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Nonlinearly PT -symmetric systems: Spontaneous symmetry breaking and transmission resonances
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We consider a class of PT -symmetric systems which include mutually matched nonlinear loss and gain
(in other words, a class of PT -invariant Hamiltonians in which both the harmonic and anharmonic parts are
non-Hermitian). For a basic system in the form of a dimer, symmetric and asymmetric eigenstates, including
multistable ones, are found analytically. We demonstrate that, if coupled to a linear chain, such a nonlinear
PT -symmetric dimer generates previously unexplored types of nonlinear Fano resonances, with completely
suppressed or greatly amplified transmission, as well as a regime similar to the electromagnetically induced
transparency. The implementation of the systems is possible in various media admitting controllable linear and
nonlinear amplification of waves.
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I. INTRODUCTION

In the past few years, the study of systems exhibiting the
parity-time (PT ) symmetry has drawn a great deal of attention.
The underlying idea is to extend canonical quantum mechanics
by introducing a class of non-Hermitian Hamiltonians which
may exhibit entirely real eigenvalue spectra below a certain
phase-transition point [1]. A necessary condition for the
Hamiltonian to be PT symmetric is that its linear-potential
part V(x), being complex, is subject to the spatial-symmetry
constraint V(x) = V∗(−x). The complex PT -symmetric po-
tentials can be realized in the most straightforward way in
optics, by combining the spatial modulation of the refractive
index with properly placed gain and loss [2]. This possibility
has stimulated extensive theoretical [3,4] and experimental [5]
studies.

In the PT -symmetric Hamiltonians introduced in the
context of the field theory and optics, the harmonic part
features matched gain and loss, while the anharmonic part,
if any, is usually Hermitian, giving rise to nonlinear dynamical
models in which only the linear part features balanced
dissipation and amplification [6]. In this work, we consider an
extension of the PT symmetry, in the form of Hamiltonians
whose anharmonic part also includes mutually matched loss
and gain. Very recently, a similar setting was proposed in
Ref. [4], with thePT -symmetric part of the system represented
solely by the nonlinear terms, while the linear ones were
conservative. We consider a more general situation, with both
the linear and nonlinear terms in the dynamical equations
carrying PT -matched loss and gain.

Solving the corresponding dynamical equations, in Sec. II,
we demonstrate that such nonlinear systems also give rise
to eigenstates with real frequencies. Among our findings,
which are specific to the systems with matched nonlinear gain
and loss, are eigenstates with a spontaneously broken spatial
symmetry (as mentioned above, it is the spatial symmetry
which implements the PT symmetry of the system), and
multistability of eigenstates.

Straightforward physical applications of these states are re-
alized, in Sec. III, by coupling the PT system to linear chains:
We demonstrate that it gives rise to previously unexplored
types of multistable nonlinear Fano resonances, transmission
regimes with a very strong amplification, and those similar

to electromagnetically induced transparency (EIT). Finally,
in Sec. IV we demonstrate that solutions for nonpropagating
modes in the chain with the insertedPT system can be reduced
to those for the isolated PT system.

Such systems can be implemented in optics, using saturable
absorbers [7] and two-photon losses to realize the nonlinear
PT symmetry, as well as in any medium which allows
nonlinear amplification of waves, including cavity polaritons
[8], surface plasmons [9], and magnons [10].

II. PT -SYMMETRIC DIMER

We start by introducing a solvable system, in the form of a
dimer, in which the symmetric linear gain and loss terms come
along with their nonlinear mutually conjugate counterparts,

iψ̇A = (E + iγ0 − iγ2|ψA|2 + χ |ψA|2)ψA + V ψB,

iψ̇B = (E − iγ0 + iγ2|ψA|2 + χ |ψB |2)ψB + V ψA.
(1)

Here the overdot stands for the time derivative, γ0 > 0
accounts for the linear gain and loss acting on complex
variables ψA and ψB , respectively, E is a frequency shift,
γ2 accounts for the PT -symmetric nonlinear loss and gain (as
shown below, stable eigenstates are obtained with γ2 > 0, i.e.,
if the nonlinear loss competes with the linear gain and vice
versa), χ determines the nonlinear frequency shift, and V is a
coupling coefficient.

