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Abstract

Most of the emerging content-based multimedia technologies are based on efficient methods to solve machine early vision tasks.

Among other tasks, object segmentation is perhaps the most important problem in single image processing. The solution of this

problem is the key technology of the development of the majority of leading-edge interactive video communication technology and

telepresence systems. The aim of this paper is to present a robust framework for real-time object segmentation and tracking in video

sequences taken simultaneously from different perspectives. The other contribution of the paper is to present a new dedicated

parallel hardware architecture. It is composed of a mixture of Digital Signal Processing and Field Programmable Gate Array

technologies and uses the Content Addressable Memory as a main processing unit. Experimental results indicate that small amount

of hardware can deliver real-time performance and high accuracy. This is an improvement over previous systems, where execution

time of the second-order using a greater amount of hardware has been proposed.

r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Real-time Object segmentation and tracking in video
sequences is among the important leading-edge technol-
ogies, which substantially support multimedia applica-
tion. As example, to provide new functionalities and
increase the compression rate, the MPEG-4 video
standard should encode content-based video data with
the aim of using and presenting it in highly flexible way
[1,2]. A second example concerns the World Wide Web,
which is being increasingly populated. Hence, there is
growing need for effective indexing and retrieval of large
amounts of such media data.

The aim of this paper is to describe a new framework
for object segmentation/tracking in video sequences.
Object segmentation and tracking for complex problems
have been plagued by both poor speed and a high
incidence of false alarms [1,2]. The primary source of
these problems is clutter in the image. Such image clutter
not only requires considerable computations to process,
ing author. Department of Electronics, College of

ltan Qaboos University, P.O. Box 33, El-Khod, Oman.

1-418.

ess: kassantina@hotmail.com (M. Meribout).

e front matter r 2004 Elsevier Ltd. All rights reserved.

i.2004.05.002
but also yields false positive instances of the objects that
are sought. Solutions to these problems have been only
partially successful. In this project an approach to image
object tracking on image sequences is given. Hence, a
semantic object is modeled as a set of regions with
corresponding spatial and visual features and we
suppose that semantic knowledge of the first frame of
the scene is already performed. This model directly links
the semantic object to its underlying feature regions of
the segmentation of the frame. The same algorithm
could be extended to content-based video retrieval.

Besides the algorithm’s accuracy, another not less
important feature in the field of multimedia is the time
complexity. Hence, most of the works on object
segmentation and tracking algorithms are still unrealis-
tic to implement in real-time because of the irregular and
huge data structure of the algorithms. Therefore, several
approaches have been proposed to map these algorithms
in highly parallel hardware machines [3–5]. In [6], we
have shown how a real-time line extraction can be
implemented in a compact, low cost, and highly parallel
board namely, Highly Parallel Integrated Circuit system
(HiPIC). Recently, the board has been designed and
completely implemented. Thus, in this paper we are
particularly interested to address the performance of
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that machine for our new object video segmentation/
tracking algorithm. The other contribution of the paper
is then to show how a parallel implementation of these
algorithms has been achieved in the HiPIC board. A
top–down software/hardware design methodology has
been followed for this purpose. Comparison with other
previous implementations indicates clearly the super-
iority of our HiPIC concept.

This paper is organized as follows. The core algorithm
is briefly reviewed in Section 2. More details of the
algorithm is given in Section 3. In Section 4, compre-
hensive complexity analysis for these algorithms is
presented. Based on this analysis, we describe the design
space exploration and optimization for real-time im-
plementations. Finally, we summarize our conclusion in
Section 5.
2. Overview of the algorithms and some related previous

works

Automatic object tracking and segmentation of
semantic objects is difficult expect for specific applica-
tion domains. The rich set of features and spatio-
temporal structural information at the boundary of
objects has also proved to be effective in video indexing
[7]. As shown in Fig. 1(a), the integrated framework
extracts and tracks 2D objects. This is suitable for
object-base coding such as MPEG4. Key research issues
in this paper lie in (1) extract accurate boundaries on
which it performs tracking, and (2) demonstrate how
this algorithm can be amenable to a parallel framework.

Object-based video processing generally belongs to
two principal classes, namely region- and shape-based
techniques. The successfulness of one or the other class
depends primarily on the degree of texture in the scene
[8,9]. Shape-based techniques have been shown to be
appropriate for lowly textured scenes. In this paper
Video Sequence
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Fig. 1. General framework of the system for: (a) 2D video
we are particularly interested to address such kind
of scenes.

2.1. Some previous works on active video object

segmentation and tracking algorithm

One of the major challenges facing multimedia-based
algorithms is to achieve very low bit rate coding. An
integrated spatio-temporal framework, which uses
block-based motion estimation and DCT have been
widely adopted for this purpose. However, in case of
zoom or rotation of objects in the video scene the
performance of these motion algorithms degrades
dramatically, and the encoder provides a low compres-
sion ratio. Many approaches have then been developed
using the motion field or optical flow. Wang and
Andelson in [10] presented an affine clustering-based
algorithm. In [11], instead of using optical flow, Ayer
and Sawhney propose a method to estimate motion
models and their layer support simultaneously. In [12],
Meyer and Bouthemy developed a pursuit algorithm to
track an object based on the multiresolution estimation
of the affine model from the motion field within the
object. In general, the above methods concentrate on
segmenting objects and cannot track static objects
within intermittent motions (e.g. objects stop and move
between frames). Furthermore, due to the accuracy
limitation, motion segmentation may not give clear
object boundaries.

Recently, with the demand for object tracking in
videos and the requirement of more accurate segmenta-
tion boundaries, region based methods, which combine
common image segmentation techniques with motion
estimation methods have been reported in [13,14]. In
[13], Dubuisson and Jain presented an approach to
combine motion segmentation using image subtraction
with static color segmentation using the split and
merge paradigm. The motion field of the object is
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regions 

Foreground 
regions 
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segmentation and (b) Model of input video sequence.
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simultaneously performed and the combination of the
two segmentation results is done only at the final stage
using certain heuristic rules. In [14], Gu and Lee
proposed a semantic object tracking system using
mathematical morphology and perspective motion.

