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We consider the dynamical atom-surface Casimir-Polder force in the non-equilibrium configuration
of an atom near a perfectly conducting wall, initially prepared in an excited state with the field in
its vacuum state. We evaluate the time-dependent Casimir-Polder force on the atom, and find
that it shows an oscillatory behavior from attractive to repulsive both in time and in space. We
also investigate the asymptotic behavior in time of the dynamical force and of related local field
quantities, showing that the static value of the force, as obtained by a time-independent approach,
is recovered for times much larger than the timescale of the atomic self-dressing, but smaller than
the atomic decay time. We then discuss the evolution of global quantities such as atomic and field
energies, and their asymptotic behavior. We also compare our results for the dynamical force on the
excited atom with analogous results recently obtained for an initially bare ground-state atom. We
show that new relevant features are obtained in the case of an initially excited atom, for example
much larger values of the dynamical force with respect to the static one, allowing for an easier way
to single-out and observe the dynamical Casimir-Polder effect.

PACS numbers: 12.20.Ds, 42.50.Lc

I. INTRODUCTION

One of the most surprising consequences of quan-
tum electrodynamics is the emergence of long-range in-
teractions between neutral macroscopic objects and/or
atoms/molecules, originating from quantum zero-point
vacuum fluctuations or exchange of field quanta @ﬁ]
In fact, the presence of boundaries, given for example
by neutral macroscopic bodies and/or atoms, modifies
the vacuum field fluctuations. This results in a measur-
able force between them, known as Casimir and Casimir-
Polder force. Casimir and Casimir-Polder forces have
stimulated intense theoretical and experimental investi-
gations since their discovery, and many theoretical mod-
els have been proposed in the literature, highlighting
fundamental properties such as their dependence on the
shape and magnetodielectric properties of the interact-
ing objects M,%] or magnetic effects [6]. Recent experi-
ments have confirmed with remarkable accuracy the the-
oretical predictions under a broad range of conditions
such as temperature, geometry and dielectric properties
of the objects ﬂ], although some fundamental open ques-
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tions pose theoretical and experimental challenges B, @]
Nowadays, it is recognized that Casimir and Casimir-
Polder effects play an important role in many different
areas of physics, ranging from atomic physics B] and
molecular biophysics ﬂ%], to cosmology [11]. Being dom-
inant at nanoscale separations, Casimir forces have also
a significant role in the interaction with nanostructured
materials |[12] and in applications in micro- and nano-
‘i%hnologies, for example microelectromechanical devices

].

New effects appear when a boundary, such as a reflect-
ing or dielectric plate, is set in motion with a nonuniform
acceleration: in this case a dynamical Casimir effect is
set up and pairs of real photons are produced in a sort of
parametric excitation of the vacuum ﬂﬂ, ] A dynami-
cal Casimir-Polder effect resulting from the optomechani-
cal coupling of an oscillating reflecting plate and a dilute

as of Rydberg atoms has been also recently proposed
h] Even if an analogous of the dynamical Casimir ef-
fect has been observed in the context of superconduct-
ing circuits ﬂﬂ] and Bose-Einstein condensates ﬂﬁ], the
experimental observation of the dynamical Casimir ef-
fect due to an oscillating macroscopic boundary is still
a challenge, because very high oscillation frequencies are
necessary to obtain a measurable number of real photons.
Alternative schemes have been recently proposed, where
the mechanical motion of the boundary is replaced by a
suitable modulation of the optical properties of a cavity
boundary [19].