A. Symmetric modes

Symmetric eigenstates, with |ψA| = |ψB |, are sought for as
ψA,B(t) = A exp(−iωt ± iδ/2), with the amplitude and phase
shift determined by the following equations:

[χA2 − (ω − E)]2 + (γ0 − γ2A
2)2 = V 2, (2)

tan δ = (γ0 − γ2A
2)(ω − E − χA2)−1. (3)

Depending on the parameters, Eq. (2) may yield no physical
solutions with A2 > 0, a single solution (monostability), and
bistability, with two physical roots. The bistability occurs
under conditions

(ω − E)2 > V 2 − γ 2
0 ,

(4)

γ0γ2χ
−1 + (ω − E) >

√
(ω − E)2 + γ 2

0 − V 2,
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while the monostability condition is (ω − E)2 < V 2 − γ 2
0 .

Although the system is dissipative, the symmetric eigenstates
with the real frequencies form a continuous family parameter-
ized by arbitrary frequency ω, which is a manifestation of the
PT symmetry.

B. Asymmetric states and multistability

The system admits solutions with broken symmetry too,
(A �= B): ψA,B(t) = {Aeiδ/2,Be−iδ/2}e−iωt , with δ determined
by the same equation (3) as above. Unlike the symmetric
eigenstates, the asymmetric ones exist at the single frequency,
which is typical to dissipative systems:

ωAS = E + (γ0/γ2) χ. (5)

The amplitudes are determined by equations

(A2)2 − (γ0/γ2)A2 + V 2
(
χ2 + γ 2

2

)−1 = 0 (6)

[cf. Eq. (2)] and B2 = (γ0/γ2) − A2, which shows that the
asymmetric eigenmode exists only for γ2 > 0, that is, when the
nonlinearPT -symmetric loss or gain terms compete with their
linear counterparts. We stress that the asymmetric solutions are
supported by the balance of the nonlinear and linear gain and
loss, as they do not exist for γ2 = 0 and for γ0 = 0.

The above relations yield two physical solutions (i.e., the
bistability) for the asymmetric modes, with A2,B2 > 0, at
χ2/γ 2

2 > 4(V 2/γ 2
0 ) − 1, and no solutions in the opposite case.

Under this condition, inequalities (4) hold too for ω = ωAS;
that is, the system gives rise to the multistability, with four
coexisting eigenstates, two symmetric and two asymmetric.

III. SCATTERING PROBLEM

The next step is to couple the dimer to a chain transmitting
linear discrete waves ψn(t), as shown in Fig. 1 (note that
the entire system remains PT symmetric). Here we focus
on the most fundamental version of the system, with χ = 0,
the nonlinearity being represented by the matched cubic loss
and gain, the respective coupled system being

iψ̇A = EψA + i(γ0 − γ2|ψA|2)ψA + V ψ0, (7)

iψ̇n = C(ψn−1 + ψn+1) + V δn,0 (ψA + ψB) , (8)

iψ̇B = EψB − i(γ0 − γ2|ψB |2)ψB + V ψ0, (9)

A

B

I

R

T

FIG. 1. (Color online) The linear chain with the side-coupled
elements featuring the nonlinear PT symmetry. The arrows indicate
incident, reflected, and transmitted waves.

where C is the coupling constant in the linear chain. The
solution corresponding to the scattering of incident waves with
amplitude I on the PT complex is looked for as

ψn =
{

Iei(kn−ωt) + Re−i(kn+ωt) (n � 0) ,

T ei(kn−ωt) (n � 0) ,
(10)

where wave number k > 0 is determined by the dispersion
equation for the linear chain, k = cos−1(ω/2C), while R and
T are the amplitudes of reflected and transmitted waves. A
straightforward analysis of Eqs. (8) and (10) at n = 0 yields
R = ψ0 − I , T = ψ0, and the expression for ψ0 in terms I

and ψ
(0)
A,B :

ψ0 = I + iV (2C sin k)−1
(
ψ

(0)
A + ψ

(0)
B

)
. (11)

The substitution of expression (11) into the stationary version
of Eqs. (7) and (9) leads to a system of complex cubic
equations:

(E − ω) ψ
(0)
A,B + iV 2 (2C sin k)−1

(
ψ

(0)
A + ψ

(0)
B

)
±i

(
γ0 − γ2

∣∣∣ψ (0)
A,B

∣∣∣2
)

ψ
(0)
A,B = −V I, (12)

which should be solved for ψ
(0)
A,B at given I and ω. Then, ψ0

can be found from Eq. (11), and, eventually, the reflection and
transmission coefficients can be found.

