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Abstract 
 
 
In centrifugal Rotary Blood Pumps (RBP), clearances are a critical parameter in determining blood trauma. This 

study investigates the effect of axial clearance (Cax) and radial clearance (Crad) on the hydrodynamic and 

haemolytic performance of a centrifugal RBP. A centrifugal pump was parameterised so that it could be defined 

by geometric variables Cax and Crad. Optimal Latin Hypercube Sampling was used to determine design points 

based on Cax, Crad and rotor speed (𝜔). For each design point, a computational simulation was conducted to 

determine efficiency (𝜂) and Normalised Index of Haemolysis (NIH). Next, a Response Surface (RS) was created 

to estimate these performance parameters based on the design variables. The results show that for a given Cax, 

when Crad is decreased, 𝜂 increases until Crad = 0.15 mm, beyond which 𝜂 deceases. For a given Crad, Cax has a 

unimodal relationship with 𝜂. NIH has a unimodal relationship with both Cax and Crad. The mechanisms behind 

these relationships were investigated by various analytical methods. It was found that vortices in the secondary 

flow paths were a critical factor in determining efficiency and haemolysis. The optimal clearance values 

discerned in this study are only valid for the specific impeller geometry and operating conditions analysed. 

Keywords: VAD, MCS, CFD, Haemolysis, Clearance, CHF, Rotary blood pump, Centrifugal  
 

 

 

 

  



Nomenclature 
 
Subscripts: 

 
ax 
down 
exp 
max 
min 
out 
rad 
tot 
up 

axial 
down 
exposure 
maximum 
minimum 
outlet 
radial 
total 
up 

 
Abbreviations and Acronyms: 
 

2-D 
3-D 
C 
CAD 
CHF 
CFD 
F 
HB 
LHS 
MRF 
NIH 
P 
pfhb 
Q 
R 
RS 
RBP 
RBC 
Re 
s 
𝜂 
ρ 
μ 
𝜔 
σ 

 

Two Dimensional 
Three Dimensional 
Clearance 
Computer Aided Design 
Congestive Heart Failure 
Computational Fluid Dynamic 
Force 
Total Blood Haemoglobin 
Latin Hypercube Sampling 
Multi Reference Frame 
Normalised Index of Haemolysis 
Pressure 
plasma free haemoglobin 
Flow Rate 
Resistance 
Response Surface 
Rotary Blood Pump 
Red Blood Cell 
Reynolds Number 
second 
efficiency 
density 
viscosity 
rotor speed 
Von Mises shear stress 

 

  



Introduction 
 
Congestive Heart Failure (CHF) is one of the leading causes of death in Western countries. More than seven 

million people in North America and Europe are diagnosed with heart failure, among whom nearly 6% are 

categorised as having New York Heart Association class IV heart failure1. As a result, the role of Rotary Blood 

Pumps (RBPs) has become vital for patients on and off the waiting list2,3. 

One of the challenges with the traditional RBP devices is their highly invasive implantation procedure which 

make many elderly and ill patients no longer eligible for the surgery. This has encouraged many research groups 

to focus on the design and development of miniaturised RBPs, aimed for minimally invasive surgery 4,5,6,7,8,9 

Miniaturised RBPs, due to their inherently higher rotor speeds, are more susceptible to shear-induced blood 

trauma10.  As a result, in the design and development process of an RBP device, improving the haemolytic 

performance is of critical importance. Since the non-optimised design of such an RBP may lead to clinical 

complications such as haemolysis11, thrombosis12, bleeding13 and infection14. 

Haemolysis is an important indicator to evaluate the haemolytic performance of an RBP15. Haemolysis is defined 

as the amount of haemoglobin entering into blood plasma as a result of the mechanical damage of the 

membranes of Red Blood Cells (RBCs), known as plasma free haemoglobin (pfhb). In the long term, haemolysis 

may lead to biochemical alterations in blood that can result in reduced life expectancy16.  

One of the key regions inside a rotary centrifugal blood pump, which significantly affects the haemolytic as well 

as hydrodynamic performance, is the clearance between the impeller and its casing.  