New features occur in the dynamical Casimir-Polder
effect between two atoms m] or between an atom and
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a conducting mirror [21, 29]. A dynamical Casimir-
Polder force may originate from many different nonequi-
librium physical conditions, for example a dynamical
self-dressing due to a mnonequilibrium initial state, a
popolation-induced dynamics related to atomic sponta-
neous decay, motion of the atoms or of the macroscopic
bodies or even a time-dependent change of the matter-
radiation coupling due, for example, to changes of dielec-
tric properties of a macroscopic body. All these situa-
tions are basically different from the dynamical Casimir
effect, because the creation of real photons from the vac-
uum is not directly involved. In the case of dynamical
self-dressing, the system evolves from a non-equilibrium
quantum state such as a bare or partially dressed ground
state of the atom, and the atom-wall Casimir-Polder force
has a temporal evolution with new peculiarities with re-
spect to the static case, such as temporal oscillations,
including possibility of transient repulsive forces. Such a
scenario occurs also when some parameter involved in the
system Hamiltonian changes instantaneously, for exam-
ple a sudden change of the atomic transition frequency
induced by Stark shift through an external electric field
suddenly switched on or off. In this case, the state of
the system before the change is no longer an eigenstate
of the new Hamiltonian, and thus a time-evolution of the
Casimir-Polder force is obtained ﬂﬂ] Very recently these
studies have been extended to the cases of a real surface,
where the excitation of surface plasmons plays an im-
portant role in the dynamical interaction ] or to the
case of an atom in a cavity with a dielectric medium ﬂﬂ]
or a chiral molecule near a chiral plate HE] All these
studies show that, in the dynamical case, the Casimir-
Polder force can be much stronger compared with the
static case around the round-trip time, that is the time
taken by a light signal emitted by the atom to go back
to the atom after reflection on the plate; they also high-
light a new transient repulsive character (on the con-
trary, static electric atom-surface Casimir-Polder forces
are attractive). A dynamical Casimir-Polder force has
been also considered in the case of a ground-state atom
moving near a flat polarizable surface @], as well as re-
lated dynamical effects due to a fluctuating motion of
a wall m] All these investigations, which have consid-
ered atoms or molecules initially in their bare or partially
dressed ground states @], clearly show that dynamical
(time-dependent) aspects yield new observable features
in Casimir-Polder interactions.

In this paper, we investigate the dynamical Casimir-
Polder force between an atom and a perfectly conduct-
ing plate when the atom is initially in an excited state.
This non-equilibrium configuration shows new relevant
features compared to the case of a ground-state atom,
due to the presence of an atom-field resonance. The
timescales of the dynamical process (dynamical Casimir-
Polder force and dynamical self-dressing) are given by
the inverse of the transition frequency of the atom and
by the round-trip time. We use perturbation theory up
to second-order in the atom-field coupling, and this lim-

its the validity of our approach to times smaller than the
lifetime of the excited atom. We show that the time-
dependent Casimir-Polder force exhibits oscillations in
time and changes from attractive to repulsive depending
on time and the atom-wall distance. In the asymptotic
limit of long times we correctly recover the known sta-
tionary force, given in Refs. , @] for example. Our
results for the atomic excited state give more possibilities
to make observable the dynamical effect. First, contrarily
to the ground-state case, the static atom-wall Casimir-
Polder force on an excited atom oscillates in space, yield-
ing spatial regions where the force is attractive and re-
gions where the force is repulsive, while it vanishes at
well defined atom-wall distances, whose position is re-
lated to the atomic transition wavelength. Thus, it is
possible to single-out more efficiently the dynamical con-
tribution to the force, by choosing specific atom-wall dis-
tances where the static force is zero. Secondly, we show
that the dynamical force for the excited atom is much
stronger (some orders of magnitude) than the dynamical
force for a ground-state atom, using realistic values of
the parameters involved. All these new results thus show
that considering an initially excited atom, rather than
a bare ground-state atom, should be more a convenient
setup for the experimental detection of the dynamical
Casimir-Polder effect.

This paper is organized as follows. In Sec. [l we in-
troduce the model and solve the Heisenberg equations
for the field and atomic operators. We then calculate
the dynamical Casimir-Polder energy shift for the excited
atom up to second-order in perturbation theory as a local
atom-field interaction energy, and discuss its asymptotic
limit as well as that of global atomic and field quantities.
In Sec. [l we finally obtain the dynamical force and dis-
cuss its physical properties and implications. Sec. [V]is
devoted to our conclusive remarks.