A. Scattering in the symmetric regime

In the linear system (γ2 = 0), Eq. (12) yields only
symmetric solutions, with |ψA| = |ψB |. The corresponding
transmission spectrum, displayed in Fig. 2, demonstrates two
noteworthy effects. One is the suppression of the transmission
by the degenerate side-coupled elements without the gain and
loss, γ0 = 0. In this case, the eigenfrequencies of both elements
are identical, and their excitation results in the resonant reflec-
tion at ω = E, which can be explained in terms of the Fano
resonance [11]. The presence of the weak linear gain and loss,
with γ0 � 1, lifts the degeneracy between the attached sites,
leading to a response resembling the EIT effect [12], with the
total transmissivity (|T/I |2 = 1) at ω = E, between resonant
reflections on the pair of slightly detuned linear PT elements.

In the system combining the linear chain and the nonlinear
PT scatterer with γ2 > 0, one can find symmetric solutions
with ψ

(0)
A = −ψ

(0)
B = −iφ, where φ is real. First, we consider
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FIG. 2. (Color online) The normalized transmission coefficient
for several values of the gain/loss factor γ0 in the linear system
(γ2 = 0). Other parameters are E = 0.1, V = 0.2, and C = 1.
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FIG. 3. (Color online) (a) Normalized transmission coefficient
and (b) excitation intensity of the side-coupled PT elements for
γ0 = 0.01, γ2 = 0.0001, V = 0.2, C = 1, and ω = E = 0.1. The
nonlinear Fano resonances correspond to T = 0. The red and blue
curves depict, respectively, the full multitude of asymmetric scattering
regimes, produced by Eq. (12), and the symmetric one corresponding
to Eq. (13). The inset in (b) shows the tristability region in the latter
case. The horizontal dotted line in (b) corresponds to Eq. (15).

the case of φ �= √
γ0/γ2 (this value plays a special role, as

shown below). Then, the symmetric mode exists at ω = E,
with φ determined by the equation

γ2φ
3 − γ0φ + V I = 0, (13)

which yields a single real root for Pin ≡ |I |2 >

(4/27)γ 3
0 /(V 2γ2), and three real solutions (tristability) in the

opposite case. According to Eq. (11), all these solutions realize
the perfect EIT-like transmissivity, with T ≡ 1 [the horizontal
blue line in Fig. 3(a)]. The family of the symmetric states is
displayed by the blue curves in Fig. 3(b), where the tristability
occurs at Pin < 1/27.

B. Nonlinear fano resonances

In contrast to its linear counterpart, the nonlinear system
may support complete suppression of the transmission (T =
0), that is, nonlinear Fano resonances [11]. From Eq. (11)
it follows that ψ

(0)
A + ψ

(0)
B = 2iICV −1 sin k for ψ0 = T = 0.

The substitution of this into Eq. (12) leads to the system

(E − ω) ψ
(0)
A,B ± i

(
γ0 − γ2

∣∣ψ (0)
A,B

∣∣2)
ψ

(0)
A,B = 0, (14)

which gives rise to a continuous family of symmetric nonlinear
Fano resonances, with ω = E:

ψ
(0)
A,B = i

√
γ0/γ2 exp(±iδ), (15)

cos δ = (2V )−1
√

(4C2 − E2) (γ2/γ0) Pin. (16)

(Recall the above EIT-like symmetric family, corresponding
to |T/I |2 ≡ 1, had |ψ (0)

A,B | �= √
γ0/γ2 and cos δ = 0.) Equation

(16) imposes condition cos2 δ � 1, that is,

Pin � 4V 2 (γ0/γ2) (4C2 − E2)−1. (17)

Thus, at ω = E, a family of the nonlinear Fano resonances
with the symmetrically excited side-coupled PT elements
exists in this interval of the intensity of the incident wave.
The novelty of the result is that the Fano resonance is usually
obtained as an isolated solution.