Satisfactory results for these works were reported for
a certain type of video content e.g. with simple motions,
constant illumination (since the region growing and
matching methods use basically the color information),
and no occlusion. In addition, due to the noisy nature of
their motion field in real-world scenes, tracking results
may be error-prone. Also, as there are no constraints
being applied between motion and static segmentation,
when the two results are different from each other, its
hard to align them to generate the final object mask.
Furthermore, these techniques tend to ignore the back-
ground content process. This may cause problems in
tracking regions near the boundary of the object.
Finally, most of these algorithms are not parallelizable
which lead to high execution time. This makes hard to
meet one of the most important aspect in video
processing: real-time performance.

Other approaches use the shape boundary as main
information for object tracking. Mathematicians typi-
cally define shape as an equivalence class under a group
of transformations. This definition is incomplete in the
context of visual analysis. This only tells us when two
shapes are exactly the same. We need more than that or
a theory of shape similarity or shape distance. An
extensive survey of shape matching in computer vision
can be found in [1,2]. In [15], a real-time gradient-based
segmentation hardware algorithm was developed to
match edge detection and line approximation results
with motion segmentation. Hence, neighboring pixels
having a similar gradient direction are grouped in a
same line. However, the weak performance of this
algorithm in a noisy or cluttered scene results in
fragmented and spurious line segments, which enhances
dramatically the complexity of post-processing tasks.
Additional procedures such as line merging and vertices
extraction [16] become then necessary. In addition, the
edge detection operator must be strong enough to avoid
noisy and thick boundaries [17]. Overall, the method is
not well accurate in case the object’s boundary is not
smooth. Another method, the Generalized HT (GHT),
which explores the gradient of the luminosity function,
has been widely adopted for 2D video-based segmenta-
tion [8,18]. Its robustness against noise constitutes one
of its major advantages. Its difficulty, however, is the
large hardware amount required in terms of memory
and processing power since a large four-dimensional
(4D) accumulator array needs to be processed for each
video frame. Thus, this algorithm has been mainly
applied to static images. Several variants of the GHT
[8,9,18] have been reported in order to reduce its
complexity. Most of them primarily proceed by group-
ing some similar pixel points that are likely to belong to
the same object. This yields improvements for both the
speed and accuracy of object segmentation. However
their clustering criteria made these algorithms limited to
extract only particular features of the image such as edge
corners.

To solve the above problems for general video
sources, we developed an active system that uses an
innovative method for combining object segmentation
and tracking methods. It is based on the Generalized
HT (GHT) algorithm and uses a new grouping
technique, which clusters more features than other
previous grouping methods. Furthermore, it is amenable
to a parallel framework yielding to a significant
improvement of the computation time and memory
complexity.
3. New video-based GHT algorithm for 2D object

segmentation and tracking

In our approach, we treat an object as a point set and
we assume that the shape of an object is essentially
captured by a finite subset of its points. More
practically, a shape is represented by a discrete set of
points sampled from the contours on the object. These
can be obtained as locations of edge pixels as found by
an edge detector, giving us a set P ¼ fp1; p2;y; png; of n

points. These points need not correspond to key points
such as maxima of curvature or inflection points. In the
following, we first review the concept of GHT, which
uses feature points to recognize 2D objects. The
algorithm is then extended for tracking in a sequence
of images.

3.1. Overview of the GHT algorithm

The key idea of the GHT algorithm is that when many
sets of matches between image features and object model
features are mapped into the space of object positions
that bring them into alignment, a cluster forms at the
correct position of the object, if it appears in the image.
Thus, in the GHT, the search pattern is parameterized
as a set of vectors from feature points (edges) in the
pattern to a fixed reference point, referred to as RP. To
locate the pattern in an image, each of these features is
considered and the corresponding locations of the
reference point are calculated. Assume that the shape,
scale S, and rotation t of the desired region are known.
A reference point, OðxR; yRÞ; is chosen at any location
inside the sample region. Then an arbitrary line can be
constructed at this reference point aiming in the
direction of the region border (Fig. 2(a)). This line
intercepts the boundary template at the point Mðx; yÞ:
The gradient direction f, the distances of the reference
point to the region border, r, and the angle g for the
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segment OM are then determined as a geometrical
template. The first process consists then to construct a
reference table using f as a key and ðr; gÞ as data. This
process is repeated for several other boundary points of
the template and the reference table progressively filled
for each of them. In the matching phase, the 4D space
ðS; t; xR; yRÞ is investigated. When the figure with the
scale Su and rotation tu is the object for extracting, the
edge direction fD is determined for an edge point
DðxD; yDÞ in an image and the nearest value to fD � tu;
fi; is searched in keys of the reference table. By using the
values of rD and gD; which are indexed by fi; the
candidate coordinates ðxR; yRÞ of the RP, are determined
using the following equations:

xR ¼ xD þ rD � Su � cosðgD þ tuÞ; ð1Þ

yR ¼ yD þ rD � Su � sinðgD þ tuÞ: ð2Þ

Then a voting process for increasing the value of the
coordinates ðSu; tu; xR; yRÞ of the 4D parameter space is
done. Calculating candidate coordinates of the RP and
voting process to coordinates are executed for several
values of S and t. After all video frame features have
been processed, the 4D accumulator array will contain
high value (peak) for locations where many image
features coincide with many pattern features. High
peaks (relative to the number of features in the pattern)
correspond to reference point locations where instances
of the pattern occur in the image.

One major advantage of the above algorithm is its
high robustness against noise. However, its main
difficulty is the huge 4D parameter space, which can
be increased to 5D if different target objects have to be
detected. Even though some parts of the algorithm
feature a parallel data structure, the huge parameter
space makes difficult its real-time implementation.