Graefe et al.17 reported that among parameters including length, diameter, clearance, rotor speed, force and 

pressure, the clearance is the most critical design parameter affecting blood trauma. Kosaka et al18 showed that 

as the axial gap in a hydrodynamic bearing was increased from 1 to 63 µm the NIH improved by 95%. Kido et 

al.19 showed that changing the clearances from 0.1 to 0.2 mm had a minimal effect on the pump’s efficiency yet 

significantly increased haemolysis. Wu et al.20 showed that as the radial clearance is reduced from 0.1 mm to 

0.05 mm, the efficiency remains relatively constant. They observed that for their low Reynolds number RBP 

device, as the radial clearance decreases below 0.1 mm viscous effects are more significant than volumetric 

leakage. James et al.21, reported that haemolysis varied minimally in the VentrAssist when the running clearance 

was varied between 0.075 to 0.215 mm. Paul et al.22 investigated the effect of clearances on the hydrodynamic 



characteristics in centrifugal blood pumps and reported that slip and turbulence have a significant effect on the 

pressure distribution and blood compatibility at small and large clearances respectively.   

The range of clearances which are feasible are highly dependent on the bearing mechanism used to stabilise the 

pump. For example, HVAD and VentrAssist use a passive hydrodynamic bearing, necessitating small 

clearances23,24, whereas HeartMate III uses an active magnetic bearing, incorporating relatively  large 

clearances25. 

It is evident from the literature that the clearance affects performance parameters differently in different pump 

designs, so a methodology is required to evaluate optimal clearances individually for each pump. To our 

knowledge, the relative and independent effect of axial versus radial clearances has not been investigated. 

The aim of this study is to investigate the effect of radial and axial clearance sizes in a centrifugal pump on 

hydrodynamic and haemolytic parameters, with a focus on the hydrodynamic efficiency and haemolysis. The 

objective of this work is satisfied by means of Computational Fluid Dynamic (CFD) simulations. In recent years, 

optimisation combined with CFD techniques have been widely used in RBP research26,27. 

Methodology 
 

CFD Model 
 
For conventional centrifugal pumps such as HVAD28and Heartmate III29, the clearances can be classified as radial 

and axial. The radial clearances are the cylindrical gaps between the outer circumference of the impeller and the 

radial wall of the casing, and can be further distinguished into upper and lower radial clearances depending on 

whether they are above or below the volute. The axial clearances are defined as the gap between top and 

bottom axial faces of the impeller and the top and bottom of the casing. The axial clearances can be further 

distinguished as top and bottom axial clearances. 

For this study, a 3D CAD model of a centrifugal pump was created using Ansys Design Modeler (Ansys Inc., 

Canonsburg, PA, USA). The blade and volute geometry was taken from work published by Mozafari et al.30,31 and 

remains constant for all clearance geometries. It is assumed that the impeller is radially and axially suspended 

inside the casing and there is no contact between the impeller and the casing wall. The impeller height and 

diameter were set at 17 mm and 30 mm. This is approximately based on the impeller sizes of HVAD and 

Heartmate III although the height was increased slightly to create a more significant radial section in the 

secondary flow paths. 



Figure 1 shows a 2D cross-sectional view of the centrifugal pump model.  For this model, a design 

parametrisation of the clearances was conducted. The upper and  lower radial clearance sizes are defined as 

equal and represented by a single design variable, denoted radial  clearance (Crad). Similarly, the top and bottom 

axial clearance sizes are defined as equal and represented by a single design variable, denoted axial clearance 

(Cax). The range of impeller clearances sizes was defined based on HVAD and HeartMate III. The minimum axial 

gap for HVAD, with a hydrodynamic bearing, is 40 microns24. The maximum radial gap for HM III, with a magnetic 

bearing, is 1.0 mm32. Lower and upper clearance size limits of 0.1 mm and 1.0 mm respectively were 

implemented for both Crad and Cax. Clearances below 0.1 mm could not be simulated due to limited 

computational resources.  

 

 

Figure 1: The parameterised CFD model of the pump. 