II. DY NAMICAL ENERGY SHIFT

Let us consider an atom, modeled as a two-level sys-
tem, located near a perfectly conducting wall and in-
teracting with the quantum electromagnetic field in its
vacuum state. We suppose the atom prepared in its ex-
cited state at ¢ = 0. The Hamiltonian describing the
atom-field interacting system in the multipolar coupling
scheme and within the dipole approximation, is ﬂ&_ﬂ]

H = Hy+ Hj, 1)
Hy = hwoS. + Y _ hwyal;ax;, (2)

kj
H = =3\ RS+ 5o — o)

where wy = ckg is the atomic transition frequency, S,
S1 and S_ the pseudospin operators of the atomic sys-
tem, and aLj (ax;) the creation (annihilation) operators




of the field. p is the electric dipole moment of the atom
and fi;(r) are the field mode functions evaluated at the
atomic position. Supposing the wall at z = 0, the mode

(fxj)e = V8(éxj)a cos [km (:v -
(fij)y = V8(éxj)ysin [kz <x +
(fiij): = V8(éxj).sin |:kar: <117 +

where k, = In/L, ky = mn/L, k, = nw/L with {,m,n
positive integers and éy; are polarization unit vectors. In
Eqgs. @) the cavity walls are located at x = £L/2, y =
+L/2, 2 =0 and z = L. At the end of the calculation,
the case of a single wall at z = 0 can be recovered by
taking the limit L — oo.
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where we have defined the function
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Flw,t) = (6)
We now calculate the dynamical atom-plate Casimir-
Polder interaction during the dynamical self-dressing
process of the excited atom. Using stationary second-
order perturbation theory, it is possible to show that the
second-order energy shift of the overall system can be
obtained as
AE® = % (Up| Hy |¥p) (7)
where Hj is the time-independent interaction Hamilto-
nian and |Up) is the dressed (i.e. perturbed) state of
the system obtained by second-order perturbation theory.
This relates the energy shift to the local electromagnetic
field felt by the atom at its position. Since we are inter-
ested in investigating the time-dependent Casimir-Polder
energy shift during the dynamical self-dressing process of
the system, we use an appropriate generalization of Eq.
(@), that was already used in [21],[22]. We first obtain the
interaction Hamiltonian in the Heisenberg representation

at the second-order in the coupling H1(2) (t) using Eq. (@),

functions fy; taking into account the boundary condi-
tions on a cubic cavity of side L with a wall in the zy
plane, are

o o
ﬂ cos {ky (y + )] sin[k 2],
oo 4]t

In order to obtain the time-dependent atom-plate
Casimir-Polder force, we follow a procedure analogous to
that in , ] We first consider the Heisenberg equa-
tions for field and atomic operators, and solve them iter-
atively at the lowest significant order @] We obtain
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and then we evaluate its average value on the initial bare
state of the system, that in the present case is the atomic
excited state and the photon vacuum |Up) = [{Ok;},1).
Thus, the time-dependent interaction energy is given by

AED () = S (Upl BP0 W) @)

Our dynamical generalization of () assumes that in our
quasistatic approach, the time-dependent interaction en-
ergy (), in analogy to the static case, can be obtained
by the local interaction energy between the atom and
the field at the specific atomic position. It is worth to
note that the overall energy shift of the system is time-
independent due to the unitary time evolution. Never-
theless, as we shall discuss below in more detail, in the
limit of large times it gives back the correct expression
of the static atom-plate Casimir-Polder force.

Let us now take the atom in its excited state and the
field in the vacuum state as initial configuration at ¢ = 0,
that is |[Up) = [{Ok;},T). In order to evaluate the local
interaction energy (8)), we first substitute Eqs. (&) into
the interaction Hamiltonian (@]); after some algebra, we
obtain
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The dynamical energy shift for the initially excited atom is thus

{0}, 11 Hi(8) {015}, 1)

AEP (1) =
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In the continuum limit, after sum over polarizations and angular integrations, we finally obtain

 —2z cos[z] + (2 — 2?