3.2. Our segmentation framework: new GHT for

video-based 2D object extraction and tracking

To reduce the time complexity of the GHT and
improve its accuracy, our idea is to decompose the
segmentation framework into several sub-problems that
must be examined iteratively. It can be formulated as a
data-clustering problem, where data exhibiting similar
features are grouped together by pairwise data cluster-
ing under additional topological considerations. Special
attention has to be given to the aspect of real time
optimization. This is accomplished by parallelizing the
algorithm. Hence, an additional 2D parameter space
from which the two end-points, A and B, belonging to a
same line support, are extracted. Their invariant features
to scale, rotation, and translation, pA and pB, are then
compared to the whole list of its reference table (referred
in Fig. 2(b) as an R-table). The 5D parameter space is
then voted (Fig. 2(c)). As it will be shown in the next
section, the structure of the R-table is different from the
reference table used in the classical GHT. The improve-
ment here is that a less number of edge pixels, though
meaningful ones contribute to the 5D parameter space.
This is because the probability of error for a pair of two
edge points to fit one element pair in the R-table is lower
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than that of a single edge point. Therefore, it is possible
for our technique to not only distinguish sets of points
that are likely to belong to the same object, but also to
reduce the amount of search that is necessary in
matching points between an object model and points
in the image that are known to be from the object, by
producing only certain subsets of the points among all
possibilities. This makes the detection more accurate
against noise with a faster convergence. In addition, the
5D parameter space is not considered as a whole but
progressively filled in a hash table. Another advantage
of this method is that the range of the rotation and scale
is not initially fixed, but progressively calculated using
different features of the candidate pairs of edge points.
As a result, the processing power and memory usage are
improved.

The detection of the target objects, labeled objecti, is
preceded by an off-line model preprocessing, in which
model data is statistically compiled into an R-table for
fast access in the segmentation stage. This is followed by
the segmentation and tracking phase.

3.2.1. Segmentation of the initial frame and design of the

R-table

The frame is supposed to be already segmented, either
manually or automatically, using any segmentation
technique [1,2]. In our experiments, the user identifies
a semantic object of the frame by using a tracing
interface (e.g. mouse. The input is a polygon, whose
vertices and edges exist roughly along the desired object
boundary). Next, an edge detection algorithm is applied
to the image. The gradient is usually calculated on the
luminance component. However, sometimes luminance
variations are very small along the borders of the
adjacent objects. In such cases, we may get false
boundaries due to the resulting small gradients. To
overcome this problem, we incorporate color informa-
tion into gradient computation. Let gY ðx; yÞ denote the
gradient of the pixel located at the address (x,y) of the
image space, which is obtained from luminance infor-
mation and gCðx; yÞ denote the gradient obtained from
the color information, then the incorporated gradient is
given by:

gðx; yÞ ¼ maxðgY ðx; yÞ; gCðx; yÞÞ ð3Þ
Fig 3. Example of extraction of object boundary: (a) Original image. (b) Grad

(d) Boundary of the object after filtering.
gY ðx; yÞ is calculated on the Y component in the YcbCr
color space using (3), and is calculated as follows:

gCðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgLðx; yÞÞ

2 þ ðgaðx; yÞÞ
2 þ ðgbðx; yÞÞ

2

q
; ð4Þ

where, gLðx; yÞ; gaðx; yÞ; and gbðx; yÞ; are calculated on
the L, a, b component in the (L,a,b) color space. Hence,
in order to get the gradient from color information, we
use a nonlinear color space conversion, the (L,a,b) color
space [14], which is related to the CIE XYZ standard
observer through a nonlinear transformation. The
(L,a,b) color space is a suitable choice for this purpose
because it is a perceptually equalized color space, i.e.,
the numerical distance in this space is proportional to
perceived color difference. The transformation of
YCbCr (with ITU-R Rec. 624-4 specs) to RGB can be
represented as follows [19]:
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Fig. 3 shows another video scene, where the target
object is the shoulder. It can be clearly seen how the
ient from luminance information. (c) Gradient from color information.
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object’s contour are better defined with color informa-
tion (Fig. 3(c)) than using the luminance information
(Fig. 3(b)).

After the gradient information is obtained, the final
step consists to find the exact boundary of the target
object. Hence, only the edges, which are close to the
defined boundary, are considered, whereas, all its other
internal edges are rejected. Fig. 4 illustrates the principle
of the algorithm. Hence, the point M(x,y) is considered
to belong to the object boundary (e.g. true edge) if there
is no pair of edge points which are simultaneously
between (M and P) and (M and Q).

Fig. 3(d) shows the final results of the boundary
extraction after applying this algorithm. It can be
observed how the inner edges of the target object
(shoulder) could be rejected.

Fig. 5 shows the edge detection results of the frames
24, 30, and 36, respectively, of the same video scene.

The next step consists to design the R-table, which
will be used during the matching process. Hence, the
matching approach should be not only invariant under
scaling, rotation, and translation but robust under small
geometrical distortions, occlusion, and presence of
outliers as well. Thus, our experience suggests that
matching is easier and less ambiguous if rich descriptors,
e.g. better than single edges, are used. As a key
contribution, we propose a novel descriptor, the line
feature that could play such role in shape matching.
x

y

M

Semantic object
True edge  P

Q

Fig. 4. Selection of true edges in the image space.

Fig. 5. Edge detection results of the frames of the table tennis sequence: (

detection; (e) frame 030 after edge detection; (f) frame 036 after edge detect
Consider the set of vectors originating from a point to
all other sample points on a shape. These vectors express
the configuration of the entire shape relative to the
reference point. Next, to each of these vectors is applied
a robust perceptual grouping mechanism. Many cues
have already been used to perform efficiently grouping
of image features. Some examples include parallelism,
proximity, and colinearity [13,14]. In this paper, the
features, p, are the angle formed by the gradient
orientation and the line joining the edge pair features,
and the color information of the pixels corresponding
to the edge pixels as well. The selection of these features
is efficient in case the target object is smooth enough
(as will be demonstrated in next sections). However, in
case it is highly textured, other properties using other
low level features, such as the fractal analysis, can be
applied [6].