The clearances create paths for secondary flow. As shown in Figure 1, the lower secondary flow rate (Qdown) 

travels downwards from the blade tips to rejoin the main stream from the bottom, while the upper secondary 

flow rate (Qup) traveling upwards from the blade tips to rejoin the mainstream from the top. Qtot is the sum of 

Qup and Qdown. 

A combined tetrahedral, hexahedral and prism element mesh was generated using Ansys mesh tool (Ansys Inc., 

Canonsburg, PA, USA). The inflation function was used across the surfaces with the near boundary first node of 

2−5 m. The blood flow was simulated using Ansys CFX (Ansys Inc., Canonsburg, PA, USA). The blood is considered 

as an incompressible fluid with a viscosity (ϑ) of 0.00035 kg/ms and a density (ρ) of 1050 kg/m3. The boundary 

conditions were specified as zero total pressure (P) at the inlet and a flow rate (Qout) of 5 L/min at the outlet. For 

this study, a K- 𝜔 (SST) turbulence model was used because of its high accuracy and robustness in the near wall 



region33. The Multiple Reference Frame (MRF) approach, in which the flow is considered steady state, was used 

to shorten the computational time.  The solution was performed with the convergence target for the velocity 

and turbulence residuals below 10−4. The simulations were run on a workstation with 16 Intel Xeon quad core 

3.2 GHz processors and 64 GB RAM. 

Automatic Meshing 

 
One major challenge for automatic meshing in a CFD parametric study is to ensure the quality of the mesh is 

high enough that the computational results can be considered reliable. In this study, we adopt the methodology 

used by Thamsen et al.24 in which the average non-dimensional Y+ was used as a benchmark to ensure that  the 

Y+ value is less than 2 for all design cases to ensure the mesh configuration is compatible with the K-𝜔(SST) 

model. If any design point exhibits a Y+ more than 2, the inflation size is corrected accordingly. 

Mesh Independence 

 
A clearance configuration consisting of the largest permissible clearances, Cax = Crad = 1.0 mm, was chosen to 

conduct a mesh dependency study. A mesh with a maximum element size of 1 mm, resulting in 8,141,937 

elements, was initially used to solve the simulation. The mesh was then refined by reducing the maximum 

element size in order to generate a finer mesh and solved again. This process was repeated until there was no 

significant difference in output achieved by increasing the mesh density. The outlet pressure (Pout) was selected 

as the benchmark. The largest maximum element size which demonstrates mesh independence is used for the 

parametric and optimisation studies, in which re-meshing for each individual design point is performed 

automatically. 

Haemolysis 

 
Shear-induced haemolysis was computed using the Eulerian-scalar-transport approach, adopted from the 

studies conducted by Taskin et al.34. The scalar transport equation was then expressed as in equation 1. 

d(ΔHB′)

dt
 +v.ρ. ∇(ΔHB')=s 

 (1) 

Where ΔHB′  is defined as a scalar variable equal to ΔHB
1

𝛼 , and ΔHB is defined as plasma free haemoglobin, S 

is the source term defined as S= ρ(HB. C. σ𝛽)
1

𝛼, in which HB is total blood haemoglobin, ρ is the blood density, 

α, β, and C are constant34 and σ is defined as Von Mises shear stress, which is calculated from the stress 

components acting on an RBC membrane as described in equation 2. 



                                               σ = [
1

6
 ∑(σii − σjj)

2 − ∑(σij σij)] 0.5 (2) 

The average outlet NIH (g/100l) for each individual case is defined in equation 3 adopted from the study by 

Carswell et al.15. 

NIH =100 × 
∆HB

HB
 × (1-Hct) × k (3) 

where Hct is the blood haematocrit and k is the haemoglobin content of blood. 

 

Response Surface 
 
The parametric study was conducted by adopting a surrogate modelling approach using Ansys Design Xplorer 

(Ansys Inc., Canonsburg, PA, USA) tools. Firstly, a Design of Experiments was created using optimal Latin 

Hypercube Sampling (LHS). The LHS produces a design space represented numerically by sampling points based 

on the design variables Cax, Crad and 𝜔. This resulted in 15 sampling points. For each sampling point, geometry 

creation, mesh generation, pre-CFX analysis, computational solution and post-CFX analysis was conducted. The 

mean computational time for each sampling point was about five hours. This yielded efficiency (𝜂) and NIH from 

each sampling point. 