2
AEP (d,t) = —-L /
1T (5) 47Td3 0

1 >
 4rd3 7}11§1 [Dm </0

where z = d is the atom-wall distance, x = 2kd, x¢ =
2kod, and a = ct/2d. Also, we introduced the differential
operator D,, = (2 — 29/0m + 0*/0m?). For simplic-
ity, we have assumed an isotropic atom, i.e p2 = ps =
u? = p?/3. The contribution coming from the first inte-
gral in the second line of Eq. (I is time independent,
and it coincides with the Casimir-Polder energy shift for
an excited atom as obtained with a time-independent ap-
proach. The other integral is time-dependent and it is re-
lated to the dynamical dressing of the excited atom. The
presence of a pole in k = kg in the static part takes into
account the possibility of emission of a real photon by the
excited atom, and it responsible of the well-known oscil-
latory behavior of the static atom-wall Casimir-Polder
force @, @] However, in our dynamical calculation

there are not poles in the frequency integration, as the
first line of (Il shows.

An explicit evaluation of the time-dependent term in
() shows (see also next Section) that, after a transient
yielding a time-dependent Casimir-Polder interaction, it
vanishes asymptotically in time, and the interatomic in-
teraction energy settles to its stationary value. As a re-
sult, we correctly recover for t — oo the stationary result
in @, @] We also notice that the energy shift diverges
at the round-trip time, that is when a = 2d/ct = 1, simi-
larly to the ground-state case discussed in [21]. This be-
haviour is a manifestation of the well-known divergences
of the radiation reaction and source fields on the light
cone in the case of point-like sources ﬂ%, and their elim-
ination is still an open problem m, |, as well as the
presence of divergences of field energy densities near a
reflecting surface iﬁ—@] For this reason, in the calcula-
tion of the dynamical atom-wall Casimir-Polder force in
the next section we will consider separately two different

[efi(wkfwg)tF(wk — wo,t) — eli(wr—wo)t pr (wr — wo, t)].
(10)
) sin[z] {1 = cosla(z — z0)]} dz
T — X9
. | (11)
sin(mz)  sin(ma)
o[t ta)]

temporal regions: ¢ < 2d/c and ¢t > 2d/c, i.e. before and
after the back-reaction (or round-trip) time.

There is a conceptually subtle issue about the asymp-
totic limit ¢ — oo that it is worth to stress (it is hereafter
understood that our large-times limit in any case consid-
ers times shorter than the decay time of the excited state,
of course, due to our perturbative approach). Indeed, the
asymptotic approach of expectation values of quantities
related to the field and the atom to the corresponding
stationary values should be not taken for granted. Our
result in () shows that

: (2) _ (2)
tlggo AE; (d,t) = AE; (d), (12)
where AEf) (d) is the correspondent stationary value
as obtained by the usual time-independent approach.
However, a similar relation does not hold for all phys-
ical quantities. For example, we can consider the
time-dependent expectation values of the atomic energy

<Hf) (t)), the field energy <H§72) (t)) and the interaction

energy <H1(2) (t)): their sum is constant due to the unitary
time evolution and differs from the static one (bare and
dressed excited states have a different energy). Thus the
average total energy of the interacting system does not
settle to its static value for t — oo, as well as the atomic
and field parts separately. However, this is not in contra-
diction with the fact that the system reaches some local
equilibrium configuration, as suggested by ([2). In fact,
during the self-dressing of the atom, radiation is emitted
by the atom [39]; for ¢+ — oo this emitted field moves
to very large distances from the atom and thus in this
limit it does not contribute to the interaction energy with
the atom, while contributing to the total field energy.
In other words, local field quantities such as its energy



density tend to their stationary values at any finite dis-
tance, as confirmed also by calculations of the dynamical
Casimir-Polder interaction between two atoms @], con-
trarily to a global quantity such as the total field energy
(that takes also into account the field energy density at a
very large distance). Then, we may expect that quanti-
ties related to the local field energy-density distribution,
such as the atom-field interaction, should approach the
relative stationary value for ¢ — oo, as confirmed by our

result (I2)).

