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Abstract. Data taken from the MCMA-2003 and the 2006
MILAGRO field campaigns are used to examine the absorp-
tion of solar radiation by the organic component of aerosols.
Using irradiance data from a Multi-Filter Rotating Shadow-
band Radiometer (MFRSR) and an actinic flux spectrora-
diometer (SR), we derive aerosol single scattering albedo,
$0,λ, as a function of wavelength,λ. We find that in the
near-UV spectral range (250 to 400 nm)$0,λ is much lower
compared to$0,λ at 500 nm indicating enhanced absorp-
tion in the near-UV range. Absorption by elemental car-
bon, dust, or gas cannot account for this enhanced absorp-
tion leaving the organic carbon component of the aerosol
(OA) as the most likely absorber. We use data from a sur-
face deployed Aerodyne Aerosol Mass Spectrometer (AMS)
along with the inferred$0,λ to estimate the Mass Absorp-
tion Cross section (MAC) for the organic aerosol. We find
that the MAC is about 10.5 m2/g at 300 nm and falls close
to zero at about 500 nm; values that are roughly consistent
with other estimates of organic aerosol MAC. These MAC
values can be considered as “radiatively correct”, because
when used in radiative transfer calculations, the calculated
irradiances/actinic fluxes match those measured at the wave-
lengths considered here. For an illustrative case study de-
scribed here, we estimate that the light absorption by the
“brown” (organic) carbonaceous aerosol can add about 40%
to the light absorption of black carbon in Mexico City. This
contribution will vary depending on the relative abundance
of organic aerosol relative to black carbon. Furthermore,
our analysis indicates that organic aerosol would slow down
photochemistry by selectively scavenging the light reaching
the ground at those wavelengths that drive photochemical
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reactions. Finally, satellite retrievals of trace gases that are
used to infer emissions currently assume that the MAC of
organic carbon is zero. For trace gases that are retrieved
using wavelengths shorter then 420 nm (i.e. SO2, HCHO,
halogenoxides, NO2), the assumption of non-zero MAC val-
ues will induce an upward correction to the inferred emis-
sions. This assumption will be particularly relevant in pol-
luted urban atmospheres and areas of biomass burning where
organic aerosols are particularly abundant.

1 Introduction

Atmospheric aerosols that contain carbon absorb consider-
able amounts of solar energy. This absorption influences
the climate through direct and semi-direct aerosol forcing
(IPCC, 2007;htpp://www.ipcc.ch). Although so-called black
carbon (BC) is the most potent absorber over the solar spec-
trum (Bond and Bergstrom, 2006), attention has turned re-
cently to “brown” organic carbon (Andreae and Gelencsér,
2006; Sun et al., 2007; Alexander et al., 2008, and refer-
ences therein) as a source of significant absorption, partic-
ularly in the near-UV. The magnitude of the mass absorp-
tion cross-section (MAC, with units m2/g) of organic car-
bon component of the aerosol, abbreviated here as OA, and
its variation with wavelength,λ, are thought to follow this
general framework: compared to BC, the MAC of OA is
very modest in the visible spectral region, but increases dra-
matically towards the near-UV spectral region. The details
of this framework are still highly uncertain, and this un-
certainty motivates this paper. Here we examine the spec-
tral behavior of OA absorption and MAC in an urban area,
the Mexico City Metropolitan Area (MCMA). The MCMA
is an excellent place to study OA absorption because the
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OA mass of the aerosol is quite large (55% by mass; Sal-
cedo et al., 2006). Furthermore, the relative humidity can
be so small that the liquid water content of aerosols is not
a major component of the aerosol mass (San Martini et al.,
2006), and the high altitude of the MCMA diminishes scat-
tering by gas molecules thus strengthening the aerosol ab-
sorption signature. In this study, we use data observed during
the MCMA-2003 field campaign (Molina et al., 2007;http:
//mce2.org/fc03/fc03.html) at the so-called CENICA Super-
site located in the southeast part of the MCMA. These data
are supplemented by some data from the 2006 MILAGRO
field campaign (http://www.eol.ucar.edu/projects/milagro).

That OA has the potential to absorb strongly in the near-
UV has been recognized for many years (Jacobson, 1999,
and references therein; Bond et al., 1999). Recently OA ab-
sorption has been studied in both laboratory and field studies,
with a focus on the near-UV spectral region. In a pioneering
laboratory/field study, Kirchstetter et al. (2004) analyzed nu-
merous filter samples taken in the field containing aerosols of
two distinct types: those formed in regions of biomass burn-
ing and those produced in areas with emissions from motor
vehicles, including diesel trucks. They measured the “nor-
malized light attenuation” in a wavelength range of approx-
imately 300 to 1000 nm, and they found that the wavelength
dependence of light absorption is described approximately
by aλ−1 dependence for the motor vehicle aerosols, consis-
tent with absorption by BC. (The exponent “1” in the power
law dependence is called the absorptionÅngstr̈om exponent,
AAE.) On the other hand, the absorption from the biomass
aerosol varied approximately asλ−2 caused by strong light
absorption below 600 nm, attributed to strong OA absorp-
tion in this spectral range in addition to the BC absorp-
tion. Schnaiter et al. (2006) studied the absorption of OA
aerosols generated in the laboratory by propane combustion.
By changing the oxygen/carbon ratio (O/C) they could pro-
duce aerosols with a varying OC/TC ratio (TC=total carbon,
the sum of organic carbon, OC, and BC). As this ratio in-
creased the AAE became larger in accord with Kirchstetter
et al.’s (2004) analysis of field samples, although for large
OC/TC ratios the AAE considerably exceeded 2.

