688 research outputs found

    Tuning the collective decay of two entangled emitters by means of a nearby surface

    Full text link
    We consider the radiative properties of a system of two identical correlated atoms interacting with the electromagnetic field in its vacuum state in the presence of a generic dielectric environment. We suppose that the two emitters are prepared in a symmetric or antisymmetric superposition of one ground state and one excited state and we evaluate the transition rate to the collective ground state, showing distinctive cooperative radiative features. Using a macroscopic quantum electrodynamics approach to describe the electromagnetic field, we first obtain an analytical expression for the decay rate of the two entangled two-level atoms in terms of the Green's tensor of the generic external environment. We then investigate the emission process when both atoms are in free space and subsequently when a perfectly reflecting mirror is present, showing how the boundary affects the physical features of the superradiant and subradiant emission by the two coupled emitters. The possibility to control and tailor radiative processes is also discussed.Comment: 11 pages, 8 figure

    Dynamical Casimir-Polder force between an excited atom and a conducting wall

    Get PDF
    We consider the dynamical atom-surface Casimir-Polder force in the nonequilibrium configuration of an atom near a perfectly conducting wall, initially prepared in an excited state with the field in its vacuum state. We evaluate the time-dependent Casimir-Polder force on the atom and find that it shows an oscillatory behavior from attractive to repulsive both in time and in space. We also investigate the asymptotic behavior in time of the dynamical force and of related local field quantities, showing that the static value of the force, as obtained by a time-independent approach, is recovered for times much longer than the time scale of the atomic self-dressing but shorter than the atomic decay time. We then discuss the evolution of global quantities such as atomic and field energies and their asymptotic behavior. We also compare our results for the dynamical force on the excited atom with analogous results recently obtained for an initially bare ground-state atom. We show that new relevant features are obtained in the case of an initially excited atom, for example, much larger values of the dynamical force with respect to the static one, allowing for an easier way to single out and observe the dynamical Casimir-Polder effect

    Proximity Induced Superconductivity in CdTe-HgTe Core-Shell Nanowires

    Full text link
    In this letter we report on proximity superconductivity induced in CdTe-HgTe core-shell nanowires, a quasi-one-dimensional heterostructure of the topological insulator HgTe. We demonstrate a Josephson supercurrent in our nanowires contacted with superconducting Al leads. The observation of a sizable IcRnI_c R_n product, a positive excess current and multiple Andreev reflections up to fourth order further indicate a high interface quality of the junctions.Comment: Accepted for publication in Nano Letter

    Non-Perturbative Theory of Dispersion Interactions

    Get PDF
    Some open questions exist with fluctuation-induced forces between extended dipoles. Conventional intuition derives from large-separation perturbative approximations to dispersion force theory. Here we present a full non-perturbative theory. In addition we discuss how one can take into account finite dipole size corrections. It is of fundamental value to investigate the limits of validity of the perturbative dispersion force theory.Comment: 9 pages, no figure

    Casimir force on amplifying bodies

    Full text link
    Based on a unified approach to macroscopic QED that allows for the inclusion of amplification in a limited space and frequency range, we study the Casimir force as a Lorentz force on an arbitrary partially amplifying system of linearly locally responding (isotropic) magnetoelectric bodies. We demonstrate that the force on a weakly polarisable/magnetisable amplifying object in the presence of a purely absorbing environment can be expressed as a sum over the Casimir--Polder forces on the excited atoms inside the body. As an example, the resonant force between a plate consisting of a dilute gas of excited atoms and a perfect mirror is calculated

    Laughlin liquid - Wigner solid transition at high density in wide quantum wells

    Full text link
    Assuming that the phase transition between the Wigner solid and the Laughlin liquid is first-order, we compare ground-state energies to find features of the phase diagram at fixed ν\nu. Rather than use the Coulomb interaction, we calculate the effective interaction in a square quantum well, and fit the results to a model interaction with length parameter λ\lambda roughly proportional to the width of the well. We find a transition to the Wigner solid phase at high density in very wide wells, driven by the softening of the interaction at short distances, as well as the more well-known transition to the Wigner solid at low density, driven by Landau-level mixing.Comment: RevTeX 3.0, 3 Postscript figures appended in uuencoded forma

    Trion dynamics in coupled double quantum wells. Electron density effects

    Full text link
    We have studied the coherent dynamics of injected electrons when they are either free or bounded both in excitons and in trions (charged excitons). We have considered a remotely doped asymmetric double quantum well where an excess of free electrons and the direct created excitons generate trions. We have used the matrix density formalism to analyze the electron dynamics for different concentration of the three species. Calculations show a significant modification of the free electron inter-sublevel oscillations cWe have studied the coherent dynamics of injected electrons when they are aused by electrons bound in excitons and trions. Based on the present calculations we propose a method to detect trions through the emitted electromagnetic radiation or the current density.Comment: 14 pages, 13 figure

    Thermopower of a Kondo-correlated quantum dot

    Full text link
    The thermopower of a Kondo-correlated gate-defined quantum dot is studied using a current heating technique. In the presence of spin correlations the thermopower shows a clear deviation from the semiclassical Mott relation between thermopower and conductivity. The strong thermopower signal indicates a significant asymmetry in the spectral density of states of the Kondo resonance with respect to the Fermi energies of the reservoirs. The observed behavior can be explained within the framework of an Anderson-impurity model. Keywords: Thermoelectric and thermomagnetic effects, Coulomb blockade, single electron tunneling, Kondo-effect PACS Numbers: 72.20.Pa, 73.23.HkComment: 4 pages, 4 figures, revised version, changed figure
    • …
    corecore