Initially, the RP, OðxR; yRÞ; and the invariant feature
p, to be used, are selected. Next, an edge point,
MðrM ; aM ¼ fM � yM ;LM ; aM ; bM Þ; which belongs to
the object boundary is selected. Here, fM is the gra-
dient direction of the edge point M, and yM the slope
and rM the distance to the origin of the line passing
through M and O. LM, aM, bM are the L, a, and b

components, respectively, of the pixel M. The intersec-
tion of this line with the object boundary forms a second
point NðrN ; aN ¼ fN � yN ;LN ; aN ; bNÞ; where fN re-
presents its gradient direction. The obtained angles aM

and aN, which are invariant to rotation, along with the
vector ratio k : OM

��!
¼ k � MN

��!
; which is invariant to

scale, the label objecti of the target object being
processed, the segment length [MN], and the color
information are then stored into the R-table, at the
address indexed by the angle aM. This process is
repeated for a predefined sampling rate and range of
the slope y. The R-table elements corresponding to
another target object, objectiþ1; are determined with the
same manner. Fig. 2(c) shows the configuration of the
resulting R-table.
a) frame 024; (b) frame 030; (c) frame 036; (d) frame 024 after edge

ion.
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During the R-table construction, one other constraint
being used is that the pair of edge points belonging to
the same line descriptor must be some minimum
distance apart in the image to form a group. This is
because edge points that are close together produce
unstable results in the pose estimation process, and thus
less likely to be useful.

3.2.2. Object segmentation in the subsequent video frames

Two parameter spaces, denoted, respectively, by P1

(Fig. 2(b)) and P2 (Fig. 2(c)), are simultaneously
processed. P1 is a 2D parameter space which processes
the line parameters; whereas P2 is a 5D parameter space
which handle the rotation t, the scale S, the object class,
and the position of the RP, OðxR; yRÞ: If within the video
frame, a pair of edge points AðxA; yA;fA;LA; aA; bAÞ and
BðxB; yB;fB;LB; aB; bBÞ belonging to a line support ðr; yÞ
is found (process 1), then the algorithm checks if in the
R-table exists a pair of edge points PðxP; yP;fPÞ and
QðxQ; yQ;fQÞ; which verify the following equations:

aP ¼ fA � y; aQ ¼ fB � y; and

Ds ¼ wLðDLÞ þ wuðDaÞ þ wvðDbÞoth; ð6Þ

where the terms DL, Da, and Db are the color differences
for L, a, and b components, respectively, between pair of
points (A;P) and (B;Q). In this paper, the color of the
pixel corresponding to the two edge point are said to
belong to the same object if the color distance, Ds,
between them is smaller than a given threshold, th. The
weights wL, wu, and wv are defined by the user, however,
experimental results show that generally better results
are generated by setting higher weights on chrominance
channels (e.g. two times higher than that of the
luminance channel).

In case if the above equations are verified, then, the
candidate reference point, O(x,y), scale S, and rotation t
which correspond to the pair (A;B) can be calculated
using the following relationships:

OA
�!

¼ k � AB
�!

; S ¼ PQ=AB; and t ¼ y0 � y: ð7Þ

The parameter cell of P2; located at the address
ðx; y;S; tÞ is then incremented in case it already exists.
Otherwise, it is added as a new candidate. A na.ıve
implementation of the P2 accumulator array uses a full
5D space, making its implementation impractical. Our
approach to this problem is to use a fixed (small) hash
table store to accumulate votes. It accepts one element
at a time and the garbage collection of flushing happens
when its finite length is exhausted. This operation is
valid in our method because during the R-table
construction, a maximum gap of few scan lines exists
between the boundary points of the R-table.

When the whole video frame is scanned, the cell with
maximum vote on P2 space is found and the corre-
sponding scale, rotation, and coordinates of the object
deduced.
Besides its various advantages cited above, Section 4
will show how an efficient parallel implementation of the
algorithm could improve the performance of this
algorithm. Compared to region merging-based algo-
rithms [13,14], and provided with the same video clips
(Figs. 3 and 10), our algorithm is better and good for
parallelism and does not depend on the luminosity
variation, even thought the other methods they use more
weights to chrominance component of the color.

3.3. Extendibility of the algorithm for other multimedia

applications: very low bit rate coding

Besides object segmentation, the above algorithm can
be applied for very low bit rate encoding by performing
multi-objects tracking in video image sequences. Hence,
after all parameters (e.g. translation, zoom, and rota-
tion) of different objects in the actual frame are known,
new foreground regions are projected back to the image
space using these parameters. These foreground regions
are then subtracted from the objects of the actual frame
to form an error component, x. To this last element, x is
applied a Discrete Cosine Transform (DCT) and the
resulting DCT coefficients, along with the parameters of
different objects of the actual frame, are sent to the
decoder. In case the error for a given object is greater
than a predefined threshold (this may occur principally
in case of 3D motions and rigid objects), then a new
segmentation of that object is required. As will be shown
in the next section, one positive contribution of our
approach, compared to the classical motion estimation
algorithms is its capability to extract zoom and rotation
motions of more than one object in a cluttered
background. In addition, the extensive block-based
calculations existing for classical motions estimation
algorithms are removed.

