95 research outputs found

    A model of meta-population dynamics for North Sea and West of Scotland cod - the dynamic consequences of natal fidelity

    Get PDF
    It is clear from a variety of data that cod (Gadus morhua) in the North Sea do not constitute a homogeneous population that will rapidly redistribute in response to local variability in exploitation. Hence, local exploitation has the potential to deplete local populations, perhaps to the extent that depensation occurs and recovery is impossible without recolonisation from other areas, with consequent loss of genetic diversity. The oceanographic, biological and behavioural processes which maintain the spatial population structures are only partly understood, and one of the key unknown factors is the extent to which codexhibit homing migrations to natal spawning areas. Here, we describe a model comprising 10 interlinked demes of cod in European waters, each representing groups of fish with a common natal origin. The spawning locations of fish in each deme are governed by a variety of rules concerning oceanographic dispersal, migration behaviour and straying. We describe numerical experiments with the model and comparisons with observations, which lead us to conclude that active homing is probably not necessary to explain some of the population structures of European cod. Separation of some sub-populations is possible through distance and oceanographic processes affecting the dispersal of eggs and larvae. However, other evidence suggests that homing may be a necessary behaviour to explain the structure of other sub-populations. Theconsequences for fisheries management of taking into account spatial population structuring are complicated. For example, recovery or recolonisation strategies require consideration not only of mortality rates in the target area for restoration, but also in the source areas for the recruits which may be far removed depending on the oceanography. The model has an inbuilt capability to address issues concerning the effects of climate change, including temperature change, on spatial patterns of recruitment, development and population structure in cod

    Limiting inter-annual variation in total allowable catch strategies. An application to ICES roundfish stocks

    Get PDF
    This study evaluated through simulation management strategy that stabilise catch levels by setting bounds on the inter-annual variability in Total Allowable Catches (TACs). An integrated modelling approach was used, which modelled both the ‘real’ and observed systems and the interactions between all system components. The modelling framework therefore allowed evaluation of the robustness of candidate management strategies to both the intrinsic properties of the systems, and the ability to observe, monitor, assess and control them. Strategies were evaluated in terms of level of risk (measured as the probability of spawning stock biomass falling below the biomass limit reference level for the stock) and cumulative yield. The simulation approach used provides a powerful tool for the examination of the performance of candidate management strategies. It has shown that better management is not necessarily going to be achieved by improving the assessement, since even with a perfect assessment (where the simulated working group knew stock status perfectly) stocks may crash at fishing levels that standard stochastic projections would suggest were safe. Also explicitly modelling the assessment process can result in quite different outcomes than those predicted by the simple projection traditionally used by stock assessment working groups. This is because the simple projection assumes that the status of the stock in the current year is known without error and that the target fishing mortality can be achieved without error. However, in practice the assessment is based on last years data and the effect of any management measure on SSB is only manifest, following the implementation of the quota, at the end of the following year. The choice of target and fishing mortality levels and minimum stock levels results from ICES interpretation of the precautionary approach. This lead to the definition of fishing mortality and biomass reference points that are intended to prevent over-fishing and to trigger recovery plans when a stock is overfished respectively. Although, fishing mortality and biomass reference points were originally intended to be independent, a fishing mortality level implies a corresponding biomass level. In the case of saithe a fishing mortality of 0.40 (i.e. the FPA level) would drive the stock to Blim, suggesting that the choice of biomass and target reference points are not consistent for this stock

    Limiting inter-annual variation in total allowable catch strategies. An application to ICES roundfish stocks

