in the real world is defined to be its random tape, together
with all messages received during the execution of the protocol. In the ideal world, the
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simulator S is given as input nothing but the corrupt parties’ inputs sent to the trusted party
and the outputs they receive from the trusted party. If S is able to “simulate” the real-world
view with just this information, intuitively, security must hold. This is formalized below.

We define the following distributions of random variables.
REALΠ(1λ, I; x1, . . . , xn): suppose Π is run with security parameter λ where each party

Pi runs the protocol honestly using private input xi. Let Vi denote the view of party
Pi at the end of the protocol execution and let yi denote the output of Pi. Output(
{Vi}i∈I , (y1, . . . , yn)

)
.

IDEALF,S(1λ, I; x1, . . . , xn): Let (y1, . . . , yn)← F(x1, . . . , xn). Output
(
S(I, {xi, yi}i∈I),

(y1, . . . , yn)
)

A protocol is secure against passive adversaries if the corrupted parties in the real world
have views that are indistinguishable from their views in the ideal world.

▶ Definition 8. A protocol Π securely realizes F if there exists a PPT ideal world adversary
S, such that for every subset of corrupt parties I and all inputs x1, . . . , xn, the following two
distributions are computationally indistinguishable:

REALΠ(1λ, I; x1, . . . , xn) c
≈ IDEALF,S(1λ, I; x1, . . . , xn)

B Proof of Theorem 7

Let I and H = P\I denote the set of indices corresponding to corrupt and honest parties
respectively. Since we are running a protocol on a chain, it is useful to be able to talk
about corrupt parties who receive messages from honest parties, and we therefore define IL

(resp. IR) to be the sets of all i ∈ I such that i− 1 ∈ H (resp. i + 1 ∈ H).
To prove security, we define a simulator S that simulates the real-world view of the

corrupt parties. Recall that S is given (I, {xi}i∈I , y).

Setup simulation. Run ({ki}i∈I , {yi}i∈H)← simIFSS(1λ,H, Z ′, y), where simIFSS denotes
the simulator of the IFSS scheme’s Gen and Eval functionality for a function class F computing
f ′R(Z) = f(Z−R) (note that the function class is independent of the value R in the function).
Z ′ is chosen uniformly at random from the elements of G.

Additionally, for each i ∈ I, sample ri uniformly in G, and include (ki, ri) in the view
of Pi.

Phase 1 Simulation. We need to simulate Vi−1 for all i ∈ IL. We do so by choosing
uniformly random Vi−1 from G for all such i ∈ IL, except the largest one, which we denote
by ĩ, which we simulate by computing Vĩ−1 = Z ′ −

∑
j≥ĩ(Xj + rj) (In other words we define

the message sent by the honest party with the largest index, to be consistent with the Z ′

which was chosen when simulating the IFSS, the input of the corrupt parties and their shares
of R which were already defined during setup).

Phase 2 Simulation. We include in the view of all Pi with i ∈ IR the tuple (Z ′, yi+1),
where yi+1 was received from the IFSS simulator.

Phase 3 Simulation. We include in the view of all Pi with i ∈ IL the result y.
Below, we argue that the views of corrupt parties in the real and ideal world are

indistinguishable via a series of intermediate hybrids:
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Hyb0 : Same as the real-world execution.
Hyb1 : Same as Hyb0, except that the values ki for all i ∈ I and all yi+1 for i ∈ IR are
computed using the IFSS simulator on input (H, Z, f(x)).
This is in contrast to the previous hybrid, where the true IFSS evaluation is used instead of
a simulator, changing the ki of corrupt parties and yi of honest parties. Indistinguishability
follows from the privacy of IFSS.
Hyb2 : Same as Hyb1, except that R is not used anymore to define the ri : i ∈ I, which
are instead just chosen at random from G. Since the ri of the honest parties are not part
of the view the two distributions are identically distributed.
Hyb3 : Same as Hyb2, except that a random Z ′ is input to the IFSS simulator, and
Vi : i ∈ I are simulated as decribed in “Phase 1 Simulation”. This is in contrast to the
previous hybrid, where Z is computed from the Vi values, and Vi are computed based
on the parties’ inputs. Since the ri of the honest parties are not part of the view the
two distributions are identically distributed. Note that in this hybrid we do not use the
inputs of the honest parties anymore.

Since Hyb3 corresponds to the simulated execution and each pair of consecutive hybrids
are indistinguishable, this completes the proof that the views of corrupt parties in the real
and ideal worlds are indistinguishable.

BC-Analysis. We note that in Phase 1 and 3, the maximum communication complexity
incurred by a party is log |G|. In Phase 2, a party incurs the BC of the IFSS instance (in
addition to |Z| = log |G|), which is O(1) for the information-theoretic instantiation and
O(λ log |G|) for the computational instantiation. We can thus conclude that the resulting BC
of the information-theoretic protocol for abelian programs is O(log |G|). The computational
variant (which is the same as the construction in [28]) has a BC of O(λ log |G|).

C BC-efficient protocol for tree-structured circuits

We present the formal description of the protocol (Figure 2). For convenience, we enhance
the notation of the IFSS generation algorithm Gen to include an extra parameter S ⊆ [n],
which indicates which subset of parties should receive keys i.e., running (k0, . . . , kn−1) ←
Gen(1λ, S, f) returns |S| IFSS keys ki for i ∈ S and sets ki = ⊥ for i ̸∈ S.