Large AAE in the presence of large OC/TC ratios were
noted by Roden et al. (2006), who examined emissions
from wood burning cook stoves; these emissions contained
a mix of elemental carbon, EC,1 and OC. They found for
the cooking fires in vigorous and gentle flaming modes,
the AAE was about 1.3, close to the BC value of one,
but as the fires entered a smoldering phase, the AAE in-
creased substantially, indicating the presence of substantial
amount of OC. Mass absorption cross sections measured

1The distinction between so-called black carbon and so-called
elemental carbon is an important issue that has been discussed
widely in the literature (Bond and Bergstrom, 2006; Andreae and
Gelencśer, 2006). For the purposes of this paper, we take BC and
EC concentrations to be equivalent, unless otherwise noted.

under conditions of large OC/TC ratios were about 1 m2/g
or less (at 530 nm) indicating the possibility of some OC
absorption in the visible wavelength region.

Sun et al. (2007) analyzed the visible and ultraviolet ab-
sorption spectra of various organic compounds to develop
MACs for combustion and humic-like organic aerosols.
Their analysis indicated significant absorption in the near-
UV with MAC exceeding 10 m2/g below 300 nm for com-
bustion particles.

Bergstrom et al. (2007) analyzed data from five field cam-
paigns to summarize the spectral absorption of aerosols, as
represented by aerosol absorption optical depth,τabs,λ, de-
fined as (1-$0,λ)τext,λ, whereτext,λ is the usual extinction
aerosol optical thickness. This paper also provided spectra of
$0,λ. The value of the AAE depended on the type of aerosol
being lowest (≤1) for urban pollution, and extending up to
approximately 3 for aerosols with a significant dust compo-
nent. The spectra of$0,λ showed a decrease of$0,λ with
increasingλ, except in the presence of large amounts of dust,
in which case an opposite trend was observed in the near-UV
and visible wavelength ranges. This trend will be discussed
in Sect. 3.

As part of the INTEX-A field campaign (Singh et al.,
2006), Clarke et al. (2007) measured the aerosol optical
and chemical properties for pollution and biomass burning
aerosols. They segregated OC into two fractions – refrac-
tory and volatile – depending upon whether the OC was
volatile below 400◦C or not. Of the TC mass, the so-called
“RefractoryOC” (not volatile under 400◦C) was responsible
for the bulk of the light absorption, with derived MACs of
0.63 m2/g at 470 nm and 0.09 m2/g at 530 nm suggesting that
the some types of OC absorb preferentially at lower wave-
lengths. Clarke et al. (2007) noted that although the MAC
of RefractoryOC was much less than that of BC (7.5 m2/g
at 550 nm, Bond and Bergstrom, 2006), the OC absorption
could rival that of BC absorption at the lower wavelengths if
the OC concentration was large enough. We note that the
application of heat during aerosol measurements may en-
courage the formation of aerosol organic material of high
molecular mass (Denkenberger et al., 2007). This alteration
of chemical properties may induce changes to aerosol opti-
cal properties so that the observed optical properties may be
different than the properties of unheated, ambient aerosols.
However, it is difficult to assess quantitatively to what ex-
tent, if any, the mechanism proposed by Denkenberger et
al. (2007) influences the results of Clarke et al. (2007).

Using a technique that is not applied often to atmospheric
aerosols (high spatial resolution energy-loss spectroscopy),
Alexander et al. (2008) have examined the optical properties
of single brown carbon spheres that are embedded in the out-
flow from east Asia. They found that these spheres absorb
significantly in the visible region, with increasing absorption
in the near-UV spectral region.
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The literature above indicates that OA could be a signifi-
cant absorber, and even equal or exceed the absorption of BC
in certain wavelength regions, with implications for climate
and photochemistry (Hoffer et al., 2006). The approach we
take here differs from those described above in two important
ways. First, we rely on an analysis of in situ measurements
of solar irradiances, actinic flux, and OA mass. The use of
irradiances and actinic fluxes to find MAC implies that the
MAC are “radiatively correct” (Barnard et al., 2007; Schus-
ter et al., 2005) meaning that, when the MAC are used in
radiative transfer calculations, the calculated and measured
irradiances agree. Second, the MACs so derived are appro-
priate for an atmospheric column rather than a point in the
atmosphere and therefore partially bypass the issue of the
representativeness of point measurements to larger scales.