3.4. Video object detection, tracking and indexing

evaluation

The proposed algorithm has shown very good
tracking, and indexing results on general video sources.
Our first experiments were applied on the Tennis scene
(Fig. 2(a)). Four objects of the initial frame (tennis,
racket, ball, left hand, and shoulder) were initially
segmented by the user. The boundaries of these target
objects were then isolated and an edge detection
algorithm was applied to each of these regions,
according to the rules addressed in the previous section.
Both the edge magnitude and direction were simulta-
neously computed for each edge pixel. A reference point,
RP, was then selected for each of these regions. From
this point, a set of straight lines is manually traced (see
Fig. 2(a) for the case of shoulder). The pair of points
that intercepts simultaneously the object boundary and
these lines are then stored in the R-table. Using this



ARTICLE IN PRESS

Number of reference points  

7

∆ρ =1.0,  ∆θ = 1.0 

∆ρ =0.5,  ∆θ = 0.5 

1 & 3 Shoulder 
2 racket 
4 ball  
5 & 6 left hand   

1 & 3 Shoulder: 
2 racket 
4 ball
5 & 6 left hand   
7 Shoulder with randomized GHT

1
2

3

4

5

6

1.75 
1.70 
1.65 
1.60 
1.55 
1.50 
1.45 
1.40 
1.35 
1.30 
1.25 
1.20 
1.15 
1.10 
1.05 
1.00 D

is
cr

im
in

at
io

n 
V

ot
in

g 
R

at
io

 (
D

V
R

)

20 25 30 35 40 45 50 55 60 65 70

Fig. 6. Accuracy performance for different objects of Fig. 2(a).
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R-table, the object segmentation and tracking algorithm
then proceeds for the subsequent frames. Fig. 6
illustrates the performance of the algorithm on detecting
accurately the exact parameters of the object in the
second frame of the same scene, versus number of
reference points used in the object’s boundary. Hence,
we define a new variable, namely the Discriminating
Voting Ratio (DVR), as:

DVR ¼ the highest vote=the next highest vote; ð8Þ

where the highest vote corresponds to the maximal value
carried out from the accumulator array of the P2

parameter space. Different values of Dr and Dy,
representing the sampling factors of the slope and angle
to the origin of straight lines during object tracking,
were also experienced. Fig. 6 highlights how the
algorithm can easily perform maximal peak extraction,
function of the number of reference points in the object
boundary.

Hence, the best accuracy was obtained with the
shoulder because the distance between pair of pixels
belonging to the same parameter line was higher than in
the case of the three other objects. It can be also
observed that the DVR ratio increases sharply to 1.73
when 40 reference points in the R-table are used. From
50 reference points, DVR tends to an asymptotic value
of 1.55. On the other hand, the worst performance has
been observed for the left hand because of the
disappearance of the edges between the last two fingers,
due to a 3D motion, and hence several reference points
could not be detected. Overall, the accuracy of the line
extraction (e.g. small quantization values of Dr and Dy)
and the number of reference had clearly a positive effect
on object tracking. However, in all cases, our algorithm
outperformed the randomized GHT algorithm [18].

Also, with the same video sequence, it has been
observed that after 35 frames, only the ball and the
racket could still be tracked with good accuracy. The
most variable parameters were the zoom, translation,
and rotation parameters, respectively. However, the
shoulder and left hand could not be tracked after the
frames 25th and 35th, respectively, because of a brusque
3D motion of these two objects.

On the other hand, four video sequences (bear, Akiyo,
plane, and hand) with different types of motion and
background are used to subjective and objective
evaluation of our system (Fig. 7). After the first user
input at the starting frame, the object tracking algorithm
starts to process subsequent frames. As can be seen in
Fig. 7, subjective object tracking of these three testing
sequences gave us acceptable results.

In the objective evaluation, we manually extracted
semantic objects in each frame over 40 successive frames
and considered these as the ground truth. We then
computed the average numbers of missing pixels, false
pixels, and maximum boundary deviation between the
ground truth and the segmentation results. The number
of missing and false pixels is simply computed by
comparing a segmented object mask with its related
ground truth. While there are different ways to define
the boundary deviation for a missing pixel, we define the
deviation for a missing pixel as the distance between this
pixel and its nearest foreground pixel in segmented
object mask; and for a false pixel as the distance between
this pixel and its nearest foreground pixel in the ground
truth mask (Fig. 8). The maximum boundary derivation
is the maximum value of the deviations of all missing or
false pixels.

The performance results are shown with different
number of points for clustering in Fig. 9. Hence, in the
experiments, when the error results are above a
predefined threshold, then a new segmentation is
performed on the image. Main tracking errors are
usually caused by new or uncovered background or
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Fig. 7. Object tracking results of three sequences after one user input: frame (a) 1, (b) 3, (c) 7.
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Fig. 8. The boundary deviations: (a) Missing pixels; (b) false pixels.
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foreground objects or occlusion of the foreground
object. The remaining errors may be considered as an
accuracy limitation of our detection and tracking
algorithm. Considering inherent errors caused by
boundary blur (especially for the MPEG sequences with
fast motion) and manual segmentation, our system
generates very good tracking results. The worst results
were obtained with the ‘‘hand’’ sequence since some
fingers were rigid (3D motion).

The algorithm has also been applied for video
indexing on image database (Fig. 10). To each image
class, five different rotations (20
, 30
, 80
, 130
, and
170
) and five scales (1.5, 1.2, 0.9, 0.7, 0.5) were applied,
which creates a database of 500 objects. The R-table was
obtained only from the 15 image classes in Fig. 10(a).
The performance is measured in terms of the average
retrieval rate that is defined as the average percentage
number of patterns belonging to the same image
(Fig. 10(b)). A high rate of 0.92 was obtained using
only 40 reference points.