III. DYNAMICAL CASIMIR-POLDER FORCE

In a quasi-static approach, the dynamical Casimir-
Polder force is obtained by taking the derivative of the

interaction energy ([Il) with respect to the atom-wall dis-
tance d and changing its sign

0

Fe(dvt) = _%

AEP (d,t). (13)

After lengthy algebraic calculation, from (1) and (I3)
we can write the expression of the dynamical Casimir-
Polder force as the sum of two terms

F.(d,t) = Fsa(d) + Fayn(d,t), (14)

where Fitq¢(d) is a time-independent contribution coin-
ciding with the asymptotic limit ¢ — oo and Fgy,,(d, t) is
the time-dependent part. The first is given by

Fyat(d) = 12“—7; [8kod — 6(2k2d> — 1) (f(2kod) — 7 cos(2kod))
— 4kod(2k3d* — 3) (9(2kod) — 7 sin(2kod))] (15)

where f(z) = Ci(z)sin(z) — (Si(z) — 7/2) cos(z) and
g(z) = —Ci(z) cos(z) — (Si(z) — 7/2) sin(z) are the aux-
iliary functions of the sine and cosine integral functions
HE] It coincides with the static force between an ex-

cited atom and a conducting wall, as obtained by a time-
independent approach @, ]. The dynamical part is
given by

1 et (16d*(9 — 2d?k3) + 16¢22d? (=2 + d?k) + c*t*(3 — 2d*k3)) sin(ckot)

den(dvt) = ,LLQ{

3md3
N 4 ko(—8d? + c*t?) cos(ckot) 1
3rd A& — 2y 127t
X
X

before the round-trip time (¢ < 2d/c), and

—4kod? cos(ckot) + ct(1 — 2d?kE) sin(ckot)

(4d? 4 2t2)3
[[Ci(2dko — ckot) + Ci(2dko + ckot)]

(2dko(3 — 2d*k3) cos(2dko ) + 3(—1 + 2d*kg) sin(2dko)) + [ + Si(ckot + 2dko) + Si(2dko — ckot)]
(3(1 — 2d°k]) cos(2dko) + 2dko (3 — 2d°k]) sin(2dko)) ] } (16)

16dkq cos(ckot)

Fayn(d,t) = 2{
an(dt) = p 3nd3 (A2 — c22)
ct(64d* — 12¢2d?t? + c*t*) sin(ckot)

T 3n(d2 — 22)2

[(Ci(Ckot + 2d/€0) + Ci(Ckot - 2d/€0))

3md3(4d? — c2t2)3 2md?
x (2dko(3 — 2d°kg) cos(2dko) + 3(—1 + 2d°kg) sin(2dko)) + (Si(ckot + 2dko) — Si(ckot — 2dkq))
X (3(1 — 2d2k2) cos(2dko) + 2dko (3 — 2d2k2) sin(2dk))] } (17)

for t > 2d/c, that is after the round-trip time, where Si(x)
and Ci(x) are respectively the sine integral and cosine

integral functions [40].
As expected from our previous physical considerations,
the dynamical Casimir-Polder force indeed diverges on
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FIG. 1: (color online) Time evolution of the dynamical
Casimir-Polder force on the atom for times smaller than the
round-trip time, that is for ¢ < 2d/c (force and time are both
in arbitrary units). The atom-wall distance is d = 20, ¢ = 1,
so that the round-trip time is ¢ = 40. The dashed (blue)
and continuous (red) lines represent the force for ko = 1 and
ko = 2, respectively. The plot shows time oscillations of the
force and a strong increase of the force around the round-trip

time (where it diverges).
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FIG. 2: (color online) Time evolution of the dynamical force
for time ¢ > 2d/c, that is after the round-trip time (force and
time are both in arbitrary units). The atom-wall distance
is d = 20 and ¢ = 1, as in Fig. [l and ko = 1. The time-
dependent force shows oscillations around the stationary value
represented by the (black) dot-dashed lines. The absolute
value of the force strongly increases in the proximity of the
round-trip time t = 40.

