324 research outputs found

    Flame front analysis of ethanol, butanol, iso-octane and gasoline in a spark-ignition engine using laser tomography and integral length scale measurements

    Get PDF
    Direct-injection spark-ignition engines have become popular due to their flexibility in injection strategies and higher efficiency; however, the high-pressure in-cylinder injection process can alter the airflow field by momentum exchange, with different effects for fuels of diverse properties. The current paper presents results from optical studies of stoichiometric combustion of ethanol, butanol, iso-octane and gasoline in a direct-injection spark-ignition engine run at 1500 RPM with 0.5 bar intake plenum pressure and early intake stroke fuel injection for homogeneous mixture preparation. The analysis initially involved particle image velocimetry measurements of the flow field at ignition timing with and without fuelling for comparison. Flame chemiluminescence imaging was used to characterise the global flame behaviour and double-pulsed Laser-sheet flame tomography by Mie scattering to quantify the local topology of the flame front. The flow measurements with fuel injection showed integral length scales of the same order to those of air only on the tumble plane, but larger regions with scales up to 9 mm on the horizontal plane. Averaged length scales over both measurement planes were between 4 and 6 mm, with ethanol exhibiting the largest and butanol the smallest. In non-dimensional form, the integral length scales were up to 20% of the clearance height and 5–12% of the cylinder bore. Flame tomography showed that at radii between 8 and 12 mm, ethanol was burning the fastest, followed by butanol, iso-octane and gasoline. The associated turbulent burning velocities were 4.6–6.5 times greater than the laminar burning velocities and about 13–20% lower than those obtained by flame chemiluminescence imaging. Flame roundness was 10–15% on the tomography plane, with largest values for ethanol, followed by butanol, gasoline and iso-octane; chemiluminescence imaging showed larger roundness (18–25%), albeit with the same order amongst fuels. The standard deviation of the displacement of the instantaneous flame contour from one filtered by its equivalent radius was obtained as a measure of flame brush thickness and correlated strongly with the equivalent flame radius; when normalised by the radius, it was 4–6% for all fuels. The number of crossing points between instantaneous and filtered flame contour showed a strong negative correlation with flame radius, independent of fuel type. The crossing point frequency was 0.5–1.6 mm−1. The flame brush thickness was about 1/10th of the integral length scale. A positive correlation was found between integral length scale and flame brush thickness and a negative correlation with crossing frequency

    Hydrogen SI and HCCI Combustion in a Direct-Injection Optical Engine

    Get PDF
    Hydrogen has been largely proposed as a possible alternative fuel for internal combustion engines. Its wide flammability range allows higher engine efficiency with leaner operation than conventional fuels, for both reduced toxic emissions and no CO2 gases. Independently, Homogenous Charge Compression Ignition (HCCI) also allows higher thermal efficiency and lower fuel consumption with reduced NOX emissions when compared to Spark-Ignition (SI) engine operation. For HCCI combustion, a mixture of air and fuel is supplied to the cylinder and autoignition occurs from compression; engine is operated throttle-less and load is controlled by the quality of the mixture, avoiding the large fluid-dynamic losses in the intake manifold of SI engines. HCCI can be induced and controlled by varying the mixture temperature, either by Exhaust Gas Recirculation (EGR) or intake air pre-heating. A combination of HCCI combustion with hydrogen fuelling has great potential for virtually zero CO2 and NOX emissions. Nevertheless, combustion on such a fast burning fuel with wide flammability limits and high octane number implies many disadvantages, such as control of backfiring and speed of autoignition and there is almost no literature on the subject, particularly in optical engines. Experiments were conducted in a single-cylinder research engine equipped with both Port Fuel Injection (PFI) and Direct Injection (DI) systems running at 1000 RPM. Optical access to in-cylinder phenomena was enabled through an extended piston and optical crown. Combustion images were acquired by a high-speed camera at 1°or 2°crank angle resolution for a series of engine cycles. Spark-ignition tests were initially carried out to benchmark the operation of the engine with hydrogen against gasoline. DI of hydrogen after intake valve closure was found to be preferable in order to overcome problems related to backfiring and air displacement from hydrogens low density. HCCI combustion of hydrogen was initially enabled by means of a pilot port injection of n-heptane preceding the main direct injection of hydrogen, along with intake air preheating. Sole hydrogen fuelling HCCI was finally achieved and made sustainable, even at the low compression ratio of the optical engine by means of closed-valve DI, in synergy with air-pre-heating and negative valve overlap to promote internal EGR. Various operating conditions were analysed, such as fuelling in the range of air excess ratio 1.2-3.0 and intake air temperatures of 200-400°C. Finally, both single and double injections per cycle were compared to identify their effects on combustion development. Copyright © 2009 SAE International