A Response Surface (RS) was then calculated by fitting a polynomial curve through the computed variables 

obtained from the DoE, using the Response Surface tool from Ansys. This allows prediction of performance 

parameters 𝜂 and NIH from the design variables for any design within the defined range. The RS was used to 

estimate the required 𝜔 for the desired operating condition of 100 mmHg and 5 L/min for 81 design 

configurations of Cax and Crad with values for each ranging from 0.1 mm to 1.0 mm in increments of approximately 

0.1 mm.  For each design configurations, 𝜔 was defined as the rotor speed which provided the required 

operating condition. Increased-accuracy simulations were then run for each of the 81 design configurations at 

the 𝜔 estimated by the RS to obtain more reliable results. Any deviation from the required operating condition 

is corrected by modifying 𝜔 in each increased-accuracy simulation. The performance parameters were extracted 

for each of the 81 design points and the results were used to populate a 2D 9×9 matrix. 

 

 

 

 

 

 



Results 
  

The results from the mesh dependency study showed a variation of less than 3% of the Pout between the mesh 

configurations with maximum element sizes 0.2 and 0.1 mm. Consequently a maximum element size of 0.2 mm 

was used for all mesh generation in this study. 

 Figure 2(a,b) show 𝜂 and NIH across the design space with axial and radial clearance sizes ranging from 0.1 to 

1.0 mm for the desired operating condition respectively. Figure 2(a) shows that for a given Cax, when Crad is 

decreased, 𝜂 increases yet further reduction in Crad below 0.15 mm leads to a decreased efficiency. For a given 

Crad, a unimodal relationship between efficiency and Cax is observed. For instance, for the Crad of 0.5 mm, as the 

Cax decreases from 1.0 to 0.5 mm, the efficiency increases by 3.5%, yet a further reduction in Cax below 0.5 mm 

leads to a drop in the efficiency. The maximum efficiency of 44.3% occurs when Cax is 0.55 mm and Crad is 0.15 

mm. The minimum efficiency of 39.5% occurs when Cax and Crad are 1.0 mm. 

 

Figure 2:(a) 𝜂 contours (%) with varying axial and radial clearances for the unique operating condition of 100 mmHg, 5 L/min. 
(b) NIH contours with varying axial and radial clearances for the unique operating condition of 100 mmHg, 5 L/min. 

 

Figure 2(b) shows that there is a unimodal trend for the effect on NIH of both the radial and axial clearances. For 

the case where Cax is 0.5 mm, as Crad decreases from 1.0 to 0.55 mm the NIH decreases by 30%, yet further 

reduction in Crad below 0.55 mm to 0.1 mm leads to an increase of 70% in NIH. The minimum NIH of 0.0081 

g/100l occurs where Cax and Crad are 0.55 mm. The maximum NIH of 0.017 g/100l occurs where Cax and Crad are 

0.1 mm.  

 



In this study in order to explain the mechanisms behind the observed relationship between clearance sizes and 

performance parameters, six different design points out of 81 total design points are selected and the local 

hydrodynamic parameters including shear stress, velocity and secondary flow rates are studied for each 

individual case.   

First the effect of axial clearance was investigated with three axial test cases of Ax0.1, Ax0.5 and Ax1.0 in which Crad 

is fixed at 0.5 mm and Cax is 0.1 mm, 0.5 mm and 1.0 mm respectively. The 𝜔 for these cases were 2600, 2625 

and 2620 rpm respectively.  

Figure 3 (a,b,c) shows the wall shear stress (WSS) distribution on the bottom axial face of the impeller for these 

test cases. For case Ax0.1, the bottom axial face has the highest local average WSS of the three cases at 52 Pa. For 

Ax0.5 the local average WSS is 25 Pa, about 50% lower than Ax0.1. For case Ax1.0 the local average WSS is 32 Pa, 

about 28% more than Ax0.5. The total average WSS across all impeller walls, radial and axial, for the same 

configurations are 47, 32 and 39 Pa respectively, following the same trend. 