2 Methodology

The methodology behind this work consists of four steps,
summarized below, followed by additional explanation as
needed. The four steps are:

1. Irradiance measurements from a Multi-Filter Rotat-
ing Shadowband Radiometer (MFRSR, Harrison et al.,
1994) are used to find$0 at five discrete wavelengths,
ranging from 415 to 870 nm. Actinic flux measurements
from a spectroradiometer (SR) are inverted to yield$0,λ

at 1-nm or 5-nm increments for wavelengths extending
from 300 to 450 nm. These values of$0,λ are combined
with either measured values ofτext,λ or estimated values
of the same to findτabs,λ as a function of wavelength.
Because the concentration of nitrogen dioxide (NO2)
and sulfur dioxide (SO2) can be large in the MCMA,
it is important to account for their gaseous absorption
in this analysis. Measurements of SO2 and NO2 were
performed by Long-path Differential Optical Absorp-
tion Spectroscopy (LP-DOAS, Volkamer et al., 2005).

2. The organic aerosol (OA) surface mass concentration,
ρOA, is measured with the Aerodyne Aerosol Mass
Spectrometer (AMS; Jayne et al., 2000; Jimenez et
al., 2003) that measures non-refractory components of
the aerosol, for particles less than about 1µm in di-
ameter. We note here the distinction between OC
and OA mass, as described for example in Turpin and
Lim (2001), where OC mass is the measured mass of
carbon molecules associated with organic compounds,
while OA is the mass of these compounds.

3. The surface concentrations of NO2, SO2, andρOA are
used in combination with aerosol mixing height in-
formation, H , to estimate NO2 and SO2 vertical col-
umn densities and the columnar OA mass concentration,
ρOAH .

4. An estimate of the MAC as a function of wavelength
follows immediately:

MAC(λ)=
τabs,λ−τabs,λ,other

ρOAH
, (1)

whereτabs,λ.other is the absorption optical thickness for all
other absorbers in the atmosphere including NO2, SO2,
ozone, dust, and black carbon.

2.1 Extracting$0,λ from MFRSR and SR data

In the first step, the MFRSR is a radiometer that measures
the solar irradiance at six discrete wavelengths, 415, 500,
615, 673, 870, and 940 nm. For each wavelength, the diffuse
and total components of the radiation are measured, and the
direct component is inferred from these two measured com-
ponents. Because of the shadowband design, the calibration
for all components is the same, and ratios between the com-
ponents are calibration independent. Using the direct beam
irradiance, one can easily findτext,λ at all wavelengths except
940 nm, where strong water vapor absorption occurs. For the
MFRSR data in this study, we refer only to the five wave-
lengths uncontaminated by vapor absorption. The accuracy
of these values has been shown to be∼0.01 for wavelengths
500 nm and above (Alexandrov et al., 2007; Michalsky et al.,
2001).

The spectroradiometer measured the downwelling portion
of the solar actinic flux (Volkamer et al., 2005, 2007b).
Briefly, the radiation from the upper hemisphere of the instru-
ment was collected by a diffuser-optic with almost uniform
sensitivity for all angles of incidence within a solid angle of
2π steradians. A Bentham DMc 150 double monochromator
equipped with a tunable grating (2400 grooves/mm) was used
for wavelength dispersion and a photomultiplier for photon
detection. Spectra were recorded from 280 to 450 nm with
a spectral band pass of 1 nm. The step width in wavelength
was set to 2 nm below 320 nm, and 5 nm above. The actinic
flux calibration of the spectroradiometer was performed be-
fore and after the campaign at the Forschungszentrum Jülich
in Germany using certified irradiance standards as described
in Kraus et al. (2000). No further adjustments for surface
albedo were made to the actinic flux spectra.

The MFRSR irradiances were inverted to infer$0,λ, the
asymmetry parameter,gλ, and aerosol size distribution pa-
rameters (effective radius and concentration for the fine
mode) using the method of Kassianov et al. (2007). The ac-
tinic fluxes from the SR were inverted to find$0,λ using a
different method, based on the TUV4.4 model. Goering et
al. (2005) and Michalsky and Kiedron (2008) describe the
use of this model applied to surface irradiance measurements
to find$0,λ from either UV-MFRSR measurements or Rotat-
ing Shadowband Spectrometer measurements. The method
we employ here is slightly different than theirs because we
use the TUV4.4 with actinic flux, not irradiance, to find$0,λ.
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Table 1. The five case studies selected for retrievals of MAC.

Date Julian Time $0,λ=300nm τλ=300nm gλ=300nm Ångstr̈om Scale Columnar OA columnar
Julian Day (HH:MM, $0,λ=500nm τλ=500nm gλ=500nm exponent height, NO2 concentration
Day LT) $0,λ=870nm τλ=870nm gλ=870nm (415 to H (m) (DU) (g/m2)

870 nm)

12 Apr 2003 102 09:00 0.55 0.68 0.77 1.55 490 2.41 0.0147
0.25 0.92 0.72
0.099 0.91 0.62

14 Apr 2003 104 09:35 0.65 0.78 0.76 1.58 534 1.51 0.0090
0.29 0.94 0.70
0.11 0.92 0.62

15 Apr 2003 105 09:16 0.69 0.72 0.77 1.49 706 2.60 0.0137
0.32 0.88 0.71
0.14 0.81 0.65

15 Apr 2003 105 10:30 0.83 0.74 0.76 1.57 706 2.60 0.0137
0.37 0.93 0.70
0.16 0.87 0.65

18 Apr 2003 108 10:00 0.56 0.67 0.76 1.36 1453 1.42 0.0131
0.28 0.95 0.70
0.13 0.90 0.65

Median over all cases 692

To compare the Kassianov et al. (2007) and TUV4.4 meth-
ods, we applied the TUV4.4 methodology to the MFRSR ir-
radiance data to infer$0,λ and then compared these values to
those obtained from the technique of Kassianov et al. (2007).
The largest difference was 0.02, although typical differences
are 0.01 or less.