    Flame chemiluminescence and OH LIF imaging in a hydrogen-fuelled spark-ignition engine

    Get PDF
    Research into novel internal combustion engines requires consideration of the diversity in future fuels in an attempt to reduce drastically CO2 emissions from vehicles and promote energy sustainability. Hydrogen has been proposed as a possible fuel for future internal combustion engines. Hydrogen’s wide flammability range allows higher engine efficiency with much leaner operation than conventional fuels, for both reduced toxic emissions and no CO2 gases. This paper presents results from an optical study of combustion in a spark-ignition research engine running with direct injection and port injection of hydrogen. Crank-angle resolved flame chemiluminescence images were acquired and post-processed for a series of consecutive cycles in order to calculate in-cylinder rates of flame growth. Laser induced fluorescence of OH was also applied on an in-cylinder plane below the spark plug to record detailed features of the flame front for a series of engine cycles. The tests were performed at various air-to-fuel ratios, typically in a range of φ = 0.50–0.83 at 1000 RPM with 0.5 bar intake pressure. The engine was also run with gasoline in direct-injection and port-injection modes to compare with the operation on hydrogen. The observed combustion characteristics were analysed with respect to laminar and turbulent burning velocities, as well as flame stretch. An attempt was also made to review relevant hydrogen work from the limited literature on the subject and make comparisons were appropriate

    Controlled autoignition of hydrogen in a direct-injection optical engine

    Get PDF
    Research into novel internal combustion engines requires consideration of the diversity in future fuels in an attempt to reduce drastically CO2 emissions from vehicles and promote energy sustainability. Hydrogen has been proposed as a possible fuel for future internal combustion engines and can be produced from renewable sources. Hydrogen’s wide flammability range allows higher engine efficiency than conventional fuels with both reduced toxic emissions and no CO2 gases. Most previous work on hydrogen engines has focused on spark-ignition operation. The current paper presents results from an optical study of controlled autoignition (or homogeneous charge compression ignition) of hydrogen in an engine of latest spark-ignition pentroof combustion chamber geometry with direct injection of hydrogen (100 bar). This was achieved by a combination of inlet air preheating in the range 200–400 °C and residual gas recirculated internally by negative valve overlap. Hydrogen fuelling was set to various values of equivalence ratio, typically in the range ϕ = 0.40–0.63. Crank-angle resolved flame chemiluminescence images were acquired for a series of consecutive cycles at 1000 RPM in order to calculate in-cylinder rates of flame expansion and motion. Planar Laser Induced Fluorescence (LIF) of OH was also applied to record more detailed features of the autoignition pattern. Single and double (i.e. ‘split’ per cycle) hydrogen injection strategies were employed in order to identify the effect of mixture preparation on autoignition’s timing and spatial development. An attempt was also made to review relevant in-cylinder phenomena from the limited literature on hydrogen-fuelled spark-ignition optical engines and make comparisons were appropriate

    Large eddy simulation of highly turbulent under-expanded hydrogen and methane jets for gaseous-fuelled internal combustion engines

