68 research outputs found

    A robust hardware algorithm for real-time object tracking in video sequences

    Get PDF
    Abstract Most of the emerging content-based multimedia technologies are based on efficient methods to solve machine early vision tasks. Among other tasks, object segmentation is perhaps the most important problem in single image processing. The solution of this problem is the key technology of the development of the majority of leading-edge interactive video communication technology and telepresence systems. The aim of this paper is to present a robust framework for real-time object segmentation and tracking in video sequences taken simultaneously from different perspectives. The other contribution of the paper is to present a new dedicated parallel hardware architecture. It is composed of a mixture of Digital Signal Processing and Field Programmable Gate Array technologies and uses the Content Addressable Memory as a main processing unit. Experimental results indicate that small amount of hardware can deliver real-time performance and high accuracy. This is an improvement over previous systems, where execution time of the second-order using a greater amount of hardware has been proposed.

    Efficient Smart CMOS Camera Based on FPGAs Oriented to Embedded Image Processing

    Get PDF
    This article describes an image processing system based on an intelligent ad-hoc camera, whose two principle elements are a high speed 1.2 megapixel Complementary Metal Oxide Semiconductor (CMOS) sensor and a Field Programmable Gate Array (FPGA). The latter is used to control the various sensor parameter configurations and, where desired, to receive and process the images captured by the CMOS sensor. The flexibility and versatility offered by the new FPGA families makes it possible to incorporate microprocessors into these reconfigurable devices, and these are normally used for highly sequential tasks unsuitable for parallelization in hardware. For the present study, we used a Xilinx XC4VFX12 FPGA, which contains an internal Power PC (PPC) microprocessor. In turn, this contains a standalone system which manages the FPGA image processing hardware and endows the system with multiple software options for processing the images captured by the CMOS sensor. The system also incorporates an Ethernet channel for sending processed and unprocessed images from the FPGA to a remote node. Consequently, it is possible to visualize and configure system operation and captured and/or processed images remotely

    Dimensionality Reduction and Pattern Recognition of Flow Regime Using Acoustic Data

    Get PDF
    In this study we investigated the novel application of Principal Component Analysis (PCA) in order to reduce the dimensionality of acoustic data. The acoustic data are recorded by fibre optic distributed acoustic sensors which are attached along a 3500 m pipe with a sampling frequency of 10 kHz and for a duration of 24 hours. Data collected from distributed acoustic sensors are very large and we need to identify the part that contains the most informative signals. The algorithm is applied to water, oil and gas datasets. We aimed to form a smaller dataset which preserves the pattern of the original dataset which is more efficient for further analysis. The result of this study will lead to automation of multiphase flow pattern recognition for oil and gas industry applications

    Speeding-Up Expensive Evaluations in High-Level Synthesis Using Solution Modeling and Fitness Inheritance

    Get PDF
    High-Level Synthesis (HLS) is the process of developing digital circuits from behavioral specifications. It involves three interdependent and NP-complete optimization problems: (i) the operation scheduling, (ii) the resource allocation, and (iii) the controller synthesis. Evolutionary Algorithms have been already effectively applied to HLS to find good solution in presence of conflicting design objectives. In this paper, we present an evolutionary approach to HLS that extends previous works in three respects: (i) we exploit the NSGA-II, a multi-objective genetic algorithm, to fully automate the design space exploration without the need of any human intervention, (ii) we replace the expensive evaluation process of candidate solutions with a quite accurate regression model, and (iii) we reduce the number of evaluations with a fitness inheritance scheme. We tested our approach on several benchmark problems. Our results suggest that all the enhancements introduced improve the overall performance of the evolutionary search

    Multimodal diagnostics in multiple sclerosis: predicting disability and conversion from relapsing-remitting to secondary progressive disease course - protocol for systematic review and meta-analysis

    Get PDF
    Background The number of patients diagnosed with multiple sclerosis (MS) has increased significantly over the last decade. The challenge is to identify the transition from relapsing-remitting to secondary progressive MS. Since available methods to examine patients with MS are limited, both the diagnostics and prognostication of disease progression would benefit from the multimodal approach. The latter combines the evidence obtained from disparate radiologic modalities, neurophysiological evaluation, cognitive assessment and molecular diagnostics. In this systematic review we will analyse the advantages of multimodal studies in predicting the risk of conversion to secondary progressive MS. Methods and analysis We will use peer-reviewed publications available in Web of Science, Medline/PubMed, Scopus, Embase and CINAHL databases. In vivo studies reporting the predictive value of diagnostic methods will be considered. Selected publications will be processed through Covidence software for automatic deduplication and blind screening. Two reviewers will use a predefined template to extract the data from eligible studies. We will analyse the performance metrics (1) for the classification models reflecting the risk of secondary progression: sensitivity, specificity, accuracy, area under the receiver operating characteristic curve, positive and negative predictive values; (2) for the regression models forecasting disability scores: the ratio of mean absolute error to the range of values. Then, we will create ranking charts representing performance of the algorithms for calculating disability level and MS progression. Finally, we will compare the predictive power of radiological and radiomical correlates of clinical disability and cognitive impairment in patients with MS. Ethics and dissemination The study does not require ethical approval because we will analyse publicly available literature. The project results will be published in a peer-review journal and presented at scientific conferences. PROSPERO registration number CRD42022354179

    A neural network based intelligent predictive sensor for cloudiness, solar radiation and air temperature

    Get PDF
    Accurate measurements of global solar radiation and atmospheric temperature, as well as the availability of the predictions of their evolution over time, are important for different areas of applications, such as agriculture, renewable energy and energy management, or thermal comfort in buildings. For this reason, an intelligent, light-weight and portable sensor was developed, using artificial neural network models as the time-series predictor mechanisms. These have been identified with the aid of a procedure based on the multi-objective genetic algorithm. As cloudiness is the most significant factor affecting the solar radiation reaching a particular location on the Earth surface, it has great impact on the performance of predictive solar radiation models for that location. This work also represents one step towards the improvement of such models by using ground-to-sky hemispherical colour digital images as a means to estimate cloudiness by the fraction of visible sky corresponding to clouds and to clear sky. The implementation of predictive models in the prototype has been validated and the system is able to function reliably, providing measurements and four-hour forecasts of cloudiness, solar radiation and air temperature

    A New Concept for an Effective Leak Detection and Loclisation in Multiphase Fluid Pipelines

    No full text
    The aim of this paper is to present a secure wireless sensor network-based infrastructure for fast and accurate detection of eventual leaks that might occur in multiphase pipelines (i.e., pipelines which carry simultaneously more than one fluid). The system is scalable to monitor long distances of pipelines. It consists of a newly designed low cost pipeline set which is composed of an inner pipe that carries the multiphase fluid, surrounded by a second outer pipe that holds the leak detection unit. This latest comprises an air-ultrasonic sensor which continuously senses the presence of the leak. The location of the leak is determined by a bidirectional microphone. Both these sensors are interfaced to a wireless sensor module which performs control, signal processing, and transmission tasks. Hence, the second contribution of the paper is to provide a new secure and reliable communication protocol that takes into consideration the nature of the network in terms of packets patterns and hardware constraints of the communicating nodes. Online tests in a laboratory scale flow loop indicate that the system is capable to accurately determine the location of the leak and its rate (in l/min) in fast response time for different scenarios of leaks

    Optimal Design for a Portable NMR- and MRI-Based Multiphase Flow Meter

    No full text
    • ā€¦
    corecore