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Abstract

In the present work the approach - density matrix deformation
- earlier developed by the author to study a quantum theory of
the Early Universe (Planck’s scales) is applied to study a quantum
theory of black holes. On this basis the author investigates the in-
formation paradox problem, entropy of the black hole remainders
after evaporation, and consistency with the holographic principle.
The possibility for application of the proposed approach to the cal-
culation of quantum entropy of a black hole is considered.

1 Introduction. Deformed Density Matrix

in QMFL

Quantum entropy of a black hole is commonly considered as a formula for
the communal entropy representing a series, where the major term is coin-
cident with Bekenstein-Hawking entropy in a semiclassical approximation,
whereas other terms are its quantum corrections. This paper presents the
development of a new approach to a quantum theory close to the singular-
ity (Early Universe), whose side product is the application to a quantum
theory of black holes the calculations of entropy including. The princi-
pal method of this paper is deformation of a quantum-mechanical density
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matrix in the Early Universe. And a quantum mechanics of the Early
Universe is considered as Quantum Mechanics with Fundamental Length
(QMFL), the associated deformed density matrix being referred to as a
density pro-matrix. The deformation is understood as an extension of a
particular theory by inclusion of one or several additional parameters in
such a way that the initial theory appears in the limiting transition. In
Section 1 the formalism of the density pro-matrix in QMFL is described in
detail. In Section 2 the entropy density matrix on the unit minimum area
is introduced for different observers. Then it is used in a detailed study of
the information problem of the Universe, and in particular, for the informa-
tion paradox problem. This problem is reduced to comparison of the initial
and final densities of entropy for one and the same observer. It’s shown
that according to the natural standpoint, there is no information loss at
the closed Universe. Based on the proposed approach, in Section 3 the
quantity of the entropy for Planck’s remainders of black holes is analyzed
in case when the latter are incompletely evaporated, in an effort to give
an answer for the recent J.Bekenstein’s question. Besides, consideration is
given to the coordination between the obtained results and the holographic
principle. The last Section is devoted to the possibility for application of
the proposed approach to calculation of the black hole entropy.
Besides, in Section 1 the principal features of QMFL construction using the
deformed density matrix are briefly outlined [1]–[7]. It is suggested that in
quantum gravitation, similar to a quantum theory of the Early Universe,
the introduction of the fundamental length lmin is a must, as follows from
the generalized uncertainty relations [8]–[12] and not only [13]. Then, as
noted earlier(e.g., see [2]), the fundamental length may be included into
quantum mechanics by the use of the density matrix deformation. Re-
call the main features of the associated construction. We begin with the
Generalized Uncertainty Relations (GUR) [8]:

△x ≥ ~

△p
+ α′L2

p

△p

~
. (1)

Here Lp is the Planck’s length: Lp =
√

G~

c3
≃ 1, 6 10−35 m and α′ > 0 is a

constant. In [9] it was shown that this constant may be chosen equal to 1.
However, here we will use α′ as an arbitrary constant without giving it any
definite value. Equation (1) is identified as the Generalized Uncertainty
Relations in Quantum Mechanics.
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The inequality (1) is quadratic in △p:

α′L2

p(△p)2 − ~△x△p + ~
2 ≤ 0, (2)

from whence the fundamental length is

△xmin = 2
√

α
′

Lp. (3)

Since in what follows we proceed only from the existence of fundamental
length, it should be noted that this fact was established apart from GUR
as well. For instance, from an ideal experiment associated with Gravita-
tional Field and Quantum Mechanics a lower bound on minimal length
was obtained in [14], [15] and improved in [16] without using GUR to an
estimate of the form ∼ Lp. As reviewed previously in [13], the fundamen-
tal length appears quite naturally at Planck scale, being related to the
quantum-gravitational effects.Let us consider equation (3) in some detail.
Squaring both its sides, we obtain

(∆X̂2) ≥ 4α′L2

p, (4)