    Get PDF
    Burning hydrogen in conventional internal combustion (IC) engines is associated with zero carbon-based tailpipe exhaust emissions. In order to obtain high volumetric efficiency and eliminate abnormal combustion modes such as preignition and backfire, in-cylinder direct injection (DI) of hydrogen is considered preferable for a future generation of hydrogen IC engines. However, hydrogen's low density requires high injection pressures for fast hydrogen penetration and sufficient in-cylinder mixing. Such pressures lead to chocked flow conditions during the injection process which result in the formation of turbulent under-expanded hydrogen jets. In this context, fundamental understanding of the under-expansion process and turbulent mixing just after the nozzle exit is necessary for the successful design of an efficient hydrogen injection system and associated injection strategies. The current study used large eddy simulation (LES) to investigate the characteristics of hydrogen under-expanded jets with different nozzle pressure ratios (NPR), namely 8.5, 10, 30 and 70. A test case of methane injection with NPR = 8.5 was also simulated for direct comparison with the hydrogen jetting under the same NPR. The near-nozzle shock structure, the geometry of the Mach disk and reflected shock angle, as well as the turbulent shear layer were all captured in very good agreement with data available in the literature. Direct comparison between hydrogen and methane fuelling showed that the ratio of the specific heats had a noticeable effect on the near-nozzle shock structure and dimensions of the Mach disk. It was observed that with methane, mixing did not occur before the Mach disk, whereas with hydrogen high levels of momentum exchange and mixing appeared at the boundary of the intercepting shock. This was believed to be the effect of the high turbulence fluctuations at the nozzle exit of the hydrogen jet which triggered Gortler vortices. Generally, the primary mixing was observed to occur after the location of the Mach disk and particularly close to the jet boundaries where large-scale turbulence played a dominant role. It was also found that NPR had significant effect on the mixture's local fuel richness. Finally, it was noted that applying higher injection pressure did not essentially increase the penetration length of the hydrogen jets and that there could be an optimum NPR that would introduce more enhanced mixing whilst delivering sufficient fuel in less time. Such an optimum NPR could be in the region of 100 based on the geometry and observations of the current study

    Characterisation of Flame Development with Hydrous and Anhydrous Ethanol Fuels in a Spark-Ignition Engine with Direct Injection and Port Injection Systems

    Get PDF
    This paper presents a study of the combustion mechanism of hydrous and anhydrous ethanol in comparison to iso-octane and gasoline fuels in a single-cylinder spark-ignition research engine operated at 1000 rpm with 0.5 bar intake plenum pressure. The engine was equipped with optical access and tests were conducted with both Port Fuel Injection (PFI) and Direct Injection (DI) mixture preparation methods; all tests were conducted at stoichiometric conditions. The results showed that all alcohol fuels, both hydrous and anhydrous, burned faster than iso-octane and gasoline for both PFI and DI operation. The rate of combustion and peak cylinder pressure decreased with water content in ethanol for both modes of mixture preparation. Flame growth data were obtained by high-speed chemiluminescence imaging. These showed similar trends to the mass fraction burned curves obtained by in-cylinder heat release analysis for PFI operation; however, the trend with DI was not as consistent as with PFI. OH planar Laser induced fluorescence images were also acquired for identification of the local flame front structure of all tested fuels

    Characterisation of flame development with ethanol, butanol, iso-octane, gasoline and methane in a direct-injection spark-ignition engine

    Get PDF
    Research into novel internal combustion engines requires consideration of the diversity in future fuels that may contain significant quantities of bio-components in an attempt to reduce CO2 emissions from vehicles and contribute to energy sustainability. However, most biofuels have different chemical and physical properties to those of typical hydrocarbons; these can lead to different mechanisms of mixture preparation and combustion. The current paper presents results from an optical study of combustion in a direct-injection spark-ignition research engine with gasoline, iso-octane, ethanol and butanol fuels injected from a centrally located multi-hole injector. Methane was also employed by injecting it into the inlet plenum of the engine to provide a benchmark case for well-mixed ‘homogeneous’ charge preparation. Crank-angle resolved flame chemiluminescence images were acquired and post-processed for a series of consecutive cycles for each fuel, in order to calculate in-cylinder rates of flame growth and motion. In-cylinder pressure traces were used for heat release analysis and for comparison with the image-processing results. All tests were performed at 1500 RPM with 0.5 bar intake plenum pressure. Stoichiometric (ϕ = 1.0) and lean (ϕ = 0.83) conditions were considered. The combustion characteristics were analysed with respect to laminar and turbulent burning velocities obtained from combustion bombs in the literature and from traditional combustion diagrams in order to bring all data into the context of current theories and allow insights by making comparisons were appropriate

    An Analysis of the Combustion Behavior of Ethanol, Butanol, Iso-Octane, Gasoline, and Methane in a Direct-Injection Spark-Ignition Research Engine