 

 

Figure 3: WSS distribution on the bottom axial face of the impellers for the axial test cases (a) Ax0.1, (b) Ax0.5 and (c) Ax1.0 
at 100 mmHg, 5 L/min. The volute outlet position is shown on the top right of each pump 

 

 

 

 

 

 

 

 

 

 



Figure 4 (a,b,c) shows the velocity streamlines coloured by shear stress in the bottom axial clearances for the 

same test cases. For Ax0.1 the average σ in the axial clearance is the highest of the three cases at 57 Pa, no 

recirculating flow is observed in the axial clearance. For Ax0.5, the average σ drops by 21% to 45 Pa and some 

vortices are observed. For Ax1.0 the average σ drops to 25 Pa and there are significantly more vortices. 

 

Figure 4: Velocity streamline coloured by shear stress in the bottom axial clearances of (a) Ax0.1, (b) Ax0.5 and (c) Ax1.0 at 
100 mmHg, 5 L/min  

 

The upper secondary flow rates (Qup) and lower secondary flow rates (Qdown), as illustrated in Figure 1, were 

recorded for the same cases and presented in Figure 5. Qtot (Qup+Qdown) was the highest for Ax0.5 and lowest for 

Ax0.1. 



 

Figure 5: The graphs of secondary flow rate passing through the bottom and top secondary flow paths for the axial test 
cases Ax0.1, Ax0.5 and Ax1.0 at 100 mmHg, 5 L/min. 

Next the effect of radial clearance was investigated with three radial test cases RAD0.1, RAD0.5 and RAD1.0 in which 

Cax is fixed at 0.5 mm and Crad is 0.1 mm, 0.5 mm and 1.0 mm respectively. The 𝜔 for these cases were 2420, 

2600 and 2800 rpm respectively. 

Figure 6(a) shows the NIH distribution in all flow paths for the three radial test cases of RAD0.1, RAD0.5 and RAD1.0. 

In all three cases, the highest haemolysis is observed in the bottom and the top axial clearances from which the 

damaged blood re-enters the primary flow path. For RAD0.1, the average outlet NIH is 0.015 g/100l and the 

maximum NIH appearing in the radial clearances is 0.058 g/100l. For RAD0.5 the average outlet NIH is 0.0083 

g/100l and the maximum NIH appearing in the radial clearance is 0.032 g/100l, both lower than RAD0.1. For RAD1.0, 

the outlet average NIH is 0.011 g/100l and the maximum NIH appearing in the radial clearance 0.041 g/100l is, 

slightly higher than RAD0.5 but lower than RAD0.1. 



 

Figure 6: The graphs of secondary flow rate passing through the bottom and top secondary flow paths for the axial test 
cases Ax0.1, Ax0.5 and Ax1.0 at 100 mmHg, 5 L/min. 

 

Figure 6(b) shows the velocity streamlines coloured by shear stress in the lower radial clearances for the same 

test cases. For RAD0.1 the average σ in the radial clearance is 60 Pa, however no recirculating flow can be 

observed. For RAD0.5 the average σ drops by 16% to 50 Pa. For RAD1.0 the average σ in the clearance region drops 

by 40% to 30 Pa and there are significantly more vortices. 

The secondary flow rates were recorded for the same cases and presented in Figure 7. For these cases, the Qup 

and Qdown increased as Crad increased. Qtot was the highest for RAD1.0 and lowest for RAD0.1. 



 

Figure 7: The graphs of secondary flow rate passing through the bottom and top secondary flow paths for the radial test 
cases (a) RAD0.1, (b) RAD0.5 and (c) RAD1.0 at 100 mmHg, 5 L/min. 

The maximum efficiency, minimum efficiency, maximum NIH, minimum NIH  were extracted from the 9×9 matrix 

to further illustrate the effect of  clearances on the output parameters. The cases and their performance 

parameters are summarised in Table 1. 

 

 

 

 

 

 

 

 

 

 



 

Table 1: Optimized geometrical parameters for a given operating condition of 5 L/min-100 mmHg, aiming at the 

max efficiency, minimum efficiency, maximum NIH, minimum NIH. 