Correctness. Thanks to the correctness of the IFSS scheme the output of each node in the
tree is computed correctly, meaning that the input masks are removed by f ′s before evaluating
fs and adding the output mask. Finally, since the mask of the root r∗∗ is 0, the output of
the final computation z∗∗ is equal to f(x0, . . . , xn−1).

BC-Analysis. First, we note that to transfer the masked inputs, a party sends messages of
size at most O(log |G|). Next, consider evaluation of a specific sub-function. Here, transferring
masked outputs would require a party to send messages of size at most O(log |G|) along
a chain. Next, the steps using IFSS incur communication of size at most O(λ log |G|) for
GC-based instantiation and O(log |G|) for the OTTT-based instantiation. Since the above
occurs for each level and there are log(n) levels, we can conclude that the overall BC of the
protocol is O(λ · log |G| · log(n)) for the computational variant and O(log |G| · log(n)) for
the information-theoretic variant. The above discussion assumes balanced trees. If this is
not the case, more generally, for depth d, the BC is O(λ · log |G| · d) for the computational
variant and O(log |G| · d) for the information-theoretic variant.
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Protocol Πtree

Private input. There are n = 2d parties. Each party Pi, with i = 0, . . . , n− 1 has input
xi. We assume all inputs are from some goup G.

Correlated Randomness Setup.

1. For each valid string s ∈ {0, 1, ∗}d choose a uniform random mask rs from G,
except for r∗d which is set to 0.

2. For each valid string s ∈ {0, 1, ∗}d \ {0, 1}d (e.g., for all nodes except the leaves)
run the IFSS setup

(ks
0, . . . , ks

n−1)← Gen(1λ, [s], f ′s)

(remember that ks
i = ⊥ for all i ̸∈ [s]) where f ′s is defined as

f ′s(zs|0, zs|1) = fs(zs|0 − rs|0, zs|1 − rs|1) + rs

Finally, send to each party Pi their mask ri and the keys ks
i for all s such that i ∈ [s].

The Protocol. The following steps are run in the online phase of the protocol:

1. Transferring Masked Inputs for Leaf Nodes.
Each Pi sets zi = xi + ri and sends it to their “sibling” party i.e., if i = s|b send
zi to Ps|(1−b).

2. Climbing the Tree.
For all valid strings s ∈ {0, 1, ∗}d\{0, 1}d (e.g., for all intermediate nodes, starting
with the parents of the leaves):
a. Evaluating the IFSS.

Let all parties Pi with i ∈ [s] run the IFSS evaluation on inputs zs|0, zs|1 e.g.,
starting from the party with the highest index i ∈ [s] and going backwards
run:

ys
i = Eval(i, ks

i , (zs|0, zs|1), ys
i+1)

(where as usual ys
j = ⊥ if j is “out of bounds”).

b. Transfering Masked Outputs.
Let ι be the smallest index in [s]. Let all parties Pi with i ∈ [s] learn the
output zs = ys

ι . E.g., all parties in [s], starting from Pι, send zs to the next
party in [s].

c. Transfering Masked Inputs for Subtrees. Each Pi with i ∈ [s] sends zs to one
party in the “sibling” sub-tree i.e., if i = s|b1, . . . , bh (with h representing the
height we have reached in the tree), then Pi sends zs to Pj with j = i =
s|(1− b1), . . . , bh.

Figure 2 BC-efficient protocol for tree-based formulas.

For a read-k tree-like structure (where a party’s input could correspond to at most k

leaves), the number of leaves is at most kn and the depth for a balanced tree is log(kn). This
results in BC of O(k·λ·log |G|·log(kn)) for the computational variant and O(k·log |G|·log(kn))
for the information-theoretic variant.
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Privacy. Proving privacy of the tree-based construction requires building a simulator that
can simulate the view of an adversary corrupting up to n−1 parties in the protocol. This can
be done following the blueprint of the simulator of the protocol Πabl. That is, the simulator
receives as input the output of the computation y as well as the inputs of the malicious
parties. The simulator will pick random values for all edges on the tree and simulate the
setup phase by running the simulator of the IFSS on those random inputs/outputs. Then,
the simulator will provide masks to the adversary which are consistent with these random
inputs.

In the online phase, the simulator will simulate the transfer of masked inputs of leaf nodes
using the random values already chosen during setup. Then, the simulator includes in the view
of the corrupted parties the values ys

i provided by the IFSS simulator. Indistinguishability
between the real protocol and the simulated execution can be argued by replacing, one by
one, each real execution of IFSS with a simulated one. Indistinguishability in this first series
of hybrids follows from the privacy guarantees of IFSS. In the next series of hybrids, we
replace the masked inputs/outputs learned by the adversary in the protocol execution with
uniformly random values from G. Since in this hybrid the masks of the honest parties are not
used anymore (as the IFSS is simulated), this new series of hybrids are all unconditionally
indistinguishable from their previous one. As the final hybrid of this series corresponds to
the simulator, this concludes the argument.

The discussion above therefore leads to the following:

▶ Theorem 9. Protocol Πtree securely computes the aggregated function f against a semi-
honest adversary corrupting upto n − 1. The BC of Πtree is O(k · log |G| · log(kn)) and
O(k ·λ · log |G| · log(kn)) for the information-theoretic and computational variant respectively.
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