Or in terms of density matrix

Sp[(ρX̂2) − Sp2(ρX̂)] ≥ 4α′L2

p = l2min > 0, (5)

where X̂ is the coordinate operator. Expression (5) gives the measuring
rule used in well-known quantum mechanics QM. As distinct from QM,
however, in the are considered here the right-hand side of (5) can not be
brought arbitrary close to zero as it is limited by l2min > 0, where because
of GUR lmin ∼ Lp.
As demonstrated in [1],[2],[5], [7],QMFL may be considered as deformation
of QM, the density matrix being the principal object of this deformation
and the deformation parameter being dependent on the measuring scale.
This means that in QMFL ρ = ρ(x), where x is the scale, and for x → ∞
ρ(x) → ρ̂, where ρ̂ is the density matrix in QM. Since from [2],[5], [7] it
follows that at Planck’s scale Sp[ρ] < 1, then for such scales ρ = ρ(x),
where x is the scale, is not a density matrix as it is generally defined in
QM. On Planck’s scale ρ(x) is referred to as ”density pro-matrix”. As
follows from the above, the density matrix ρ̂ appears in the limit [1],[2]:

lim
x→∞

ρ(x) → ρ̂, (6)
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when QMFL turns to QM. Thus, on Planck’s scale the density matrix is
inadequate to obtain all information about the mean values of operators.
A ”deformed” density matrix (or pro-matrix) ρ(x) with Sp[ρ] < 1 has to be
introduced because a missing part of information 1−Sp[ρ] is encoded in the
quantity l2min/a

2, whose specific weight decreases as the scale a expressed
in units of lmin is going up. In the notation system used for α = l2min/x2,
where x is the scale for the fundamental deformation parameter.
Definition 1. (Quantum Mechanics with Fundamental Length)
Any system in QMFL is described by a density pro-matrix of the form
ρ(α) =

∑
i ωi(α)|i >< i|, where

1. 0 < α ≤ 1/4.

2. The vectors |i > form a full orthonormal system.

3. ωi(α) ≥ 0, and for all i the finite limit lim
α→0

ωi(α) = ωi exists.

4. Sp[ρ(α)] =
∑

i ωi(α) < 1,
∑

i ωi = 1.

5. For every operator B and any α there is a mean operator B depend-
ing on α:

< B >α=
∑

i

ωi(α) < i|B|i > .

Finally, in order that our definition 1 be in agreement with the result of
([1], Section 2), the following condition must be fulfilled:

Sp[ρ(α)] − Sp2[ρ(α)] ≈ α. (7)

Hence we can find the value for Sp[ρ(α)] satisfying the condition of defini-
tion 1:

Sp[ρ(α)] ≈ 1

2
+

√
1

4
− α. (8)

As regards Definition 1., some explanatory remarks are needed. Of
course, any theory may be associated with a number of deformations. In
case under consideration the deformation is ”minimal” as only the prob-
abilities are deformed rather than the state vectors. This is essential for
the external form of the density pro-matrix, and also for points 2 and 3 in
Definition 1.. This suggests point 5 of the Definition: deformation of the
average values of the operators. And point 4 follows directly from point
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3,(6) and remark before this limiting transition. Finally, limitation on the
parameter α = l2min/x

2 is inferred from the relation

Sp[ρx2] − Sp[ρa]Sp[ρx] ≃ l2min or Sp[ρ] − Sp2[ρ] ≃ l2min/x
2,

that follows from (5) with the use of the R-procedure [1],[2].
According to point 5, < 1 >α= Sp[ρ(α)]. Therefore for any scalar quantity
f we have < f >α= fSp[ρ(α)]. In particular, the mean value < [xµ, pν] >α

is equal to

< [xµ, pν] >α= i~δµ,νSp[ρ(α)]

We denote the limit lim
α→0

ρ(α) = ρ as the density matrix. Evidently, in the

limit α → 0 we return to QM.
It should be noted that:

I. The above limit covers both Quantum and Classical Mechanics. In-
deed, since α ∼ L2

p/x
2 = G~/c3x2, we obtain:

a. (~ 6= 0, x → ∞) ⇒ (α → 0) for QM;

b. (~ → 0, x → ∞) ⇒ (α → 0) for Classical Mechanics;

II. As a matter of fact, the deformation parameter α should assume the
value 0 < α ≤ 1. As seen from (8), however, Sp[ρ(α)] is well defined
only for 0 < α ≤ 1/4. That is if x = ilmin and i ≥ 2, then there
is no any problem. At the point of x = lmin there is a singularity
related to the complex values following from Sp[ρ(α)] , i.e. to the
impossibility of obtaining a diagonalized density pro-matrix at this
point over the field of real numbers. For this reason definition 1 has
no sense at the point x = lmin.

III. We consider possible solutions for (7). For instance, one of the solu-
tions of (7), at least to the first order in α, is

ρ∗(α) =
∑

i

αiexp(−α)|i >< i|,

where all αi > 0 are independent of α and their sum is equal to 1.
In this way Sp[ρ∗(α)] = exp(−α). We can easily verify that

Sp[ρ∗(α)] − Sp2[ρ∗(α)] = α + O(α2). (9)
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Note that in the momentum representation α ∼ p2/p2

pl, where ppl

is the Planck momentum. When present in the matrix elements,
exp(−α) can damp the contribution of great momenta in a pertur-
bation theory.