These inversions require knowledge of the spectral surface
albedos. These albedos were measured during the MILA-
GRO campaign using data from the G-1 aircraft flights over
Mexico City. The G-1 was equipped with up-looking and
down-looking MFRSR heads to find area-averaged surface
spectral albedo at the flight level of the G-1. These values
were then corrected to surface values using a radiative trans-
fer model. Although these flights took place in March 2006,
the albedo values found for this time period should be ap-
plicable to early April 2003, the time period of the MCMA-
2003 campaign on which our analysis is focused.

Our albedo values compare favorably to those found by
Coddington et al. (2008) during the MILAGRO campaign.
They used upward and downward irradiances from the Solar
Spectral Flux Radiometer (SSFR) deployed on an aircraft to
find the flight level albedo, which was extrapolated to the sur-
face using a radiative transfer model, similar to the method
applied to the G-1 data. For the portion of the flights directly
over Mexico City, and for the two days shown in Fig. 4a of
Coddington et al. (2008), the values of the surface albedo are,
for example, 0.10 and 0.12 at 500 nm. Our value at this wave-
length is 0.10, exhibiting good agreement. At 870 nm, the
difference between our albedo and Coddington et al. (2008)’s
is 0.015.

Our albedos were determined only at the five MFRSR
wavelengths and, therefore, we do not have direct albedo
measurements forλ less than 415 nm. However, this is not
a problem because, forλ<415 nm, the albedo is very low
for almost all surfaces (exception for snow and ice) and mi-
nor mischaracterizations of albedo induce negligible error
in retrieved$0,λ. Including all sources of error, the uncer-
tainty of the$0,λ values are about±0.03 for all wavelengths
(Dubovik et al., 2002; Goering et al., 2005). This estimate
does not seem to apply to the 615-nm wavelength channel
because the$0,λ values often exceeded 1.0. These frequent
anomalies, as well as our past experience with this wave-
length channel, led us to discard the 615-nm channel in our
analysis. The conclusions stated here are not influenced sig-
nificantly by this exclusion.

Completely clear skies are necessary to derive$0,λ and
gλ. Whether the skies are indeed clear can be determined
using the algorithm of Long and Ackerman (2000). The need
for clear skies severely limited the number of cases that could
be studied. During the MCMA-2003 campaign, clear skies
generally were observed in the morning hours, and only for a
few days. Selected times during these days compose the five
case studies examined here; these cases are shown in Table 1,
along with the aerosol optical properties (τext, λ, $0,λ, gλ)
at selected wavelengths, as well as theÅngstr̈om exponent
determined between the wavelengths of 415 nm and 870 nm.

The value ofgλ for wavelengths less than 415 nm is ex-
trapolated from its value at 415 nm using the retrieved size
distribution and refractive index. We note that the values of
gλ listed in Table 1 for 300 nm are all about 0.76. This value
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Mexico City
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Fig. 1. Single scattering albedo values plotted versus wavelength.
These values are derived from the MFRSR, the spectroradiometer,
and the UV-MFRSR. Also shown by the black line is the single
scattering albedo extrapolated from 870 nm to lower wavelengths
assuming that the absorption follows theλ−1 rule.

is at the upper end of the range of gλ values reported by
Wenny et al. (1998) for 312 nm, suggesting the possibility
that the extrapolated values are too large. If the values are
indeed too large, then the retrieved$0,λ values will be too
small. For example, sensitivity tests using the TUV4.4 model
show that, if we assume thatgλ equals 0.76, then the retrieved
$0,λ value is 0.70 at 300 nm. But if we changegλ to 0.66 –
a rather substantial amount – then the retrieved$0,λ value
rises modestly to 0.725, still within the uncertainty of$0,λ

stated above.
Figure 1 illustrates the retrievals of$0,λ for one of the five

case studies under consideration, 14 April 2003 09:35 LT.
This figure shows both$0,λ from the SR and the MFRSR.
Three features stand out. First, there is the remarkably
good agreement between$0,λ derived from the SR and the
MFRSR at the common wavelength of 415 nm. For the other
four cases the disagreement was within the estimated error
of 0.03, and often much better. This good agreement, com-
ing from two different instruments with independent calibra-
tions, bolsters the view that the$0,λ values are reasonable.
Second,$0,λ derived from co-located UV-MFRSR measure-
ments (Goering et al., 2005) is shown for a wavelength of
368 nm, as well as the error bars (±0.03) associated with this
retrieval. Agreement to within the retrieval error is evident
for the$0,λ derived from the SR and UV-MFRSR. Third,
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MILAGRO T2 Site
27 March 2006   07:30 to 09:30 LT

Fig. 2. Single scattering albedo plotted versus wavelength for the
T2 MILAGRO site. These values are obtained from MFRSR data.
Also shown by the black line is the single scattering albedo extrap-
olated from 870 nm to lower wavelengths assuming that the absorp-
tion follows theλ−1 rule. Error bars of±0.03 are shown for the
single scattering albedo.