the light-cone ¢t = 2d/¢; this is related to the assump-
tions of a point-like atom (dipole approximation) and a
perfectly reflecting mirror, and to our initial condition of
a bare state @] The divergence would be reduced or
smeared out by releasing these assumptions. The dipole
approximation and the assumption of a perfect mirror fail
at frequencies larger that ¢/ag, ag being the Bohr’s ra-
dius, and the mirror’s plasma frequency wp, respectively.
Such large photon frequencies contribute mainly around
the round-trip time ¢ = 2d/c. We thus expect that our re-
sults are not reliable for a time interval around the round-
trip time of the order of the largest of ag/c or wp' (in
order that both assumptions are valid), where the con-
tribution of high-frequency modes is more relevant. For
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FIG. 3: (color online) Comparison of the dynamical Casimir-
Polder force between the ground- and excited-atom cases.
Box (a) shows a comparison between the dynamical force for
an initially excited atom (green dotted line) and an ground-
state atom (blue dashed line) before the round-trip time
(t < 2d/c). Boxes (b)and (c) show the dynamical force
for the initial bare ground- and excited-state atom, respec-
tively, after the round-trip time (¢ > 2d/c); in both cases the
force for ¢ — oo approaches their (nonvanishing) stationary
values. In the Figures, the following typical numerical val-
ues for atomic parameters and atom-wall distance have been
used: p = 6.31 x 1073Cm, A = 27/ko = 1.215 x 10" "m,
d =7.03x10"8m. The atom-wall distance has been chosen at
the distance where the static force for the excited atom, that
is spatially oscillating, reaches its first maximum. Round-trip
time is 4.69 x 107'%s. Plots in (b) and (c) show that for
t > 2d/c, the dynamical force on the excited atom can be
much stronger (three orders of magnitude) than that on the
bare ground-state atom.



an hydrogen atom and using, for example, the numerical
value of the plasma frequency of gold wp ~ 1.4-1016 571,
we obtain that we cannot safely consider times closer
than about 7- 1077 s to the singularity at t = 2d/c.

This singular behavior can be easily extrapolated from
Figures [1 (for ¢ < 2d/c) and @ (for ¢t > 2d/c). Also,
Fig. [ shows that the force vanishes at ¢ = 0 because
of our initial condition of a bare (excited) state. In fact,
in the case of an initial bare state, the atom-field in-
teraction is suddenly “switched-on” at ¢ = 0; thus, the
atomic dynamical dressing, which includes the effect of
the conducting wall and yields the dynamical atom-wall
interaction, starts at that time too. If a partially dressed
initial state were considered, the force at ¢ = 0 would not
be vanishing, as discussed in [22]. The fact that the force
is not vanishing before the round-trip time (see Fig. [
is fully consistent with relativistic causality because the
atom interacts with the vacuum field fluctuations, which
are modified by the presence of the reflecting wall from
the outset.

The dynamical force shows evident oscillations in time,
switching from repulsive (positive) to attractive (nega-
tive), as Figures [ (for ¢ < 2d/c) and [ (for ¢t > 2d/c)
show. This feature is common to the case of an atom ini-
tially prepared in a bare or partially dressed ground state
near a perfectly conducting wall [21, @] or a real surface
[23], and for a chiral molecule [25]. Figure @ also shows
that in the limit ¢ — oo, the known static value of the
force for the excited atom as given by a time-independent
approach m, @] is recovered. This shows that the in-
ternal dynamics of the system, for what concerns with
the dynamical Casimir-Polder force and related local field
quantities at a finite distance from the atom and the wall,
asymptotically (in time) approaches the equilibrium con-
figuration, as already discussed in Sec. [l The static
Casimir-Polder force between a mirror and an excited
barium ion has been observed, and its oscillating behav-
ior has been experimentally confirmed m, @]

As mentioned, our results are valid for times shorter
than the decay time of the excited state, typically of the
order of 107®s. The main effects we have obtained for
our dynamical case, i.e. the strong increase of the force
around the round-trip time and its oscillations, involve
much shorter times, typically of the order of 10765 and
10~ 155, respectively. This shows that the possibility of
observing these new effects is fully compatible with the
approximations done.

