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This work presents a study of the possibility for extending the well-known results of E. Verlinde concerning the entropic nature of
gravity to the ultraviolet region (Planck’s energies) and also the derivation of quantum corrections to Einstein Equations.

1. Introduction

In the last 15–20 years, new and very interesting approaches
to gravity studies have been proposed, which may be
divided into “thermodynamical” and “theoretical informa-
tional” approaches. The approach suggested in the pioneer
work by Jacobson [1] has been considerably extended in a
series of remarkable papers by Padmanabhan [2–13]. The
paper by Verlinde [14] stating a secondary character of
the gravitational interaction and its entropic nature was
published in 2010 after the appearance in theArXiv.Thepaper
[14] introducing such specific terms as “entropic force” has
been followed by numerous studies (e.g., [15–26] and others).

In this work, the author studies the possibility for exten-
sion of the results given in [14] to the ultraviolet region
(Planck’s energies) and presents the derivation of quantum
corrections to Einstein Equations using the dimensionless
small parameter 𝛼 introduced by the author in his previous
works [27–39].

2. Fundamental Quantities and Their
High-Energy Deformation

In this section, the author uses the “ideology,” terms, and
notation introduced in [14] to extend the corresponding
results to the ultraviolet and infrared gravity regions. It may
be stated that the results in [14] have been obtained for

the “medium” energies, that is, for the range of well-known
energies, where the General Relativity (GR) is valid. But
owing to modern knowledge, in the ultraviolet and infrared
limits, gravity may be modified. As regards to the ultraviolet
(Planck) scale, this idea has been proposed long ago [40–45],
and in this situation we have to replace the word “may” by
the word “must”. As for low energies, there are many recent
publications considering the infrared (for great distances)
modification of gravity (e.g., [46, 47]). And the modification
can have a solid experimental status in the nearest future
[48].

Naturally, when we are concerned with extension of
some results to higher or lower energies, the principle of
conformity must be executed undeviatingly; ongoing to the
known energy scales, the known results must be reproduced.

In this section, it is shown that the fundamental quan-
tities 𝐴, 𝑁, and 𝑇, defined in [14] and associated with the
holographic screen (where 𝐴—its surface area, 𝑁—number
of data bits “existing” on 𝐴, 𝑇—its temperature), may be
supplementary defined for the region of high energies so that
at normal energies they be coincident with values given in
[14]. In the process, we take the corresponding quantities for
the stationary Schwarzschild black hole as the most natural
holographic object.

The idea is as follows: formulae for the correction of the
fundamental quantities within the Generalized Uncertainty
Principle (GUP) for the holographic screen S from [14] are
similar to those for the black hole.
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Let us consider Section 5.2 (Derivation of Einstein Equa-
tions) in [14]. In this section, formula (5.32) for a “bit density”
on the holographic screen is given as

𝑑𝑁 =

𝑑𝐴

𝐺ℎ

. (1)

However, when the holographic principle [49–53] is valid,𝑁
is actually the entropy 𝑆 up to the factor 𝑆 ∼ 𝑁, and hence
from (1) it follows directly that

𝑑𝑆 ∼

𝑑𝐴

𝐺ℎ

. (2)

What are the changes in 𝑆 ongoing to high (Planck) energies?
The answer to this question is already knownowing to the fact
that at these energies the Heisenberg Uncertainty Principle
(HUP) is replaced by GUP [54–61]:

Δ𝑥 ≥

ℎ

Δ𝑝

+ ℓ
2Δ𝑝

ℎ

, (3)

where ℓ2 = 𝛼𝑙2
𝑝
and 𝛼 is the dimensionless numerical factor.

The well-known Bekenstein-Hawking formula for the black
hole entropy in the semiclassical approximation [62, 63],

𝑆
BH
=

𝐴

4𝑙
2

𝑝

, (4)

is modified by the corresponding quantum corrections ongo-
ing from HUP to GUP [64–67].