Note that in our algorithm, the object is detected as
having a translation and rotation (S and t, respectively)
from its initial position only if the number of votes in
the (S; t) cell exceeds a predefined threshold, th,
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Table 1

Object tracking performance (in ms)

Image Voting in P1

space (ms)

Voting in P2

space (ms)

Total (ms)

Akiyo 676 0.013 690.42
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proportional to the number of the reference points for
that object in the R-table: i.e.: th=Number of reference

points/2. For all the experiments done in Figs. 3, 7, and
10, the number of votes where greater than the above
threshold.
Hand 523 0.013 543.56

Bear 385 0.013 392.39

Plane 175 0.013 181.23
4. Complexity and the need for dedicated hardware

design

Along with the algorithm’s accuracy, real-time
performance is mandatory for multimedia-based appli-
cations such as MPEG4 coding. This section highlights
the analysis of the computational complexity of our
object segmentation and tracking algorithm, which is
measured by dynamic run-time count. Basically, the
analysis is performed on the basis of realistic program
execution on a Sparc 20 Workstation. Table 1 lists the
average runtime simulation for object tracking (bear,
Akiyo, hand, and plane). The voting in the P2 space is
constant and negligible since for each scene, only one
object model is considered in the database. The total
time includes false peaks elimination and maximal
extraction in the P2 space. The results reveal the heavy
demand of computation power for this no-optimized
implementation of the algorithms. The performance
depends heavily on the number of edge points in the
image and is much less than one frame per seconds,
which is very far from real-time performance. However,
by means of dedicated hardware architecture, the
computation of can be efficiently parallelized and
pipelined.

4.1. Previous works on parallel video processing machines

In the recent years, several parallel hardware archi-
tectures for video processing have been developed.
Application Specific Integrated Circuit (ASIC)-based
implementations have been extensively used [1,2] be-
cause of their high performance in terms of computation
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power, small die area, and low power consumption.
However, they are not flexible enough to be adapted to
even fine modifications of the algorithms. A more
attractive solution is to have a flexible, compact, and
robust hardware platform capable to sustain real-time
performance and software enhancement. SIMD-based
architectures still constitute the technology of choice for
high complexity video processing. The Symphony [5]
and CNAPS [20] are some examples. The fine-grained
IMAP VLSI [21] video chip is among the most recent
ones. It contains hundreds of Processing Elements, PEs.
Each PE contains an Arithmetic Logic Unit (ALU) and
a local memory. In these architectures, each video
section is conducted by a group of PEs in a spatial
parallel mode, e.g. each frame in the video sequence is
spatially divided into pieces that are processed in
parallel by the PEs in the group.

In [3] a High performance Multimedia coarse-grained
SIMD-based Digital Signal Processor (DSP) has been
designed and built. It contains sixteen data paths,
centrally controlled by a RISC control unit, executing
three instructions at a time. Data exchange between data
paths is provided by a shared memory, while external
data can be transferred concurrently via an SDRAM
interface at bit rates of more than 6 Gigabits/s. The
processors operate at a speed of 100 MHz and achieve
sustainable performance of 2 GOPS.

Another recent fixed point Very Long Instruction
Word (VLIW)-based DSP processor, the TMSc64x,
from Texas Instruments has been designed for video
processing applications [4]. It can operate at a clock of
up to 600 MHz to perform nearly five billion instruc-
tions per second. Hence, its eight functional units,
including two multipliers and six arithmetic units, are
highly orthogonal, providing the compiler and Assem-
bly Optimizer with many execution resources. Within
each cycle, eight 32-bit RISC-like instructions are
fetched. These latest can then be executed either in
parallel, serial, or in parallel/serial combinations.
This optimized scheme enables significant reductions in
code size, number of program fetches and power
consumption.

A common feature of these VLSI chips is that they
have been shown to be particularly suitable for low level
and window-based video processing. However, the
performance starts to decrease in case of irregular data
structures such as video-based segmentation. This is
because sequential processing and inter-PE communica-
tions becomes dominant, as the number of PEs is much
lower than the image size.

More PEs, and therefore higher degree of parallelism,
can be provided by another type of SIMD-like VLSI
architecture, namely Associative Memory, because of
the simplicity of the structure of its individual PEs.
VLSI architectures such as [22] have been successfully
applied for low-level, window-based, video processing
algorithms. In [6], an intermediate-level video processing
application, which consists to extract the line from video
sequence has been achieved. However, no 2D or 3D
Associative Memory-based video segmentation has been
yet reported. One reason is the need for an appropriate
hardware–software design methodology, simultaneously
at the chip and system levels.

4.2. Our concept: content addressable memory

Our algorithm was coded to run on memory process-
based technology, CAM. A common feature of CAM
chips is that each PE has only two types of instructions
set, namely parallel-maskable write and parallel-mask-
able search. Thus, the overall complexity in terms of
number of interconnects and transistors can be drama-
tically reduced, providing several thousands of PEs per
chip. With an appropriate combination of these two
types of instructions, various arithmetic operations can
be performed in parallel by all PEs. Thus, the
successfulness of the operation is satisfied when the
total number of search operations becomes dominant
and much larger than single arithmetic operations. In
the case of our video processing applications, the CAM
LSI circuit is used in two different ways. Either all PEs
receive the pixels of input video frames in order to
process them, or a set of functionality is implemented in
the PEs, which acts as parameter space.

4.3. Video processing in the parameter space

Generally, the CAM-based hardware is appropriate
for the algorithms, which perform most of the calcula-
tions not in arithmetic but in parallel search mode. One
way to achieve this is to leave all the calculations at
specific long-intervals period of the video frame. This
idea can be efficiently used for our algorithm addressed
in this paper. Its parallel implementation requires that
each PE, PEðu; vÞ; is composed of three different fields,
namely the decision field, DF ðu; vÞ which contains the
main operation to be performed by each PE, the data
field, DT(u,v), which stores the data to be processed and
read, and the flag field, F(u,v) which stores the
intermediary results (Fig. 11). Fig. 12 shows the general
structure of the parallel algorithm. The algorithm has
been designed so that the I/O transfer does not
constitute a bottleneck since the PEs are loaded only
once during the initialization and then automatically
initialized at the end of the frame. The content of each
field depends on the application. Thus, the algorithm
reads the actual video stream and processes the data of
each pixel, (k,y), which satisfies a predetermined
property (line 6). For such pixel, a function f(k,y) is
calculated. The Single Hit Flag Register, SHFR, is then
set for all PEs, whose decision field, DF, is equal to
f(k,y). At the end of the scan line, k, the Flag field,



ARTICLE IN PRESS

u 

 v

Parameter Space 

F(u, v) 

Flag field

DT(u, v) 

Data field 

DF(u, v) 

Decision field

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

Fig. 11. General structure of the PEs during parameter space processing.