Fig. 1 shows two trends in the variation of$0,λ with λ. Be-
tween 870 and 500 nm,$0,λ increases gradually asλ de-
creases. This trend is consistent with absorption that varies
asλ−1, as shown by the black line, which is an extrapolation
of the $0,λ at 870 nm to lower wavelengths using theλ−1

rule as will be discussed in Sect. 3.3. By contrast, for wave-
lengths less than 500 nm, this trend is reversed, and$0,λ now
decreases asλ continues to decrease. The drop in$0,λ is
particularly acute for 400 nm<λ<500 nm, and this drop is
typical of all the case studies considered here. Using data
from the UV-MFRSR and a CIMEL sunphotometer, Krotkov
et al. (2005) have also reported a decrease in$0,λ at lower
wavelengths for observations made at Greenbelt, Maryland,
USA. This decrease is not nearly as sharp as depicted in
Fig. 1 as evinced by the difference between the mean$0,λ

values at 325 nm and 440 nm; this difference is only 0.04.
Similar trends in$0,λ are also evident during the 2006 MI-

LAGRO campaign at several sites, including the rural T2 site
(Doran et al., 2007), stationed about 70 km NE of Mexico
City. Using data from the MFRSR deployed at this site,$0,λ

was found as shown in Fig. 2 for 27 March 2006. Again, for
λ less than about 500 nm,$0,λ decreases. This figure also
shows by the black line the extrapolation of$0,λ at 870 nm to
lower wavelengths, assuming that the absorption follows the
λ−1 rule. For this site, adherence to this rule is less evident
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Fig. 3. SO2, NO2, and organic aerosol concentrations measured
during the MCMA-2003 campaign. Whisker plots indicate the diel
variability of measurements over the entire campaign. The five case
studies discussed here – shown as the blue dots – easily fall within
the variability seen throughout the campaign.

than shown in Fig. 1. This lack of adherence cannot be solely
attributed to a failure of theλ−1 rule, because the rule may be
followed but is masked by uncertainties in$0,λ. Recall that
this uncertainty is about±0.03. At 500 nm, theλ−1 relation-
ship lies just outside the top of the error bar. Of course, had
we chosen to extrapolate theλ−1 relationship from$0,λ at
670 nm, the line would lie within all error bars above 500 nm.
That$0,λ at 415 nm is lower than$0,λ at larger wavelengths
is similar to the behavior seen in Mexico City. Without fur-
ther analysis of the T2 data, beyond the scope of this paper,
we cannot be certain that this behavior is caused by the same
factors acting at the Mexico City site, such as aerosol com-
position and size distribution.

2.2 Surface measurements of SO2, NO2, and OA
concentration

Surface measurements of SO2 and NO2 were obtained from
two long-path Differential Optical Absorption Spectroscopy
(LP-DOAS) instruments installed on the rooftop of the
CENICA building. The light path of DOAS#1 was directed
towards a TELCEL antenna tower in a south-easterly direc-
tion at an average height of 16 m with a 430-m path length

(total 860 m); that of DOAS#2 was directed to Cerro de la
Estrella in a westerly direction at an average height of 70 m
and a 2210-m path-length (total 4420 m). Both DOAS instru-
ments measured NO2, SO2, among other numerous gases.
Concentrations for SO2 and NO2 agreed within error limits
(sub ppb level) between both instruments, indicating that the
airmass was reasonably well mixed. The measurements are
described in more detail in Volkamer et al. (2005).

To convert surface SO2 and NO2 to columnar values in
Dobson units (DU), the surface measurements were multi-
plied by a scale height,H . (We discuss the inference of
H below.) The inferred NO2 values are listed in Table 1
for the five case studies considered here, and these values
fall into a range of 1 to 3 DU that is consonant with other
NO2 retrievals in areas of moderate pollution (Cede et al.,
2006; Heue et al., 2005; Beirle et al., 2004). Using our
columnar values of NO2 and SO2 we corrected the rawτext,λ
values obtained from the MFRSR and the SR, and unless
otherwise noted, the symbolτext,λ indicates corrected val-
ues. For these corrections, the gases were assumed to be
well mixed from the surface up to the heightH , and from
this assumption, we determined the columnar abundance of
gas. The columnar absorption is calculated as the columnar
abundance multiplied by the appropriate absorption coeffi-
cient, a function of wavelength. The rawτext,λ values also
were corrected from ozone absorption in the Chappius and
Hartley-Higgins bands (Goody and Yung, 1989), assuming
a columnar ozone value of 275 DU, a climatological value
for the atmospheric column in April 2003 obtained from the
satellite borne Total Ozone Mapping Spectrometer (TOMS)
instrument (http://jwocky.gsfc.nasa.gov). Over all cases con-
sidered here, maximum optical thicknesses for these absorb-
ing species are 1.67, 0.03, and 0.04, for ozone (303 nm), NO2
(400 nm), and SO2 (300 nm), respectively.