C. Asymmetric scattering regimes

Equation (14) for the nonlinear Fano resonances also admits
two ultimate asymmetric states, with the vanishing excitation
at one of the PT elements: ω = E and

ψ
(0)
A =

√
γ0/γ2,ψ

(0)
B = 0, (18)

or vice versa, with A � B. In either case, this solution exists
at Pin = V 2(γ0/γ2)(4C2 − E2)−1. This point falls into the
range (17) of the existence of the symmetric Fano-resonance
solutions, which implies an intrinsic bistability of the nonlinear
Fano resonances.

Equation (12) gives rise to other asymmetric scattering
regimes, which, in particular, may produce a strong resonant
amplification of the transmitted wave. The complete set of the
asymmetric scattering states is depicted by the red curves in
Fig. 3.

D. Stability

The stability of the above analytical solutions was checked
in direct simulations of Eqs. (7)–(9). The results demonstrate
that the ultimate asymmetric state (18) with the nonzero exci-
tation at the linear-loss element is stable, while its counterpart
with the excitation at the linear-gain element is unstable,
transforming itself into an oscillatory mode (apparently, a
limit cycle); see the left panels in Fig. 4. These results can
be understood following the similarity to previously studied
systems composed of coupled cores with the linear gain and
loss acting separately in them, which also give rise to a pair of
stable and unstable modes [13].

Symmetric Fano-resonance modes (15) are unstable and
also develop oscillatory states, with a very low transmissivity
and spontaneously broken symmetry between the PT ele-
ments, |ψA| �= |ψB |, as shown in the right panels in Fig. 4. In
fact, such asymmetric states correspond to the nearly perfect
Fano resonance in Fig. 3 at Pin = 4. The resonantly amplified
transmission regimes are also unstable, due to enhancement of
the field on the linear-gain element.

IV. NONPROPAGATING MODES

The dispersion relation for Eq. (8) demonstrates that
frequencies of the propagating waves belong to the respective

012123-3



MIROSHNICHENKO, MALOMED, AND KIVSHAR PHYSICAL REVIEW A 84, 012123 (2011)

100

80

60

40

20

0

|
A

,B
|2

10008006004002000

| B|
2

| A|
2

120

100

80

60

40

10008006004002000

| B|
2

| A|
2

1.2

1

0.8

0.6

0.4

0.2

0

R
, T

10008006004002000

time, t

 Reflection

Transmission

1

0.8

0.6

0.4

0.2

0

10008006004002000

time, t

 Reflection

Transmission

Asymmetric, Pin = 1 Symmetric, Pin = 4

(a)

(b)

(c)

(d)

FIG. 4. (Color online) The perturbed evolution of those asymmet-
ric (left) and symmetric (right) Fano-resonance modes from Fig. 3
which are dynamically unstable. Filled circles indicate the initial
states.

phonon band, |ω| < 2C. Above the band, at ω > 2C, it is
possible to find exact solutions for localized modes pinned to
the PT complex:

ψn = V (ψ̃A + ψ̃B)

2ω − √
ω2 + 4C2

(√
ω2 + 4C2 + ω

2C

)−|n|
, (19)

where ψ̃A and ψ̃B are given by the above solutions for the
symmetric and asymmetric modes, that is, Eqs. (2), (3) and
Eqs. (5), (6), with V and E replaced by Ṽ ≡ V 2/(2ω −√

ω2 + 4C2) and Ẽ ≡ E + Ṽ . This means that the solution for
the nonpropagating symmetric modes remains explicit, while
Eq. (5) for the asymmetric mode takes the form of a quartic
equation for ωAS.

V. CONCLUSIONS

We have introduced thePT -symmetric systems that feature
balanced gain and loss at both linear and nonlinear levels. For
the basic dimer system, we have produced a complete set of
analytical solutions, which feature the spontaneous symmetry
breaking and multistability. We have demonstrated, also in the
analytical form, that the symmetric and asymmetric excitations
in the dimer, if it is coupled to the linear chain, give rise to a
variety of nonlinear Fano resonances, including the bistability
between them, as well as perfect-transmission regimes re-
sembling EIT, and the resonantly amplified transmission. The
coexistence of these scattering channels suggests applications
to the design of data-processing schemes. Nonpropagating
modes in the chain, pinned to the PT scatterer, were
found too.
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