2 Entropy Density Matrix and Information

Loss Problem

In [2] the authors were too careful, when introducing for density pro-matrix
ρ(α) the value Sα generalizing the ordinary statistical entropy:

Sα = −Sp[ρ(α) ln(ρ(α))] = − < ln(ρ(α)) >α .

In [1],[2] it was noted that Sα means of the entropy density on a unit
minimum area depending on the scale. In fact a more general concept
accepts the form of the entropy density matrix [4],[5],[7]:

Sα1

α2
= −Sp[ρ(α1) ln(ρ(α2))] = − < ln(ρ(α2)) >α1

, (10)

where 0 < α1, α2 ≤ 1/4.
Sα1

α2
has a clear physical meaning: the entropy density is computed on the

scale associated with the deformation parameter α2 by the observer who is
at a scale corresponding to the deformation parameter α1. Note that with
this approach the diagonal element Sα = Sα

α ,of the described matrix Sα1

α2
is

the density of entropy measured by the observer who is at the same scale
as the measured object associated with the deformation parameter α. In
[2] Section 6 such a construction was used implicitly in derivation of the
semiclassical Bekenstein-Hawking formula for the Black Hole entropy:

a) For the initial (approximately pure) state

Sin = S0

0
= 0

b) Using the exponential ansatz(9),we obtain:

Sout = S0
1

4

= − < ln[exp(−1/4)]ρpure >= − < ln(ρ(1/4)) >=
1

4
.
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So increase in the entropy density for an external observer at the large-
scale limit is 1/4. Note that increase of the entropy density (information
loss) for the observer that is crossing the horizon of the black hole’s events
and moving with the information flow to singularity will be smaller:

Sout = S
1

4

1

4

= −Sp(exp(−1/4)ln[exp(−1/4)]ρpure)

= − < ln(ρ(1/4)) > 1

4

≈ 0.1947

It is clear that this fact may be interpreted as follows: for the observer
moving together with information its loss can occur only at the transition
to smaller scales, i.e. to greater deformation parameter α.
Now we consider the general Information Problem. Note that with the
classical Quantum Mechanics (QM) the entropy density matrix Sα1

α2
(10)

is reduced only to one element S0

0
and so we can not test anything. More-

over, in previous works relating the quantum mechanics of black holes and
information paradox [19],[35, 36] the initial and final states when a particle
hits the hole are treated proceeding from different theories(QM and QMFL
respectively):

(Large-scale limit, QM, density matrix) → (Black Hole, singularity, QMFL,
density pro-matrix),

Of course in this case any conservation of information is impossible as
these theories are based on different concepts of entropy. Simply saying, it
is incorrect to compare the entropy interpretations of two different theories
(QM and QMFL, where this notion is originally differently understood. So
the chain above must be symmetrized by accompaniment of the arrow on
the left ,so in an ordinary situation we have a chain:

(Early Universe, origin singularity, QMFL, density pro-matrix) →
(Large-scale limit, QM, density matrix)→ (Black Hole, singularity, QMFL,
density pro-matrix),

So it’s more correct to compare entropy close to the initial and final (Black
hole) singularities. In other words, it is necessary to take into account not
only the state, where information disappears, but also that whence it ap-
pears. The question arises, whether the information is lost in this case for
every separate observer. For the event under consideration this question
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sounds as follows: are the entropy densities S(in) and S(out) equal for ev-
ery separate observer? It will be shown that in all conceivable cases they
are equal.

1) For the observer in the large-scale limit (producing measurements in
the semiclassical approximation) α1 = 0

S(in) = S0
1

4

(Origin singularity)

S(out) = S0
1

4

(Singularity in Black Hole)

So S(in) = S(out) = S0
1

4

. Consequently, the initial and final densities

of entropy are equal and there is no any information loss.
2) For the observer moving together with the information flow in the gen-
eral situation we have the chain:

S(in) → S(large − scale) → S(out),

where S(large − scale) = S0

0
= S. Here S is the ordinary entropy at

quantum mechanics(QM), but S(in) = S(out) = S
1

4

1

4

,value considered in

QMFL. So in this case the initial and final densities of entropy are equal
without any loss of information.
3) This case is a special case of 2), when we do not come out of the early
Universe considering the processes with the participation of black mini-
holes only. In this case the originally specified chain becomes shorter by
one Section:

(Early Universe, origin singularity, QMFL, density pro-matrix)→ (Black
Mini-Hole, singularity, QMFL, density pro-matrix),

and member S(large − scale) = S0

0
= S disappears at the corresponding

chain of the entropy density associated with the large-scale consideration:

S(in) → S(out),

It is, however, obvious that in case S(in) = S(out) = S
1

4

1

4

the density of

entropy is preserved. Actually this event was mentioned in [2],where from
the basic principles it has been found that black mini-holes do not radiate,
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just in agreement with the results of other authors [21]-[24].
As a result, it’s possible to write briefly

S(in) = S(out) = Sα
1

4

,

where α - any value in the interval 0 < α ≤ 1/4.
It should be noted that in terms of deformation the Liouville’s equation
(Section 4 [2]) takes the form:

dρ

dt
=

∑

i

dωi[α(t)]

dt
|i(t) >< i(t)| − i[H, ρ(α)] = d[lnω(α)]ρ(α) − i[H, ρ(α)].

The main result of this Section is a necessity to account for the member
d[lnω(α)]ρ(α),deforming the right-side expression of α ≈ 1/4.

3 Entropy Bounds, Entropy Density and

Holographic Principle

In the last few years Quantum Mechanics of black holes has been studied
under the assumption that GUR are valid [21],[22],[24]. As a result of
this approach, it is indicated that the evaporation process of a black hole
gives a stable remnant with a mass on the order of the Planck’s Mp. How-
ever, J.Bekenstein in [25] has credited such an approach as problematic,
since then the objects with dimensions on the order of the Planck length
∼ 10−33cm should have very great entropy thus making problems in regard
to the entropy bounds of the black hole remnants [26].
In connection with this remark of J.Bekenstein [25] the following points
should be emphasized:
I. An approach proposed in [34],[4] and in the present paper gives a deeper
insight into the cause of high entropy for Planck’s black hole remnants,
namely: high entropy density that by this approach at Planck scales takes
place for every fixed observer including that on a customary scale, i.e. on
α ≈ 0. In [4] using the exponential ansatz (Section 3) it has been demon-
strated how this density can increase in the vicinity of the singularities with

Sin = S0

0
≈ 0
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up to

Sout = S0
1

4

= − < ln[exp(−1/4)]ρpure >= − < ln(ρ∗(1/4)) >=
1

4
.

when the initial state measured by the observer is pure.
As demonstrated in [34],[4], increase in the entropy density will be realized
also for the observer moving together with the information flow: Sout =

S
1

4

1

4

> S0

0
, though to a lesser extent than in the first case. Obviously,

provided the existing solutions for (7) are different from the exponential
ansatz, the entropy density for them S0

α2
will be increasing as compared to

S0

0
with a tendency of α2 to 1/4.

II. In works of J.Bekenstein, [26] in particular, a ”universal entropy bound”
has been used [27]:

S ≤ 2πMR/~, (11)

where M is the total gravitational mass of the matter and R is the ra-
dius of the smallest sphere that barely fits around a system. This bound
is, however, valid for a weakly gravitating matter system only. In case
of black hole remnants under study it is impossible to assume that on
Planck scales we are concerned with a weakly gravitating matter system,
as in this case the transition to the Planck’s energies is realized where
quantum-gravitational effects are appreciable, and within the proposed
paradigm parameter α ≈ 0 is changed by the parameter α > 0 or equally
QM is changed by QMFL.

III.This necessitates mentioning of the recent findings of R.Bousso [28],[29],
who has derived the Bekenstein’s ”universal entropy bound” for a weakly
gravitating matter system, and among other things in flat space, from the
covariant entropy bound [30] associated with the holographic principle of
Hooft-Susskind [31],[32],[33].
Also it should be noted that the approach proposed in [4],[2] and in the
present paper is consistent with the holographic principle [31]-[33]. Specif-
ically, with the use of this approach one is enabled to obtain the entropy
bounds for nonblack hole objects of L.Susskind [32]. Of course, in ([2], Sec-
tion 6) and ([4], Section 4) it has been demonstrated, how a well-known
semiclassical Bekenstein-Hawking formula for black hole entropy may be
obtained using the proposed paradigm. Then we can resort to reasoning
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from [32]: ”using gedanken experiment, take a neutral non-rotating spheri-
cal object containing entropy S which fits entirely inside a spherical surface
of the area A, and it to collapse to black hole”. Whence

S ≤ A

4l2p
. (12)

