30 research outputs found

    Proteomic identification, cDNA cloning and enzymatic activity of glutathione S-transferases from the generalist marine gastropod, Cyphoma gibbosum

    Get PDF
    Author Posting. © Elsevier B.V., 2008. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Archives of Biochemistry and Biophysics 478 (2008): 7-17, doi:10.1016/j.abb.2008.07.007.Glutathione S-transferases (GST) were characterized from the digestive gland of Cyphoma gibbosum (Mollusca; Gastropoda), to investigate the possible role of these detoxification enzymes in conferring resistance to allelochemicals present in its gorgonian coral diet. We identified the collection of expressed cytosolic Cyphoma GST classes using a proteomic approach involving affinity chromatography, HPLC and nanospray liquid chromatography-tandem mass spectrometry (LC-MS/MS). Two major GST subunits were identified as putative mu-class GSTs; while one minor GST subunit was identified as a putative theta-class GST, apparently the first theta-class GST identified from a mollusc. Two Cyphoma GST cDNAs (CgGSTM1 and CgGSTM2) were isolated by RT-PCR using primers derived from peptide sequences. Phylogenetic analyses established both cDNAs as mu-class GSTs and revealed a mollusc-specific subclass of the GST-mu clade. These results provide new insights into metazoan GST diversity and the biochemical mechanisms used by marine organisms to cope with their chemically defended prey.Support was provided by the WHOI-Cole Ocean Ventures Fund (KEW), the WHOI Ocean Life Institute (KEW and MEH), a grant from Walter A. and Hope Noyes Smith (MEH), the National Science Foundation Graduate Research Fellowship (KEW), and by the National Institutes of Health (P42-ES007381 and R01-ES015912 to JVG)

    Biochemical warfare on the reef : the role of glutathione transferases in consumer tolerance of dietary prostaglandins

    Get PDF
    © 2010 The Authors. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS ONE 5 (2010): e8537, doi:10.1371/journal.pone.0008537.Despite the profound variation among marine consumers in tolerance for allelochemically-rich foods, few studies have examined the biochemical adaptations underlying diet choice. Here we examine the role of glutathione S-transferases (GSTs) in the detoxification of dietary allelochemicals in the digestive gland of the predatory gastropod Cyphoma gibbosum, a generalist consumer of gorgonian corals. Controlled laboratory feeding experiments were used to investigate the influence of gorgonian diet on Cyphoma GST activity and isoform expression. Gorgonian extracts and semi-purified fractions were also screened to identify inhibitors and possible substrates of Cyphoma GSTs. In addition, we investigated the inhibitory properties of prostaglandins (PGs) structurally similar to antipredatory PGs found in high concentrations in the Caribbean gorgonian Plexaura homomalla. Cyphoma GST subunit composition was invariant and activity was constitutively high regardless of gorgonian diet. Bioassay-guided fractionation of gorgonian extracts revealed that moderately hydrophobic fractions from all eight gorgonian species examined contained putative GST substrates/inhibitors. LC-MS and NMR spectral analysis of the most inhibitory fraction from P. homomalla subsequently identified prostaglandin A2 (PGA2) as the dominant component. A similar screening of commercially available prostaglandins in series A, E, and F revealed that those prostaglandins most abundant in gorgonian tissues (e.g., PGA2) were also the most potent inhibitors. In vivo estimates of PGA2 concentration in digestive gland tissues calculated from snail grazing rates revealed that Cyphoma GSTs would be saturated with respect to PGA2 and operating at or near physiological capacity. The high, constitutive activity of Cyphoma GSTs is likely necessitated by the ubiquitous presence of GST substrates and/or inhibitors in this consumer's gorgonian diet. This generalist's GSTs may operate as ‘all-purpose’ detoxification enzymes, capable of conjugating or sequestering a broad range of lipophilic gorgonian compounds, thereby allowing this predator to exploit a range of chemically-defended prey, resulting in a competitive dietary advantage for this species.Financial support for this work was provided by the Ocean Life Institute Tropical Research Initiative Grant (WHOI) to KEW and MEH; the Robert H. Cole Endowed Ocean Ventures Fund (WHOI) to KEW; the National Undersea Research Center - Program Development Proposal (CMRC-03PRMN0103A) to KEW; Walter A. and Hope Noyes Smith, and a National Science Foundation Graduate Research Fellowship to KEW

    Species composition and cyanotoxin production in periphyton mats from three lakes of varying trophic status