In particular, [65],

𝑆
BH
GUP =

𝐴

4𝑙
2

𝑝

−

𝜋𝛼
2

4

ln( 𝐴
4𝑙
2

𝑝

) +

∞

∑

𝑛=1

𝑐
𝑛
(

𝐴

4𝑙
2

𝑝

)

−𝑛

+ const.,

(5)

where the expansion coefficients 𝑐
𝑛
∝ 𝛼
2(𝑛+1) can always be

computed to any desired order of accuracy.
The general form of quantum corrections for the black

hole entropy derived in (5) remains valid for any horizon
spaces and, in particular, for the holographic screen S from
[14]. Specifically, in [68, 69] the logarithmic correction was
obtained in the following form:

𝑆ln =
𝐴

4𝑙
2

𝑝

+

�̃�

4

ln(𝐴
𝑙
2

𝑝

) , (6)

omitting the Boltzmann constant 𝑘
𝐵
as a factor and assuming

it to be equal to unity in what follows. Higher-order correc-
tions may be derived using the Taylor-series expansion in
terms of the small parameter 𝑙2

𝑝
/𝐴:

𝑆GUP =
𝐴

4𝑙
2

𝑝

+

�̃�

4

ln(𝐴
𝑙
2

𝑝

) +

∞

∑

𝑛=1

𝑐
𝑛
(

𝐴

𝑙
2

𝑝

)

−𝑛

+ const. (7)

in a similar way to the Taylor-series expansion of the right-
hand side in (9) in terms of the small parameter 4𝑙2

𝑝
/𝐴.This is

valid as GUP gives the ultraviolet cutoff at the level of 𝑙min ∼
𝑙
𝑝
.
In this way, at high energies we have 𝑆 → 𝑆GUP, and

hence𝑁 → 𝑁GUP. Assuming in the notation of [14] that

𝑆 =

1

4

𝑁, (8)

we directly obtain

𝑁GUP =
𝐴

𝑙
2

𝑝

+ �̃� ln(𝐴
𝑙
2

𝑝

) + 4

∞

∑

𝑛=1

𝑐
𝑛
(

𝐴

𝑙
2

𝑝

)

−𝑛

+ const. (9)

Now, coming back to [14], in terms of𝑁GUP we can define the
holographic screen area, as measured at high energies, by

𝐴GUP ≡ 𝐺ℎ𝑁GUP, (10)

where 𝐺 and ℎ are gravitational and Planck constants,
respectively, and 𝑁GUP is given by (9). Considering that we,
similar to [14], assume that the speed of light 𝑐 = 1, then,
according to 𝑙2

𝑝
= 𝐺ℎ, from (9) and (10), we have

𝐴GUP = 𝐴 + 𝐺ℎ�̃� ln(
𝐴

𝐺ℎ

) + 4𝐺ℎ

∞

∑

𝑛=1

𝑐
𝑛
(

𝐴

𝐺ℎ

)

−𝑛

+ const.

(11)

In this case, an exact value of the constant in the right-hand
side of (11) is of no great importance, as further we need
the relation (1) being primarily interested in 𝑑𝐴GUP rather
than in 𝐴GUP; that is, the constant in the right-hand side of
(11) is insignificant. So, (1) has a fairly definite analog at high
energies

𝑑𝑁GUP =
𝑑𝐴GUP
𝐺ℎ

(12)

that ongoing to the known low energies gives (1). There is
a single considerable difference; in [14] the quantity 𝑁 was
defined in terms of 𝐴, and 𝑑𝑁 was defined in terms of 𝑑𝐴,
but in the case under study, the situation is opposite: 𝐴GUP is
defined in terms of𝑁GUP and 𝑑𝐴GUP in terms of 𝑑𝑁GUP.The
logic series is here as follows:

𝐴 ⇒ 𝑁 ⇒ 𝑁GUP ⇒ 𝐴GUP. (13)