    Get PDF
    Future automotive fuels are expected to contain significant quantities of bio-components. This poses a great challenge to the designers of novel low-CO2 internal combustion engines because biofuels have very different properties to those of most typical hydrocarbons. The current article presents results of firing a direct-injection spark-ignition optical research engine on ethanol and butanol and comparing those to data obtained with gasoline and iso-octane. A multihole injector, located centrally in the combustion chamber, was used with all fuels. Methane was also employed by injecting it into the inlet plenum to provide a benchmark case for well-mixed “homogeneous” charge preparation. The study covered stoichiometric and lean mixtures (λ = 1.0 and λ = 1.2), various spark advances (30–50° CA), a range of engine temperatures (20–90°C), and diverse injection strategies (single and “split” triple). In-cylinder gas sampling at the spark-plug location and at a location on the pent-roof wall was also carried out using a fast flame ionization detector to measure the equivalence ratio of the in-cylinder charge and identify the degree of stratification. Combustion imaging was performed through a full-bore optical piston to study the effect of injection strategy on late burning associated with fuel spray wall impingement. Combustion with single injection was fastest for ethanol throughout 20–90°C, but butanol and methane were just as fast at 90°C; iso-octane was the slowest and gasoline was between iso-octane and the alcohols. At 20°C, λ at the spark plug location was 0.96–1.09, with gasoline exhibiting the largest and iso-octane the lowest value. Ethanol showed the lowest degree of stratification and butanol the largest. At 90°C, stratification was lower for most fuels, with butanol showing the largest effect. The work output with triple injection was marginally higher for the alcohols and lower for iso-octane and gasoline (than with single injection), but combustion stability was worse for all fuels. Triple injection produced a lower degree of stratification, with leaner λ at the spark plug than single injection. Combustion imaging showed much less luminous late burning with tripe injection. In terms of combustion stability, the alcohols were more robust to changes in fueling (λ = 1.2) than the liquid hydrocarbons

    Spray Formation from Spark-Eroded and Laser-Drilled Injectors for DISI Engines with Gasoline and Alcohol Fuels

    Get PDF
    Copyright © 2014 SAE International.One of the latest advancements in injector technology is laser drilling of the nozzle holes. In this context, the spray formation and atomisation characteristics of gasoline, ethanol and 1-butanol were investigated for a 7-hole spark eroded (SE) injector and its ‘direct replacement’ Laser-drilled (LD) injector using optical techniques. In the first step of the optical investigation, high-speed spray imaging was performed in a quiescent injection chamber with global illumination using diffused Laser light. The images were statistically analyzed to obtain spray penetration, spray tip velocity and spray ‘cone’ angles. Furthermore, droplet sizing was undertaken using Phase Doppler Anemometry (PDA). A single spray plume was isolated for this analysis and measurements were obtained across the plume at a fixed distance from the nozzle exit. The droplet measurements were grouped into bins and maps were created showing droplet sizes and velocities against time and position during and post injection. All tests were performed at 120 bar fuel pressure, two injection chamber ‘back’ pressures (0.5 bar and 1 bar) and two injector temperatures (20 °C and 80 °C), to examine effects relevant to typical engine operating conditions with early intake stroke injection strategies, including fuel flash boiling

    Developing Low Gasoline Particulate Emission Engines Through Improved Fuel Delivery

    Get PDF
    Particulate emissions are of growing concern due to health impacts. Many urban areas around the world currently have particulate matter levels exceeding the World Health Organisation safe limits. Gasoline engines, especially when equipped with direct injection systems, contribute to this pollution. In recognition of this fact European limits on particulate mass and number are being introduced. A number of ways to meet these new stringent limits have been under investigation. The focus of this paper is on particulate emissions reduction through improvements in fuel delivery. This investigation is part of the author's ongoing particulate research and development that includes optical engine spray and combustion visualisation, CFD method development, engine and vehicle testing with the aim to move particulate emission development upstream in the development process. As part of this work, a spark eroded and a laser drilled injector were fully characterised in a spray vessel under key engine running conditions. Injector nozzle geometries and mass flow data were also measured in great detail. This paper demonstrates using both steady state and transient engine testing that very significant improvements in particulate emissions can be made. Control strategies enabling multiple injections of smaller volumes of fuel per injection are the most promising technology. The MAHLE Flexible ECU (MFE) combined with injector testing allowed early stage development and demonstrated these effects for a number of key engine operating conditions. Most notably it was found that particulate matter emissions could be reduced by 80-90% during the catalyst light off phase. A new approach was developed (MASTER) to simultaneously assess the effects of calibration changes on all emissions to increase testing efficiency and hence get to more optimised solutions faster. This approach was successfully tested on a production engine comparing two injectors achieving 82% reduction in particulate number emissions during the first 200seconds of the NEDC relative to the EU5b baseline. Finally it was found that both fuel properties and injector deposits can have a significant effect on particulate emissions
    • 

    corecore