    No full text
    In lakes, benthic micro-algae and cyanobacteria (periphyton) can contribute significantly to total primary productivity and provide important food sources for benthic invertebrates. Despite recognition of their importance, few studies have explored the diversity of the algal and cyanobacterial composition of periphyton mats in temperate lakes. In this study, we sampled periphyton from three New Zealand lakes: Tikitapu (oligotrophic), Ōkāreka (mesotrophic) and Rotoiti (eutrophic). Statistical analysis of morphological data showed a clear delineation in community structure among lakes and highlighted the importance of cyanobacteria. Automated rRNA intergenic spacer analysis (ARISA) and 16S rRNA gene clone libraries were used to investigate cyanobacterial diversity. Despite the close geographic proximity of the lakes, cyanobacterial species differed markedly. The 16S rRNA gene sequence analysis identified eight cyanobacterial OTUs. A comparison with other known cyanobacterial sequences in GenBank showed relatively low similarities (91–97%). Cyanotoxin analysis identified nodularin in all mats from Lake Tikitapu. ndaF gene sequences from these samples had very low (≤ 89%) homology to sequences in other known nodularin producers. To our knowledge, this is the first detection of nodularin in a freshwater environment in the absence of Nodularia. Six cyanobacteria species were isolated from Lake Tikitapu mats. None were found to produce nodularin. Five of the species shared low (< 97%) 16S rRNA gene sequence similarities with other cultured cyanobacteria

    Metamorphosis of the invasive ascidian Ciona savignyi: environmental variables and chemical exposure

    No full text
    In this study, the effects of environmental variables on larval metamorphosis of the solitary ascidian Ciona savignyi were investigated in a laboratory setting. The progression of metamorphic changes were tracked under various temperature, photoperiod, substrate, larval density, and vessel size regimes. Metamorphosis was maximised at 18 °C, 12:12 h subdued light:dark, smooth polystyrene substrate, and 10 larvae mL−1 in a twelve-well tissue culture plate. Eliminating the air-water interface by filling culture vessels to capacity further increased the proportion of metamorphosed larvae; 87 ± 5% of larvae completed metamorphosis within 5 days compared to 45 ± 5% in control wells. The effects of the reference antifouling compounds polygodial, portimine, oroidin, chlorothalonil, and tolylfluanid on C. savignyi were subsequently determined, highlighting (1) the sensitivity of C. savignyi metamorphosis to chemical exposure and (2) the potential to use C. savignyi larvae to screen for bioactivity in an optimised laboratory setting. The compounds were bioactive in the low ng mL−1 to high µg mL−1 range. Polygodial was chosen for additional investigations, where it was shown that mean reductions in the proportions of larvae reaching stage E were highly repeatable both within (repeatability = 14 ± 9%) and between (intermediate precision = 17 ± 3%) independent experiments. An environmental extract had no effect on the larvae but exposing larvae to both the extract and polygodial reduced potency relative to polygodial alone. This change in potency stresses the need for caution when working with complex samples, as is routinely implemented when isolating natural compounds from their biological source. Overall, the outcomes of this study highlight the sensitivity of C. savignyi metamorphosis to environmental variations and chemical exposure

    Measuring the influence of nutrients and river water on the photosynthetic efficiency of <i>Didymosphenia geminata</i> using pulse amplitude modulated fluorometry

    No full text
    <p>Over the past three decades the freshwater diatom <i>Didymosphenia geminata</i> (Lyngbye) M. Schmidt has expanded its range globally. In some rivers <i>D. geminata</i> has become invasive, forming expansive and thick polysaccharide-dominated mats. Techniques to maintain and study <i>D. geminata</i> in the laboratory are limited. In this study, a 96-well plate format assay using pulse amplitude modulated (PAM) fluorometry was developed to study <i>D. geminata</i> under controlled conditions. The PAM assay and morphological assessments were used to investigate the addition of sodium nitrate (NaNO<sub>3</sub>) to a previously developed <i>D. geminata-</i>specific growth medium (Didymo Medium; DM). Addition of low concentrations (ca. 0.003–0.018 µM) enhanced cell survival and health. Central-composite design (CCD) experiments coupled with response surface methodology were then used to investigate optimal concentrations of six key chemicals in DM (magnesium sulphate, calcium chloride, mono-potassium phosphate, sodium metasilicate pentahydrate, ferric sodium ethylenediaminetetraacetic acid (EDTA) and NaNO<sub>3</sub>). An optimised DM recipe is provided. The PAM assay was also used to analyse the influence of maintaining <i>D. geminata</i> cells in river waters sourced from locations with and without the diatom. A NaNO<sub>3</sub> spiking experiment was undertaken using water from one location. The maximum quantum yields of cells maintained in all river waters remained relatively constant and higher than those maintained in DM or Milli-Q water for the seven day test period. The results of the NaNO<sub>3</sub> river water spiking experiment provided contrasting results to the culture medium trials, with minimal impact on photosynthetic efficiency. These data, coupled with the results of the CCD experiment, suggest complex interactions among nutrients that have varying effects on <i>D. geminata</i> cell health. Together with microscopical observations, the 96-well plate PAM assay provides a useful tool for improving knowledge of <i>D. geminata</i> biology and growth requirements.</p
    corecore