This study relies on actual mass data of the organic com-
ponent of the aerosol obtained from surface measurements
using an AMS deployed at the CENICA site. The instrument
and the measurements have been well described in Salcedo
et al. (2006), and we refer the reader to this paper for details.
For this paper we make no distinction between primary and
secondary organic aerosol and combine both these aerosol
types under the banner of “organic aerosol”.

During the MCMA-2003 campaign, the OA mass of the
aerosol varied considerably, ranging from a high of about
90µg/m3 to a low of less than 5µg/m3. Figure 3 shows the
concentrations of SO2, NO2, and organic aerosol during the
five case studies as blue dots. These cases are plotted versus
time so that, for example, the case study of 18 April 2003
10:00 LT shows up as the blue dot above the time 10:00 LT.
The diel variability of these constituents over the course of
the campaign also is shown as box-and-whisker plots. The
surface concentrations of NO2 show the distinct diel pat-
tern related to the development of the convective boundary
layer during the day (Fast et al., 2007); this is less evident
for OA due to the rapid production of secondary organic
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aerosol (SOA) that counteracts vertical dilution (Volkamer
et al., 2006, 2007). There is no clear diurnal cycle visible for
SO2, for which the variability is strongly dependent on an
immediate impact from the Tula power plant (de Foy et al.,
2007). For the case study of 18 April 2003, all three concen-
trations exhibit a marked decrease from the four other cases.
This day was a national holiday and emissions from surface
sources, notably traffic, were much less than normal.

2.3 Finding the scale height,H

The scale height,H , is the critical parameter for converting
surface measurements of SO2, NO2, and OA concentration to
columnar measurements. The scale height can be described
as the depth of the atmospheric mixed layer below which
we expect to find the bulk of the pollution, i.e., gases and
aerosols. In the MCMA,H varies as a function of the time
of day being relatively low and constant (∼600 m) during
the late night and early morning hours, but increasing sub-
stantially after about 10:30 LT because of the development
of the convective boundary layer and efficient vertical mixing
of surface pollutants (de Foy et al., 2006). The case studies
listed in Table 1 occur in the morning hours, prior to the start
of the convective mixing, making the inference ofH easier
because it is not rapidly changing during the times of interest.

To find H , we follow a simple diagnostic approach using
surface measurements of BC and MFRSR data taken at 673
and 870 nm, where OA absorption should be very small rela-
tive to the absorption by BC. Specifically, we equate the ab-
sorption inferred from the MFRSR,τabs,λ, to the absorption
calculated from the product of the BC columnar mass, the
BC specific absorption, and the scale height. This equality is
expressed as

(1−$0,λ)τext,λ=τabs,λ=ρBCHαBC,λ, (2)

whereρBC is the surface concentration of BC,ρBCH is the
columnar mass, andαBC,λ is the specific absorption of BC
(where we have explicitly noted thatαBC is a function of
λ). After assuming a plausible value forαBC,λ, this equation
provides a means of diagnosingH , because all other vari-
ables are either inferred from MFRSR measurements ($0,λ

andτext,λ) or measured directly (ρBC).
For the MCMA field campaign, surface BC measurements

were made with an aethalometer (Model No. RTAA-1000,
Magee Scientific, Berkeley, California, USA; Hansen et al.,
1984;http://www.mageesci.com/), operated at a flow rate of
4 l/min using ambient (i.e. undried) air. Determining an ap-
propriate value ofαBC,λ requires knowledge of the mixing
state of BC; that is, is it externally or internally mixed? Elec-
tron Micrographs (SEM) of BC-containing particles shown
in Johnson et al. (2005) show that the BC is mostly internally
mixed. For these internal mixtures,αBC,λ should lie between
the value for externally mixed BC, and the maximum value
for internally mixed BC. For the case of uncoated BC, Bond
and Bergstrom (2006) suggest the value of 7.5±1.2 m2/g, at

550 nm. On the other hand, Fuller et al. (1999) state that the
maximum value ofαBC,λ for coated BC is unlikely to ex-
ceed 10 m2/g (see also Bond et al., 2006). Measurements in
the MCMA seem to confirm this picture. For example, us-
ing a photoacoustic absorption spectrometer and an OC/EC
instrument Doran et al. (2007) determinedαBC,λ at the T1
MILAGRO site to be 8.9 m2/g at 550 nm. At this site, the BC
is expected to be at least partially coated, depending on the
time of day (Doran et al., 2008). Barnard et al. (2007) es-
timatedαBC,λ to be 8.2 m2/g at 550 nm over MC. We chose
this value because it was inferred using the same MFRSR
data as this study.

Individual inferences of theH at the time resolution of the
MFRSR measurements (20 s) can be noisy, and to reduce this
noise, we take the median of H values over a time interval
starting at about 08:00 LT and extending to about 10:00 LT.
As mentioned above,H is not expected to change much be-
tween these times. We first note that, for a given day,H

derived from the 673-nm MFRSR channel is usually within
10% of that derived from the 870-nm channel, with no sys-
tematic difference between the two wavelengths; that is,H

is not always larger at one wavelength. Table 1 lists the me-
dian heights for each day of interest, where the median is
obtained from the combined set of 673-nm and 870-nm in-
ferences. The scale heights are all about the same except for
the last day, which has a much larger scale height than the
other days. We have been unable to determine why this is so.
The grand median over all days is 692 m.