It is worth to compare our results for the excited atom
with the results for an initially bare ground-state atom
obtained in ﬂ2_1|, @] Figures Bl show the dynamical force,
both before and after the round-trip time, for the two
lowest levels of an hydrogen atom when the atom-wall
distance is d ~ 7 x 10~8m, where the excited-atom static
force has its first maximum. For ¢ < 2d/c, i.e. before
the round-trip time (Fig. , the force shows oscil-
lations from attractive to repulsive, that are compara-
ble in size for the two cases. On the other hand, after
the round-trip time, i.e. for ¢ > 2d/c (Figures and

7

, the intensity of the dynamical force for the excited
atom exceeds that for the initially bare ground state by
about three orders of magnitude. The physical reason
is that in the excited-atom case, there is, compared with
the ground-state case, a much stronger contribution from
field modes near resonance with the atomic transition
frequency. Furthermore, the static force for the excited
atom is vanishing at specific atom-wall distances (con-
trarily to the static force for a ground-state atom that is
attractive at all distances), and thus the dynamical term
gives the main contribution to the overall atom-wall force
around such distances. All this clearly indicates that the
case of the excited atom considered in this paper should
be more suitable to probe and detect experimentally the
time-dependent dynamical Casimir-Polder effect arising
from a non-equilibrium initial state. Possible experimen-
tal setups for observing the dynamical force could be sim-
ilar to those already used to observe static vacuum level
shifts (van der Waals and Casimir-Polder), or changes
of the spontaneous decay, for a single trapped atom or
ion in the presence of a conducting or dielectric wall 7
]. The trapped atom, for example an alkali atom such
as Cs or Rb, is initially laser excited using an optical
dipole transition, for example the Dy line of Rubidium
87, 52Dy j5 — 5°Py /5 at 780nm [44]: the subsequent dy-
namical Casimir-Polder interaction of the atom with the
plate perturbs the harmonic trapping potential and mod-
ify the motion of the atom in the trap. Modification of
its oscillation frequency in the trap is a signature of its
interaction with the wall. A similar method has been
also used to verify the temperature dependence of the
static Casimir-Polder potential HE] Finally, we wish to
stress that the intensity of the dynamical Casimir-Polder
force could be significantly increased, even by several or-
ders of magnitude, using Rydberg atoms that have high
dipole moments (scaling as n? with the principal quan-
tum number n ]), also, the space and time oscillations
of the dynamical force, being determined by kg, would
be much slower in this case, due to the lower transition
frequency, hopefully allowing an easier detection of the
transient (repulsive) effects discussed in this paper.

IV. CONCLUSIONS

In this paper we have considered the dynamical (time-
dependent) Casimir-Polder force between an atom pre-
pared at ¢ = 0 in its excited state and a perfectly con-
ducting wall. We have shown that the dynamical process
involves a timescale given by the round-trip time ¢ = 2d/c
(d being the atom-wall distance), that is the time taken
by a light signal emitted by the atom to reach the atomic
position after reflection on the wall. We have evaluated
the dynamical force both for times smaller and larger
than the round-trip time, and shown that it oscillates in
time from attractive to repulsive. The known static force
is recovered for ¢ — oo and some subtle questions about
the asymptotic approach of dynamical field and atomic



quantities to their stationary values have been discussed.
We have also shown that, in the case considered of an
initially excited atom, new features appear with respect
to the ground-state case already known in the literature,
that could be relevant for the experimental detection of
the dynamical effect. In fact, the static Casimir-Polder
force for excited atoms vanishes for specific atom-wall
distances, where the force changes its character from at-
tractive to repulsive and vice versa, and thus our dynam-
ical contribution is essentially the main one around such
points (this does not occur for a ground-state atom, be-
cause in this case the force is attractive at any distance).
Also, our results show that around and after the round-
trip time, the dynamical contribution to the Casimir-
Polder force is much greater for the excited atom com-
pared with the known case of a ground-state atom. All
these considerations suggest that the dynamical Casimir-
Polder force on the excited atom considered in this paper

should be suitable for an easier detection of the dynami-
cal Casimir-Polder effect.
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