The GUP-correction problem of the temperature 𝑇 for the
arbitrary holographic screen S has been studied in [70].
Actually, this case is identical to the case of the Schwarzschild
black hole, and 𝑇GUP was derived as a series (formulas (1), (7)
from [70]):

𝑇GUP = 𝑇 (1 + Θ𝑇𝑇
2
+ ⋅ ⋅ ⋅ ) = 𝑇 + Θ

𝑇
𝑇
3
+ ⋅ ⋅ ⋅ = 𝑇 +

̃
𝑇GUP,

(14)

where the factors in the right-hand side (14)may be computed
in the explicit form and at low energies ̃𝑇GUP → 0.

Thus, we can have a GUP - analog of Komar’s mass in
((5.33) from [14])

𝑀GUP =
1

2

∫

S

𝑇GUP𝑑𝑁GUP

=

1

2

∫

S

(𝑇 +
̃
𝑇GUP) 𝑑𝑁GUP =

1

2𝐺ℎ

∫

S

𝑇GUP𝑑𝐴GUP,

(15)
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that the low-energy limit gives the well-known Komar for-
mula [71], [72, page 289].

It is clear that the “GUP-deformed Komar’s mass”𝑀GUP
in the first term (15) as a component has the known Komar’s
mass [71], [72, (11.2.9–11.2.10)], [14, (5.34)]

𝑀 =

1

4𝜋𝐺

∫

S

𝑇𝑑𝐴. (16)

3. 𝑁GUP, 𝐴GUP, and 𝑀GUP in Terms of Unified
Small Parameter

If feasible, it is desirable to express all the above-derived
fundamental quantities in terms of a unified parameter. As
shown by the author in [39, 73], this is possible for black
holes within the scope of GUP, and a role of the unified small
parameter is played by the parameter introduced previously
in [27–36] as follows:

𝛼
𝑥
=

𝑙
2

min
𝑥
2
, (17)

where 𝑥 is themeasuring scale, 𝑙min ∼ 𝑙𝑝 by virtue of GUP (3),
and 0 < 𝛼 ≤ 1/4.

Obviously, the principal results obtained in [39, 73]
remain in force for an arbitrary screenS and may be applied
to the quantities 𝑁GUP, 𝐴GUP, and 𝑀GUP defined in the
preceding section.

Substituting from GUP (3) 𝑙min = 2√𝛼

𝑙
𝑝
and using the

formula 𝐴 = 4𝜋𝑅2, where 𝑅 is the radius of the screen S, we
get𝑁GUP (9) of the following form:

𝑁GUP = 𝑁 + �̃� ln (𝜎𝛼
−1

𝑅
) + 4

∞

∑

𝑛=1

𝑐
𝑛
𝜎
−𝑛
𝛼
𝑛

𝑅
+ const. (18)

Here,𝛼
𝑅
is a value of𝛼 parameter at the point𝑅, and𝜎 is equal

to 16𝛼𝜋. It is convenient to refer to the form 𝑁GUP derived
in (18) as to the 𝛼—representation.

Using (10) and (11), we can easily obtain 𝛼—representa-
tion for 𝐴GUP:

𝐴GUP = 𝐴 + �̃�𝐺ℎ ln (𝜎𝛼
−1

𝑅
) + 4𝐺ℎ

∞

∑

𝑛=1

𝑐
𝑛
𝜎
−𝑛
𝛼
𝑛

𝑅
+ const.

(19)

Also, it is clear that𝑀GUP (15) may be derived in terms of 𝛼
𝑅
.