We acknowledge that this method is subject to consider-
able uncertainties, not the least of which is the aethalometer
measurements. These measurements are based on light at-
tenuation, rather than a direct chemical determination of BC
mass concentration, and are subject to large uncertainties (for
example, see Jeong et al., 2004; Kirchstetter and Novakov,
2007, among others) that could considerably compromise the
determination ofH . Some of this large uncertainty may stem
from filter contamination by OA, as discussed in Cappa et
al. (2008), Lack et al. (2008), and Subramanian et al. (2007).
This contamination may artificially enhance absorption that
is attributed to BC, which in turn would result in BC con-
centrations that are too large, and therefore tend to make our
inferences ofH too small. Fortunately, we have an inde-
pendent, but not perfect way, to corroborate these heights by
comparing them to aerosol mixing heights derived from lidar
measurements during the later part of the MCMA campaign.
We would have preferred to use the lidar measurements di-
rectly to findH , but the lidar was not operational on the dates
of our case studies.

Specifically, the lidar depolarization measurements were
made from 20 April 2003, extending through the end of the
month from which aerosol mixing heights were found. When
these mixing heights are plotted versus time of day, a distinct
pattern is seen that does not vary significantly from day-to-
day (Barnard et al., 2005) suggesting that the mixing heights
derived for the end of April are applicable to the middle of
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the month as well. Between the hours of 08:00 LT and 10:00
LT, the median of the lidar mixing height was 566 m, which
is about 20% less than the median ofH quoted above, 692 m.
(If 18 April 2003 is not considered, the median becomes
623 m, and is within 10% of the lidar median mixing height.)
Given the difficulties in determiningH , this level of agree-
ment seems satisfactory, but it must also be recognized that
the uncertainties inH , around 20%, is a floor to the overall
uncertainty of the MAC values derived here.

2.4 Calculating the MAC

OnceH is determined, it is easy to find the MAC using
Eq. (1). The denominator is known from our estimate ofH

and the surface OA concentration. The total absorption op-
tical thickness is known from analysis of data obtained from
the MFRSR and the SR. It remains to find the contribution
to absorption from NO2, SO2, BC, ozone, and dust that com-
pose theτabs,λ,other, and then remove this quantity from the
total absorption to isolate the absorption due to OA. This pro-
cedure assumes that the primary absorbers in the near-UV
spectral region are OA, BC, dust, SO2, NO2, and ozone. Ab-
sorption by NO2, SO2, and ozone is taken into account for
the inferences ofτext,λ and$0,λ and needs no further discus-
sion.

To estimate the MAC, the following formula is used,

MAC(λ)=
(
(1−$0,λ)τext,λ−CBC(λ0/λ)−D(λ)

)/
ρOAH, (3)

whereCBC is a constant and the expressionCBC(λ0/λ) ac-
counts for the absorption by BC, andD(λ) accounts for dust
absorption, which for the cases we are studying is negligi-
ble, as discussed below. Discussing each term in Eq. (3) in
turn, we again state that (1−$0,λ)τext,λ is the total aerosol
absorption in the atmospheric column (recall that gaseous ab-
sorption already has been taken into account). This quantity
is calculated trivially for the MFRSR wavelengths. How-
ever, forλ<415 nm, where no MFRSR data exist, we need
to know τext,λ to find the absorption. For this task, we
use the well-known̊Angstr̈om relationship to extrapolate the
τext,λ=500nm to lower wavelengths. This relationship can be
expressed in the usual manner as

τext,λ=τext,λ0=500nm

(
λ

λ0=500nm

)−n

, (4)

wheren is theÅngstr̈om exponent, determined from the 415-
nm and 870-nm channels of the MFRSR and shown in Ta-
ble 1. Plots ofτext,λ determined from Eq. (4) overlaid by
MFRSR-derivedτext,λ values, as well as an additional value
from the UV-MFRSR at 368 nm (Goering et al., 2005), indi-
cate that the̊Angstr̈om relationship is satisfied well between
the wavelengths of 368 nm and 870 nm. This in turn suggests
that the extrapolation of the extinction to 300 nm will be rea-
sonably good, although optical thickness measurements at
300 nm would be necessary to confirm this assertion.

For the next term, CBC, we specify it as
τabs,λ=(1−$0,λ)τext,λ for λ equal to 870 nm – a wave-
length at which we assume that there is no absorption
by dust or AO. The extrapolation of absorption to lower
wavelengths is performed using the well-known 1/λ rule
(Bond and Bergstrom, 2006), which appears to be a good
assumption between 500 and 870 nm (e.g. theλ−1 curve in
Fig. 1). While strictly speaking, the 1/λ rule is valid only in
the small particle limit (Bohren and Huffman, 1983), several
studies (Kirchstetter et al., 2004; Bergstrom et al., 2002,
and references therein) have shown that it holds approxi-
mately for realistically sized aerosols in locations where BC
absorption is thought to be dominant. For example, Fig. 1
in Kirchstetter et al. (2004) shows a very good fit of the
“normalized light attenuation” to aλ−1 relationship in a
wavelength range of 330 nm to 1000 nm (the range in which
the attenuation measurements were made).

