Based on a unified approach to macroscopic QED that allows for the inclusion
of amplification in a limited space and frequency range, we study the Casimir
force as a Lorentz force on an arbitrary partially amplifying system of
linearly locally responding (isotropic) magnetoelectric bodies. We demonstrate
that the force on a weakly polarisable/magnetisable amplifying object in the
presence of a purely absorbing environment can be expressed as a sum over the
Casimir--Polder forces on the excited atoms inside the body. As an example, the
resonant force between a plate consisting of a dilute gas of excited atoms and
a perfect mirror is calculated