Here, 𝛼
𝑥
is considered as a deformation parameter for the

Heisenberg algebra ongoing from HUP to GUP. Generally
speaking, initially the construction of such a deformationwas
realized with other parameters (e.g., [60, 61]). But it is easily
shown that QFT parameter of the deformations associated
with GUP may be expressed in terms of the parameter 𝛼 that
has been introduced in the approach to the density matrix
deformation [38, 39]. Here the notation of [74] is used. Then
[39, page 943],

[�⃗�, �⃗�] = 𝑖ℎ (1 + 𝛽
2
�⃗�
2
+ ⋅ ⋅ ⋅ ) , (20)

Δ𝑥min ≈ ℎ√𝛽 ∼ 𝑙𝑝. (21)

In this case, from (20), (21), it follows that 𝛽 ∼ 1/p2, and for
𝑥min ∼ 𝑙𝑝, 𝛽 corresponding to 𝑥min is nothing else but

𝛽 ∼

1

𝑃
2

𝑝𝑙

, (22)

where 𝑃
𝑝𝑙
is Planck’s momentum: 𝑃

𝑝𝑙
= ℎ/𝑙
𝑝
.

In this manner, 𝛽 is varying over the following interval:

𝜆

𝑃
2

𝑝𝑙

≤ 𝛽, (23)

where 𝜆 is a numerical factor and the second term in (20) is
accurately reproduced in the momentum representation (up
to the numerical factor) by 𝛼

𝑥
= 𝑙
2

min/𝑥
2
∼ 𝑙
2

𝑝
/𝑥
2
= 𝑝
2
/𝑃
2

𝑝𝑙

[�⃗�, �⃗�] = 𝑖ℎ (1 + 𝛽
2
�⃗�
2
+ ⋅ ⋅ ⋅ ) = 𝑖ℎ (1 + 𝑎

1
𝛼
𝑥
+ 𝑎
2
𝛼
2

𝑥
+ ⋅ ⋅ ⋅) .

(24)

In the case under study, convenience of using 𝛼
𝑥
stems from

its smallness, its dimensionless character, and ability to test
changes in the radius 𝑅 of the holographic screen S.

4. Quantum Corrections to the Principal
Result and Ultraviolet Limit

Based on the aforesaid, we can proceed the generalization
of the results from Section 5.2 of [14] and the derivation of
equations for a gravitational field within the scope of GUP.

We must consider two absolutely different cases.

4.1. Quantum Corrections to the Principal Result. It is
assumed that the screen radius is given by S

𝑅 ≫ 𝑙
𝑝
. (25)

In terms of the deformation parameter 𝛼
𝑥
introduced in the

previous section, we have

𝛼
𝑅
≪

1

4

. (26)

So far we are not concerned with the redefinition of the lower
limit for 𝛼

𝑅
. This is interesting when going to the infrared

limit.
Then, the principal result from the final part of Sec-

tion 5.2 in [14] remains valid owing to the replacement of𝑀
(formula (5.33) from [14]) by 𝑀GUP = 𝑀GUP[𝛼𝑅] (15). The
“𝛼
𝑅
-complement” (i.e., the difference �̃�[𝛼

𝑅
] = 𝑀GUP[𝛼𝑅] −

𝑀) to𝑀 will be simply a (small) quantum correction for the
principal result.

In this way, because in the case of GUP-corrections the
left side of formula (5.33) and hence the left side in formulas
(5.34), (5.35) from [14] are dependent on 𝛼

𝑅
; the right sides

of the corresponding formulas are also dependent on 𝛼
𝑅
, in

particular the quantities 𝑇
𝑎𝑏
, 𝑅
𝑎𝑏
, and 𝑔

𝑎𝑏
from (5.37).

But in fact, this relation at low energies ((25) or (26)) is
insignificant since 𝛼

𝑅
at low energies (as distinct from high
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Planck’s energies) is varying very slowly, practically showing
continuity though being discrete in character.