    Get PDF
    This study evaluated through simulation management strategy that stabilise catch levels by setting bounds on the inter-annual variability in Total Allowable Catches (TACs). An integrated modelling approach was used, which modelled both the ‘real’ and observed systems and the interactions between all system components. The modelling framework therefore allowed evaluation of the robustness of candidate management strategies to both the intrinsic properties of the systems, and the ability to observe, monitor, assess and control them. Strategies were evaluated in terms of level of risk (measured as the probability of spawning stock biomass falling below the biomass limit reference level for the stock) and cumulative yield. The simulation approach used provides a powerful tool for the examination of the performance of candidate management strategies. It has shown that better management is not necessarily going to be achieved by improving the assessement, since even with a perfect assessment (where the simulated working group knew stock status perfectly) stocks may crash at fishing levels that standard stochastic projections would suggest were safe. Also explicitly modelling the assessment process can result in quite different outcomes than those predicted by the simple projection traditionally used by stock assessment working groups. This is because the simple projection assumes that the status of the stock in the current year is known without error and that the target fishing mortality can be achieved without error. However, in practice the assessment is based on last years data and the effect of any management measure on SSB is only manifest, following the implementation of the quota, at the end of the following year. The choice of target and fishing mortality levels and minimum stock levels results from ICES interpretation of the precautionary approach. This lead to the definition of fishing mortality and biomass reference points that are intended to prevent over-fishing and to trigger recovery plans when a stock is overfished respectively. Although, fishing mortality and biomass reference points were originally intended to be independent, a fishing mortality level implies a corresponding biomass level. In the case of saithe a fishing mortality of 0.40 (i.e. the FPA level) would drive the stock to Blim, suggesting that the choice of biomass and target reference points are not consistent for this stock

    Report of the Regional Co-ordination Meeting for the North Sea and Eastern Arctic (RCM NS&EA) 2013

    Get PDF
    Report of the Regional Co-ordination Meeting for the North Sea and Eastern Arctic (RCM NS&EA) 2013 final report European Fisheries Control Agency (EFCA) Vigo, Spain 09/09/2013-13/09/2013The Regional Coordination Meeting for the North Sea & Eastern Arctic (RCM NS&EA) was held in September 2013 in Vigo (Spain). The main task of the RCM’s is to coordinate the National Programmes (NP), which propose the national data collection to be carried out by the Member States (MS) under the EU Data Collection Framework (DCF). It was envisaged that, from 2104 onwards, data collection by the MS would be carried out under a new framework (DC-MAP). However, the legislation for this framework is not ready yet. Therefore the Commission has decided to extend the present DCF for the time being and the most recent NPs have been adopted for 2014. Since these NP have been adopted without any changes, there is no need for major coordinatio

    Report of the Regional Co-ordination Meeting for the North Sea and Eastern Arctic (RCM NS&EA) 2015

    Get PDF
    The RCM NS&EA met 31st August - 4th September 2015 at den Haag, Netherlands with 27 participants form 11 member states and autonomous regions attending, including representatives of ICES and the Commission. National correspondents from Spain, UK, Denmark, Lithuania, Germany, Sweden and the Netherlands were present. The meeting was co-chaired by Katja Ringdahl (Sweden) and Alastair Pout (Scotland). The RCM N&SEA considered the recommendations from the 11th Liasion meeting and summaries were presented of the work of expert groups and end users for the 2014-15 period to the plenary session of the meeting. The expert groups included WGCATCH, PGDATA, WKISCON2, WKRDB 2014-01, RDB–SC, STECF and the Zagreb meeting on transversal variables. ICES, as a main end user, provided feedback. A summary was presented of the progress in the regional coordination project (fishPi). This project involves over 40 participants from 12 members states from NS&EA, NA and Baltic regions, two external statistical experts, and ICES. The project has a wide scope of regional cooperation issues including sampling designs, data formats, code lists, PETS, stomach sampling, small scale and recreational sampling, and data quality software production. It has a budget of €400,000, and a one year time line and with a planned completion date of April 2016. A project with identical aims is running in paralleled in the Mediterranean and Black Sea regions The majority of the ToRs of the RCM NS&EA were addressed by three subgroups: one concerned with data analysis, one with the landing obligation, and one with issues particularly related to role and work of national correspondents
    corecore