Note also that the entropy density matrix Sα1

α2
by its definition [34],[4] falls

into 2D objects, being associated with l2min ∼ l2p [2] and hence implicitly
pointing to the holographic principle.
Qualitative analysis performed in this work reveals that the Information
Loss Problem in black holes with the canonical problem statement [19],[35],
[36] suggests in principle positive solution within the scope of the proposed
method - high-energy density matrix deformation. Actually, this problem
necessitates further (now quantitative) analysis. Besides, it is interesting
to find direct relations between the described methods and the holographic
principle. Of particular importance seems a conjecture following from [29]:
is it possible to derive GUR for high energies (of strong gravitational field)
with the use of the covariant entropy bound [30] in much the same manner
as R.Bousso [29] has developed the Heisenberg uncertainty principle for
the flat space?

4 Quantum corrections to black hole entropy.

Heuristic approach

This paper presents certain results pertinent to the application of the above
methods in a Quantum Theory of Black Holes. Further investigations are
still required in this respect, specifically for the complete derivation of
a semiclassical Bekenstein-Hawking formula for the Black Hole entropy,
since in Section 2 the treatment has been based on the demonstrated re-
sult: a respective number of the degrees of freedom is equal to A, where
A is the surface area of a black hole measured in Planck’s units of area
L2

p (e.g.[37],[38]). Also it is essential to derive this result from the basic
principles given in this paper.
As indicated in papers [6],[7], the calculation procedure in the described
theory may be reduced to a series expansion in terms of α parameter and
to finding of the factors for the ever growing powers of this parameter, that
may be considered in some cases as the calculation of quantum corrections.
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Specifically, this approach to calculation of the quantum correction factors
may be used in the formalism for density pro-matrix (Definition 1 of Sec-
tion 1). In this case, the value S0

α point b), in Section 2 may be written in
the form of a series

S0

α = α + a0α
2 + a1α

3 + .... (13)

As a result, a measurement procedure using the exponential ansatz may
be understood as the calculation of factors a0,a1,... or the definition of
additional members in the exponent ”destroying” a0,a1,... [4]. It is easy
to check that close to the singularity α = 1/4 the exponential ansatz gives
a0 = −3/2, being coincident with the logarithmic correction factor for the
black hole entropy [39].
However, by the proposed approach - density matrix deformation at Planck’s
scales - the quantum entropy receives a wider and more productive in-
terpretation due to the notion of entropy density matrix introduced in
[4],[5],[7],[34] and Section 3. Indeed, the value Sα1

α2
= −Sp[ρ(α1) ln(ρ(α2))]

may be considered as a series of two variables α1 and α2. Fixing one of
them, e.g. α1, it is possible to expand the series in terms of α2 parameter
and to obtain the quantum corrections to the main result as more and
more higher-order terms of this series. In the process, (13) is a partial case
of the approach to α1 = 0 and α2 close to 1/4.

5 Conclusion

Thus, in this paper it is demonstrated that the developed approach to
study a quantum theory of the Early Universe - density matrix defor-
mation at Planck’s scales - leads to a new method of studying the black
hole entropy its quantum aspects including. Despite the fact that quite a
number of problems require further investigation, the proposed approach
seems a worthy contribution: first, it allows for the direct calculations
of entropy and, second, the method enables its determination proceeding
from the basic principles with the use of the density matrix. Actually,
we deal with a substantial modification of the conventional density ma-
trix known from the quantum mechanics - deformation at Planck’s scales
or minimum length scales. Moreover, within this approach it is possible
to arrive at a very simple derivation and physical interpretation for the
Bekenstein-Hawking formula of black hole entropy in a semi-classical ap-
proximation. Note that the proposed approach enables one to study the
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information problem of the Universe proceeding from the basic principles
and two types of the existing quantum mechanics only: QM that describes
nature at the well known scales and QMFL at Planck’s scales. The author
is of the opinion that further development of this approach will allow to
research the information problem in greater detail. Besides, it is related
to other methods, specifically to the holographic principle, as the entropy
density matrix studied in this work is related to the two-dimensional ob-
ject. Also, it should be noted that there is an interesting new approach to
calculation of the black hole entropy on the basis of GUR as well [40].
To conclude, it should be noted that an important problem of the ex-
tremal black holes was beyond the scope of this paper. In the last decade
this problem has, however, attracted much attention in connection with
a string theory and quantum gravitation(e.g., [41]–[44]). Specifically, the
Bekenstein-Hawking formula has been proved for this case by different
methods. The author is hopeful that the approaches proposed in this pa-
per may be developed further to include this very important problem as
well.
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