Indeed, as long as there is the minimal length 𝑙min ∼ 𝑙𝑝,
all the lengths measured are its multiples, and hence 𝛼

𝑅
is a

discrete nonuniformly varying quantity.Then, due to ((25) or
(26)), the difference between two successive values of 𝛼

𝑅
is as

follows:

Δmin [𝛼𝑅] = 𝛼𝑅 − 𝛼𝑅+𝑙min
∼

𝑙
3

min
𝑅
3
, (27)

for 𝑅 ≫ 𝑙
𝑝
or, that is the same, for 𝑅 ≫ 𝑙min giving a value

close to zero.
And assuming in this case that 𝛼

𝑅
is continuously varying

from 𝑅 and all the quantities in Section 5.2 of [14] are also
continuously dependent on 𝛼

𝑅
(26), we can write down the

“𝛼-analog” of formula (5.37) in [14] as

2∫

Σ

(𝑇
𝑎𝑏 [
𝛼] −

1

2

𝑇 [𝛼] 𝑔𝑎𝑏 [
𝛼]) 𝑛
𝑎
𝜉
𝑏
𝑑𝑉

=

1

4𝜋𝐺

∫

Σ

𝑅
𝑎𝑏 [
𝛼] 𝑛
𝑎
𝜉
𝑏
𝑑𝑉,

(28)

where the dependence of 𝑇
𝑎𝑏
[𝛼] and 𝑅

𝑎𝑏
[𝛼] on 𝛼 = 𝛼

𝑅
is

completely determined, in accordance with [14, 72], by the
integral𝑀GUP[𝛼] (15).

Besides, it is assumed that 𝑛𝑎 and 𝜉𝑏 are dependent on 𝛼,
though the dependence is dropped.

Next, similar to [14], from (28) we can derive the 𝛼-
deformed Einstein Equations using the method from [1].
Note that both this method and its minor modification given
([14], end of Section 5.2) in this case are valid because 𝛼

𝑅
is

small and continuous; thewhole system is being continuously
dependent on it.

Solutions of the 𝛼-deformed Einstein Equations represent
a series in 𝛼

𝑅
, and for 𝛼

𝑅
→ 0 or for 𝛼 = 0 from formula (3)

become the corresponding solutions of Section 5.2 in [14].
Using the result obtained in [75], we can easily extend the

above result to the case with a nonzero cosmological term
Λ ̸= 0. In [75], Komar’s formula was generalized to the case
of a nonzero Λ. All the arguments from Section 5.2 of [14] in
this case remain valid, and formula (5.37) takes the following
form:

2∫

Σ

(𝑇
𝑎𝑏
−

1

2

𝑇𝑔
𝑎𝑏
) 𝑛
𝑎
𝜉
𝑏
𝑑𝑉

=

1

4𝜋𝐺

∫

Σ

(𝑅
𝑎𝑏
+ Λ𝑔
𝑎𝑏
) 𝑛
𝑎
𝜉
𝑏
𝑑𝑉.

(29)

We can easily obtain the 𝛼-analog of the last formula with
the dynamic cosmological term Λ(𝛼) as a corresponding
complement to the right-hand side (28). Analysis of the
relationship between Λ and 𝛼, applicable in this case as well
will be given in Section 4.2.

4.2. Ultraviolet Limit. In the case in question, we suggest that
the screen S has a radius on the order of several Planck’s
lengths

𝑅 ≈ 𝜉𝑙min = 2𝛼

𝜉𝑙
𝑝
, (30)

where 𝜉 is a number on the order of 1 or

𝛼
𝑅
≈

1

4

. (31)

The problem is which object puts the limit for such a screen
S. It may be assumed that if 𝑇

𝑎𝑏
̸= 0 then the object may be

represented only by Planck’s black hole or by a microblack
hole with a radius on the order of several Planck’s lengths.

Clearly, the methods of [1, 14] are not in force for such
screen S. Specifically, there are no classical analogs of 𝑁,
𝑇, and 𝑀 for the screen. Moreover, it is impossible to use
the result of [1] as “a very small region the space-time” is no
longer “an approximate Minkowski space” [14].