 
Param Cax Crad Speed 𝜂 NIH Qup Qdown Qtot 

- Units mm mm rpm % g/100l l/min l/min l/min 

1 𝜂max 0.55 0.15 2500 44.3 0.0144 0.54 0.46 1 

2 𝜂min 1 1 2800 39.5 0.0115 1 0.14 1.14 

3 NIHmax 0.1 0.1 2450 43.0 0.0172 0.19 0.13 0.32 

4 NIHmin 0.55 0.55 2600 42.5 0.0081 0.95 0.7 1.65 

 

 

Discussion 
 
As reported in previous studies17,18,19,20,21,22 one of the key challenges in the design and development of an RBP 

device is the optimisation of clearance sizes. In this study we used a coupled CFD optimisation technique to 

investigate the hydrodynamic and haemolytic responses of a centrifugal pump with different clearance 

configurations for a unique operating condition. 

Figure 2 shows that Cax and Crad have different effects on the efficiency. For a fixed axial clearance of 0.55 mm, 

the efficiency shows a proportional relationship with the radial clearance until Crad = 0.15 mm. This is mainly 

because a reduction in the radial clearance results in less secondary flow, causing hydraulic efficiency to rise. 

However, this effect appears to be reversed as the radial clearance is reduced below Crad = 0.15 mm.  It appears 

that for Crad less than 0.15 mm, an improved efficiency resulting from reduction in secondary flow are now offset 

by efficiency degradation resulting from increased viscous friction. This phenomenon was also observed in the 

report by Wu et al.20.  

The unimodal effect of efficiency with the change in axial clearance can be described by studying the design 

points of AX0.1, AX0.5 and AX1.0 in Figure 4 and 5. The average shear stress on the bottom axial face is high for 



Ax0.1, as shown Figure 4(a), meaning more power is required to drive the pump. For case Ax0.5, the shear stress 

is far lower because shear stress is inversely proportional to clearance size where flow is laminar35. For case Ax1.0, 

however, large vortices can be observed in Figure 5(c), the flow is no longer laminar and shear stress is high due 

to the near wall large scale vortices36,37 which inversely affect the efficiency. 

By incorporating the effects of σ and texp, using equation 1, the NIH was calculated for different configurations 

of the axial and radial clearances. The results showed that both Cax and Crad have a unimodal relationship with 

NIH. However, since the level of shear stress on the fluid in the radial clearance is greater than that in the axial 

clearance due to the higher tangential velocity, the effect of radial clearance on haemolysis is more significant 

when the axial clearance is greater than 0.3 mm. Below 0.3 mm, high levels of shear stress on the fluid in the 

axial clearance contribute more significantly to haemolysis. The unimodal relationship between the haemolysis 

and radial clearances has been reported in the study by Wu et al.20.  They reported that incorporating very small 

radial clearances may increase the risk of RBC damage due to excessive shear stress, while large clearances can 

cause high exposure time. 

The unimodal effect of the haemolysis with the axial clearance can be explained by examining the design points 

of AX0.1, AX0.5, and AX1.0 in Figures 5, 6. As shown in Figure 6, Qtot is the highest at Ax0.5, the lowest at Ax0.1 due to 

increased resistance, and lower at Ax1.0 due to vortices forming in the bottom axial clearance and illustrated in 

Figure 5(c). At Ax0.1 there is high shear stress on the fluid and the resulting haemolysis is high. At Ax0.5 the shear 

stress is lower. The Qtot is high so the RBC exposure time is not increased. This results in reduced haemolysis. At 

Ax1.0, as shown in Figure 5(c), large vortices are formed in the bottom axial clearance. This results in a significant 

drop in Qdown, as shown in Figure 6. A decreased Qdown, due to the vortices, leads to an increased RBC exposure 

time, and consequently leads to an increased haemolysis38.  The appearance of large scale stagnant vortices in 

clearance regions may also lead to impeller instability39. In addition, the stagnant vortices may increase the risk 

of platelet activation which results in thrombosis formation40. 