1 for each video frame do{ 
2 Initialize the parameter space; 
3 Reset all the single hit flag registers; 
4       for each scan line k, of a video frame do{ 
5          for each pixel of the image do{ 
6   if (property (pixel (k, y)) is true){ 
7        - Calculate the function f(k ,y) = 0
8        - Parallel search of the function f in the whole parameter space;  
9 - The SHFR of all PEs, which satisfy the above condition are set; 

10    }// end if; 
11           }// end for 
12           - for  each PE(u, v), whose SHFR is set, the Flag field, F(u, v) is set; 
13           - for ach PE(u, v), whose F(u, v) is set, the function g(u, v) is calculated
14 in the accumulator field;
15           - Each PE(u, v) updates its decision field: h(u, v, k+1) = 0;
16           - Reset all the SHFR of all PEs;
17        }//end for 
18        Carry out the solution, (e.g. the maximal peak) from the CAM 
19        Each PE updates the parameter space, which corresponds to the scan line 0;
20   }//end for

Fig. 12. General structure of the algorithm for parameter space

processing.
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F(u,v), is set for every PE(u,v), whose SHFR is set (line
12). Their accumulator fields are then modified accord-
ing to the equation g(u,v)=0. Next, before handling
the next scan line, k+1, of the actual video frame, the
decision field, DF, of all elements is calculated using
the recursive function: hðu; v; k þ 1Þ ¼ 0 (line 15). At the
end, when the whole video frame is scanned, the decision
field of all PEs is updated according to the function,
hðu; v; 0Þ of the scan line 0. The output result, which
corresponds to the maximal accumulated value in the
DF register, is stored in the output video frame.

The timing diagram of task modules can be illustrated
in Fig. 13. A controlling unit operates in parallel with
the CAM array in order to calculate the function f ðk; yÞ
and to read or write pixels from the video frames. Two
video frames are required: One for actual processing
(video frame 1) and the other for grabbing the actual
video frame of the camera (video frame 2). In this way,
the underlined hardware can process a continuous
stream of video frames. We can observe that the long
serial arithmetic operations (i.e. F(u,v), g(u,v), and
h(u,v,k+1)) are calculated either at the end of the scan
line, or at the end of the video frame, but not for each
pixel. This leads the algorithm to be executed in a
constant time, which primarily depends on the size of
the video frame.
For the example of the 2D video-based segmentation
algorithm, its parallel implementation requires that the
&1 parameter space is partitioned so that each PE of the
CAM corresponds to one cell, located at the address
(&.. &), and split into the three fields as follows: (i) The
decision field, DF=xk, (ii) the data field, DT, which
contains the angle field of the two reference points
(aM,aN) and the y-coordinates field of the edge pixel,
which has contributed to the actual PE. In addition,
the DT register includes a temporary field, used to store
the y-coordinates, k, and the gradient angle, f, of
the edge pixel ðx; kÞ when the line k is scanned, and
(iii) the flag field, f0 and A, to indicate how many
reference points are already stored in one CAM cell.

4.4. Designing and implementing the hardware

architecture: HiPIC concept

A primary goal of our HiPIC concept [6] is to provide
simultaneously high performance and good flexibility to
allow fast time to market. In terms of performance, the
underline hardware should allow execution of each
instruction of the above algorithms in one single clock
cycle. According to the algorithms requirements dis-
cussed in the above section, a new 0.25 mm CAM LSI
has been designed to run at 40 MHz clock speed. More
details of this chip can be found in [23]. Fig. 14 shows
the overall hardware components of our dedicated
HiPIC architecture. It is compact and does not require
any high bandwidth memory. The DSP processor [24] is
directly responsible for CAM sequence and serial data
processing and can provide a large internal memory that
holds the video frames (1 and 2) and instruction
sequences. The advantage of using DSP processor
rather than FPGA for this task is that the complexity
of the state machine generating the appropriate
sequence of instructions heavily depends on the applica-
tion. Our goal was to generate one instruction per clock
cycle, independently of the complexity of the target
application. This is difficult to achieve with actual
FPGA devices. In addition, implementing the state
machine on the DSP rather than FPGA avoids to the
designer using hardware languages, such as Verilog



ARTICLE IN PRESS

Fig. 13. Timing diagram of task modules of the parallel video-processing module.
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HDL, which usually generate unpredictable results of
hardware synthesis in case of complex applications.
Another motivation of using the DSP is because it
features a high-speed serial links, suitable for video
frame transfer.

4.5. Algorithm’s performance using HiPIC board

Both synthetic and real world video sequences were
acquired by a CCD camera, which is fed to our system.
Table 2 indicates both the execution time and amount of
hardware when using our HiPIC board. The perfor-
mance is dependant on the image size, N � N; the
quantization steps (Dr and Dy) during the line extrac-
tion phase, and on the number of reference elements, q,
stored in the R-table. Here, Dr=0.5, Dy=0.5
 and
q=40 have been used. We can deduce from the table
that for an image 256� 256, and using an R-table
composed of 46 different patterns, a set of 4 CAM LSIs
are enough to sustain the whole algorithm under the
frame rate interval.

4.6. Comparison with other previous works

As previously mentioned, several attempts to design
highly parallel hardware architectures, based on either
Advanced DSP processors [3,4], or dedicated SIMD
processors [5,21] have been done to implement the HT.