Also, such microblack hole is a horizon space, jet at
high energies (Planck scales). As is known, for horizon
spaces, black holes in particular, at low energies (semiclassical
approximation) the results of [12] are valid.

At the horizon (and we are interested in this case only)
Einstein’s field Equations may be written as a thermodynamic
identity ([12] formula (119)):

ℎ𝑐𝑓

(𝑎)

4𝜋⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑘𝐵𝑇

𝑐
3

𝐺ℎ

𝑑(

1

4

4𝜋𝑎
2
)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑑𝑆

−

1

2

𝑐
4
𝑑𝑎

𝐺⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

−𝑑𝐸

= 𝑃𝑑(

4𝜋

3

𝑎
3
)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑃𝑑𝑉

, (32)

where 𝑅 = 𝑎 is a radius of a black hole (i.e., of the screen
S), 𝑃 = 𝑇

𝑅

𝑅
is the trace of the momentum-energy tensor

and radial pressure, and the horizon location will be given
by simple zero of the function 𝑓(𝑅), at 𝑅 = 𝑎.

The main ingredients of (32) may be written in terms of
the deformation parameter 𝛼with the coefficients containing
only the numerical factors and fundamental constants [73].

Also, the work [73] presents two possible variants of high-
energy (Planck) 𝛼-deformation 𝛼 → 1/4 (32).

Hereinafter, we assume that the energy-momentum ten-
sor of matter fields is not traceless:

𝑇
𝑎

𝑎
̸= 0, (33)

similar, in particular, to the case under study (32) 𝑃 = 𝑇𝑅
𝑅
̸= 0.

4.2.1. Case of Equilibrium Thermodynamics [73, Section 6.1].
In this case, it is assumed that in the high-energy (ultraviolet
(UV)) limit the thermodynamic identity (32) is retained but
now all the quantities involved in this identity become 𝛼-
deformed (𝛼 → 1/4). All the quantitiesΥ in (32) are replaced
by the corresponding quantitiesΥGUP with the subscript GUP.
Then, the high-energy 𝛼-deformation of (32) takes the form

𝑘
𝐵
𝑇GUP (𝛼) 𝑑𝑆GUP (𝛼) − 𝑑𝐸GUP (𝛼) = 𝑃 (𝛼) 𝑑𝑉GUP (𝛼).

(34)

Substituting into (34) the corresponding quantities 𝑇GUP(𝛼),
𝑆GUP(𝛼), 𝐸GUP(𝛼), 𝑉GUP(𝛼), and 𝑃(𝛼) and expanding them
into a Laurent series in terms of 𝛼, close to high values of 𝛼,
specifically close to 𝛼 = 1/4, we can derive a solution for the
high energy 𝛼-deformation of the general relativity (34) as a
function of𝑃(𝛼). Provided at high energies the generalization
of (32) to (34) is possible; we can have the high-energy 𝛼-
deformation of the metric.
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It is noteworthy that in (34) 𝑇GUP this time is calculated
from [64, formula (10)]

𝑇
BH
GUP =

1

4𝜋

ℎ𝑅

2𝛼
2
𝑙
2

𝑝

[

[

1 −
√
1 −

𝛼
2
𝑙
2

𝑝

𝑅
2

]

]

=

ℎ𝛼
−1

𝑅

4𝜋𝛼

𝑙
𝑝

[1 − (1 − 𝛼
𝑅
)
1/2

]

(35)

with subsequent replacement of 𝑙
𝑝
by√𝐺ℎ for 𝑐 = 1.

It is especially interesting to consider the following case.

4.2.2. Case of Nonequilibrium Thermodynamics [73, Sec-
tion 6.2]. In this case, the 𝛼-dependent dynamic cosmologi-
cal termΛ(𝛼) ̸= 0 appears in the right-hand side of (34).Then,
with the addition ofΛ(𝛼) ̸= 0, the 𝛼—representation (34) (for
ℎ = 1) is given as follows [73, formula (53)]:

−𝛼
2
𝑓

(𝛼) −

1

2

𝛼 = 16𝜋𝛼
2
𝑃 (𝛼)𝐺

2
− 𝐺Λ (𝛼) , (36)

where 𝛼 = 𝛼
𝑅
≈ 1/4,

𝑓

(𝛼) = 4𝜋𝑘

𝐵
𝑇GUP (𝛼) , (37)

and the derivative in the left-hand side of (37) is taken with
respect to 𝛼.