The design points optimised for various objectives shown in Table 1 give further insight into the effect of 

clearance on these performance parameters.  In Table 1, the maximum efficiency was achieved when Crad was 

minimised at 0.15 mm but Cax was 0.55 mm. In this theoretical device the fluid resistance in the axial clearances 

is higher than in the radial clearances for a given Cax = Crad. Consequently Cax should be larger than Crad to 

prevent vortices.  



In Table 1, the maximum NIH occurred at the minimum clearance, but the minimum NIH did not occur at the 

maximum clearance. The minimum Qtot is observed in the case of maximum NIH, where the clearances are both 

0.1 mm. This is not the most efficient design because an RBP is a low Reynolds number pump, in which viscous 

effects are significant at low clearances and reduce pump efficiency. The detrimental effect on efficiency of high 

viscous drag is more significant than the positive effect on efficiency of minimising secondary flow at small 

clearances. The reverse is true at large clearances, where viscous drag is much lower. 

Limitations 
 
The geometry of the pump was defined based on literature sources. The result from this study is only valid for 

this design specification under the defined operating conditions, however the methodology is valid for any 

centrifugal blood pump. 

For the present study, due to the available computational resources, it was not feasible to reduce the clearance 

size to less than 0.1 mm. However, the range tested appears to capture the optimal design point for NIH and 𝜂 

for the case study in this paper. 

No experimental study has been conducted. In computational studies errors may arise associated with 

turbulence model and mesh quality. These potential confounders were mitigated with the implementation of a 

highly accurate k-𝜔 SST model and a mesh dependency study respectively. Further, as shown in previous 

studies15, there was always a discrepancy between the power law predicted and the measured haemolysis 

indices.  In addition, in this study, it is assumed that the empirical constants of α, β, and C, used in the power 

law equation, remain unchanged for various clearance configurations.  It must be noted that these constants, in 

many previous studies34, were determined using Couette-type shearing devices which incorporate a very small 

gap (<100µm) to ensure that the blood flow regime remains laminar.  However, as shown in this study, for large 

clearances (>0.5mm), the flow regime is fully turbulent. Turbulent flow, due to its inherent excessive stress, may 

result in further deviation in the predicted haemolysis using the adopted empirical constants34 and thus may 

undermine the unimodal haemolysis relationship extracted from simulation results in this work obtained in this 

study. Therefore, further experimental studies are required to investigate the effect of turbulent flow in large 

clearances on the haemolysis and tuning the empirical constants of α, β, and C accordingly. It should also be 

noted that for this study the effect of the surface roughness on haemolysis was not considered. 



The model does not account for the haemolysis caused by the bearing design. Hydrodynamic wedge bearings, 

such as those used in HVAD and VentrAssist23,24, will have more complex effects on haemolysis. In this paper, to 

limit the scope, we assume all surfaces are flat and the pump is suspended by other means. One interpretation 

of this is that small clearances might in fact have higher haemolysis than suggested in our work, because such 

clearances would require a bearing mechanism which increases shear on the blood. The CFD model in this paper 

did not consider eccentric oscillations of the impeller. 

Conclusion 
 
This study investigated the effect of axial and radial clearance geometries on the hydrodynamic and haemolytic 

performance of a rotary centrifugal blood pump. The results from the present study show that incorporating 

very large clearances will not lead to minimised blood trauma. Although incorporating larger clearances in RBPs 

ensures that the shear stress acting on RBCs is reduced, the haemolysis level will eventually increase, due to a 

significant change in secondary flow rate, which consequently affects the RBC exposure time. In addition further 

decreasing the clearance size will adversely affect the hydraulic efficiency incorporating very small radial 

clearances may increase the risk of RBC damage due to excessive shear stress, while large clearances can cause 

high exposure time which may lead to the creation of large-scale stagnant vortices, which not only adversely 

affect the rotor stability of the impeller but also causes other blood complications. For all clearances in an RBP 

a compromise must be found between high shear stress at small clearances, and high secondary flow rate at 

large clearances. The main conclusion from this work, in which axial and radial clearances are assessed 

separately, is that the design of these two regions is inter-related. Axial and radial clearances must be designed 

simultaneously to prevent vortices in one or other region and allow laminar secondary flow. This is beneficial for 

both improving efficiency and reducing haemolysis. 
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