Thus, in all these architectures, the input video frame
is subdivided into several blocks that are assigned,
separately, to one PE. One common limitation of these
architectures concerns the I/O communication over-
head: In case of spatio-parallelism, each PE needs to
process a block of pixels. Therefore, if the size of each
block is large, then the communication overhead
becomes prevalent and the sequential processing is
dominant. In addition, each PE needs to read different
frames, which result in congestion since pixel processing
and storing tasks cannot be simultaneously done by the
PEs. In [3], a high speed SDRAM interface was used to
overcome this limitation. However, this engenders a
sharp increase of power consumption. The I/O conten-
tion is then found to be a serious drawback for these
systems. In addition, a dedicated real-time kernel is
required in order to ease the programmer’s task by
automatically handling the reconfiguration network
between the PEs. The unsuccessfulness of many DSPs
and other RISC processors, such as the Intel’s i860
Processor, has been witnessed because of the lack of
such software design tools. Table 3 illustrates the
performance of these architectures to implement line
extraction-based algorithm. In the experiment, the VLSI
chips run with their highest clock speed, which is 100,
40, 600, and 40 MHz for Multimedia DSP [3], IMAP [5],
TMSc64x [4], and our CAM LSI chip [23], respectively.
Also, the hardware implementation in our CAM LSI
has been arranged so that one single PE can handle 4
cells of the parameter space [6]. We can observe that the
IMAP device achieves the lowest performance because
its PEs do not contain multipliers required by the HT
algorithm. In addition, the PEs cannot simultaneously
store and process the pixels. Therefore, an additional
time of video storage is added. The DSP chips however
have an enhanced DMA controller, which allows
simultaneously transfer, storage, and processing.
Among the two advanced DSP, the TMSc64x performs
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Table 2

Computation time performance

Image size 64� 64 128� 128 256� 256

Number of Hough points 4 K 16 K 64 K

Dr 0.5 0.5 0.5

Dy 0.5 0.5 0.5

Edge detection Frame rate Frame rate Frame rate

W J W J W J

R-table voting (q=40) 0.13 40 0.26 44 0.51 48

Line parameters 3.45 57 5.28 59 6.35 61

Max number of classes 204 95 46

Total 3.58 97 5.54 103 6.86 109

WExecution time (ms), J Number of bits/PE.

Table 3

Performance of the HT algorithm on different hardware architectures (ms)

Image size Number of

Hough points

(r� y)

Number of edge

points/line (%)

Multi Media

DSP [3]

(100 MHz)

IMAP [5]

(40 MHz)

C64x [4]

(600 MHz)

Our solution

(40 MHz)

64� 64 64� 64 30 4 12(1.6)a 1.33(0)a 1.6

50 6 15(1.6)a 1.80(15)a 1.64

256� 256 256� 256 30 17 48(6.5)a 5.7(6.5)a 6

50 23 59.7(6.5)a 7.6(6.5)a 6.5

512� 512 512� 512 30 67 195(11.2)a 23(3.2)a 25

50 80 235(11.2)a 28(3.2)a 26.5

Hardware

complexity

1–100-MHz

SDRAM:

2�N�N bytes

1–10 MHz

VRAM

1–1600-MHz

SDRAM:

2�N�N bytes

1–10 MHz

VRAM.

2-FPGA for edge

detection &

video timing

2-FPGA for edge

detection &

video timing

2-FPGA for edge

detection &

video timing

2-FPGA for edge

detection &

video timing

Total number of

transistors

(Millions)

7.4 5.2 9.2 15.5

a A(B): A is the processing time, whereas B is the required time to distribute the video frame on the PEs.
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slightly better than our CAM chip in case of small
amount of black pixels in the edged video frame.
However, in case of higher number of edge points, the
performance of the DSP chips decreases, whereas our
algorithm is achieved in almost constant time. The
extraction of the end-points requires even a higher
processing time for the DSP and IMAP because of the
additional sequential structure of the hardware algo-
rithm, especially when the two constraints (quantization
and proximity) are added. Thus, our algorithm, which
uses end-point extraction algorithm as main preproces-
sing task, is better achieved with our solution. In the
future, better results (almost double the performance)
for line extraction can be expected if the same
technology scale of the TMSc64x LSI (0.12 mm) will be
applied to our CAM chip VLSI (which is actually
0.25 mm). In terms of hardware complexity, unlike the
Multimedia DSP and the TI’s c64, our hardware does
not require two N � N high-speed SDRAM memory
banks (for storing the edge image and parameter space),
but only one N � N VRAM memory bank of 10 Mbits/s
bandwidth (for edge image). In terms of hardware
complexity, our CAM LSI has the largest number of
transistors (15.5 versus 9.2 for the TI’s C64). However,
its (Performance/Hardware complexity) factor is the
highest for the segment line extraction. The difference
becomes even higher for the object tracking and
stereovision algorithms because of the highly fine
parallel granularity of their data structure.
5. Conclusion

In this paper, we presented an integrated scheme for
real-time object segmentation and tracking. Experimen-
tal results have shown promising results and great
potential for developing advanced video search tools for
semantic video representation such as MPEG4. A
parallel hardware architecture using CAM as a core
processor has been demonstrated robust enough to
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sustain real-time performance of both the algorithms.
For the sake of high efficiency, a hardware/software
design methodology at the chip and system levels has
been followed.

As first a new HT algorithm for object segmentation
of unknown shape was proposed. Its key point is to use
a pair of edge features which are more likely to
correspond to a meaningful structure in the video frame
than low level features such as single points. More than
two points can be used in order to reduce the occlusion
problem. Experimental results indicate that the execu-
tion time is faster, while achieving good segmentation
rate. Furthermore, the method can be used to detect any
kind of object and is not limited only to polyhedra
objects like in [9]. Other variations and adaptations of
this geometric approach should emerge to tackle other
machine vision tasks, such as texture classification by
using some features more appropriate than edge
direction and edge magnitude, such as texture estimators
[8]. Experimental results on our HiPIC-based hardware
indicate that 4 CAM LSI are enough to sustain this
application in real-time.
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