Λ(𝛼) in the right-hand side of (37) may be subjected
to a series expansion in terms of 𝛼, in compliance with the
holographic principle [49–53] as applied to the Universe [76].
In [38, 39, 73, 77] in the leading order, this expansion results
in the first power, that is, we have

Λ (𝛼
𝑅
) ∼ 𝛼
𝑅
Λ
𝑝
, (38)

where Λ
𝑝
is the initial value of Λ ≈ Λ

1/4
derived using the

well-known procedure of “summation over all zero modes”
and the Planck momentum cutoff [78, 79]. Actually, (38) is in
a good agreement with the observable Λ = Λ observ. Because
a radius of the visible part of the Universe is given as 𝑅 =

𝑅Univ ≈ 10
28cm, it is clear that 𝛼

𝑅
≈ 10
−122, and (38) is

completely consistent with the experiment [79].
Note that proceeding directly from a quantum field

theory but without the use of the holographic principle, we
can have only a rough estimate of Λ that, on the whole, is at
variance with Λ observ. Such an estimate may be obtained in
different ways: by simulation [80]; using the cutoff [78] but
now in the infrared limit; with the use of the Generalized
Uncertainty Principle for the pair (Λ, 𝑉), where 𝑉 is four-
dimensional volume [38, 39]. In the 𝛼—representation in this
case, the expansion in terms of 𝛼 results in the second leading
order

Λ (𝛼
𝑅
) ∼ 𝛼
2

𝑅
Λ
𝑝
, (39)

that, obviously, is at variance with the accepted facts.

5. Conclusion

(I) A very interesting case of the zero energy-momentum
tensor for matter fields 𝑇

𝑎𝑏
= 0 and, specifically the case of

𝑃(𝛼) = 0 in the right-hand side of (36) has remained beyond
the scope of the final section. We can state the problem more
specifically: for which conditions in this case we can derive a
solution in the form of the de Sitter space with large values of
𝛼?

This problem is also important when we try to find
whether it is possible to derive the initial inflation conditions
[81, 82] for 𝑇

𝑎𝑏
= 0 on the basis of the foregoing analysis.

Note that the dynamic cosmological termΛ(𝛼) correlates
well with inflation models [81, 82] as the latter require a very
high Λ at the early stages of the Universe, and this is distinct
from Λ = Λ exper in the modern period. Of great interest
is the recent work [83], where a mechanism of the vacuum
energy decay in the de Sitter space is established to support a
dynamic nature of Λ.

(II)The deformation parameter 𝛼
𝑅
has a doublemeaning.

As 𝜅 = 1/𝑅—curvature with the radius 𝑅, 𝛼
𝑅
= 𝜅
2
𝑙
2

min
is nothing else but the squared curvature multiplied by the
squared minimal area and is explicitly dependent on the
energy 𝐸. On the other hand, it is seen that, at least at the
known energies, from the definition of the bit number 𝑁 in
[14, formula (3.10)], we get 𝛼

𝑅
∼ 1/𝑁. But, because 𝛼

𝑅
=

𝛼
𝑅
[𝐸], this suggests that 𝑁 = 𝑁[𝐸], as demonstrated in the

text ongoing to higher energies

𝑁 ⇒ 𝑁GUP. (40)

Nevertheless, ongoing to lower energies, that is, in the
infrared limit, the same should be true: the bit number must
be a function of energy.

This problem and the relevant questions touched upon in
this paper will be further considered in subsequent works of
the author.
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