Finally, the pattern of decreasing$0,λ with decreasingλ
in the near-UV can sometimes be a signature of aerosol load-
ings with a large dust component (Bergstrom et al., 2007;
Dubovek et al., 2002; Sokolik and Toon, 1999). The dust
term, D(λ), is assumed to be non-zero only in the wave-
length region 300 nm<λ<500 nm because, like OA, dust is
thought to absorb mostly in the UV and near-UV spectral
region (Sokolik and Toon, 1999). For highly absorbing com-
ponents of soil, such as iron oxides (hematite, goethite, etc.),
the MAC has been studied in the near-UV and visible spec-
tral regions, providing MAC values from which we can de-
termineD(λ). Alfaro et al. (2004) found that the MACs of
dust samples, from three different areas but all containing
some iron oxide, are about 1 m2/g at 325 nm, dropping to
about 0.1 m2/g at 660 nm. Using an aerosol chamber Linke
et al. (2006) measured MACs of dust samples from Cairo
and Morocco. The MAC was found to be about 1 m2/g at
266 nm, and almost zero at 532 nm. These values fit the
conventional picture of dust absorption: large at low wave-
lengths (350–300 nm) and then falling to almost zero at visi-
ble wavelengths.

We now argue thatD(λ) is so small that it may be ne-
glected. Assuming that the entire dust burden over MC
is some oxide of iron that absorbs solar radiation, and us-
ing the studies above as a guide, we take the MAC for
dust as 1 m2/g at 300 nm. Multiplying this by the colum-
nar mass of the soil component,Msoil=Hρsoil, yields the ab-
sorption, whereρsoil is the surface concentration. As shown
in Salcedo et al. (2006), the soil content of the aerosol is
about 7% of the PM2.5 mass, with an averageρsoil value
of 2.1µg/m3, yielding a dust absorption of about 0.0015 at
300 nm. A typical value of the total absorption at 300 nm is
0.2(=(1−$0,λ=300nm)τext,λ=300nm) and clearly the dust ab-
sorption is negligible.
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Fig. 4. MAC for organic carbon, for the five cases listed in Table 1.

We did not have comparable measurements at the MILA-
GRO T2 site from which we could estimate dust absorption.
However, for the specific MILAGRO case shown in Fig. 2,
rainfall occurred prior to this day that would tend to scav-
enge dust from the atmosphere. Additionally, airborne lidar
polarimeter data indicated that, after the rainfall, significant
amounts of dust were indeed removed from the atmosphere
(J. Hair, personal communication). Therefore it is unlikely
that the$0,λ behavior seen at T2 on this day can be attributed
to dust.

Neglecting dust absorption and making substitutions dis-
cussed above, Eq. (3) becomes

MAC(λ)=

 (1−$0,λ)τext,λ0=500nm

(
λ

λ0(=500nm)

)−n

−
(
(1−$0,λ=870nm)τext,λ=870nm

) (
λ0(=870nm)

λ

)
/

ρOAH. (5)

Eq. (5) is applied at wavelengths used in this study. The no-
tationλ0(=500 nm) means thatλ0 is set equal to 500 nm.
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Fig. 5. MAC for the average of the five cases listed in Table 1. For
the sake of comparison, the MAC inferences from Kirchstetter et
al. (2004) and Sun et al. (2007) are also shown.

3 Results

3.1 MAC

For the five cases listed in Table 1 we calculate the MAC
for wavelengths extending from 300 nm up through 500 nm.
For these calculations, we used the columnar concentration
of OA listed in the last column of this table; recall that
the columnar concentration is the surface concentrationρOA
multiplied by the scale height,H . To avoid using a single
point measurement ofρOA, subject to random fluctuations
and possibly not representative of the actual concentration,
we use a time average ofρOA for the period 08:00 LT to
10:00 LT. The other variables that compose Eq. (5) fluctu-
ate much less over time and, for them, we use five minute
averages.

Figure 4 shows MAC for each of the five cases. These
cases all exhibit about the same behavior: the MAC is large,
about 10 m2/g around 300 nm, and drops to about zero at
500 nm. For some cases the MAC values near 500 nm are
less than zero; this behavior is indicative of the large un-
certainties in finding MAC, discussed below. For exam-
ple, if the inferred NO2 concentrations listed in Table 1 are
reduced by 1 DU, then all the MAC values at 500 nm are
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Table 2. AbsorptionÅngstr̈om Exponents (AAE) over two wave-
length ranges.

Date Julian Time AAE: AAE:
Julian Day Day (HH:MM, 300–500 300–870

LT) nm nm

12 Apr 2003 102 09:00 4.5 2.8
14 Apr 2003 104 09:35 4.1 2.6
15 Apr 2003 105 09:16 3.2 1.9
15 Apr 2003 105 10:30 4.2 2.2
18 Apr 2003 108 10:00 5.1 2.4

positive. An additional feature of these retrievals is the sig-
nificant drop in MAC seen around 400 nm near the spectral
region of maximum NO2 absorption. However, this feature is
unlikely to be an artifact of not properly accounting for NO2
absorption. We attempted to eliminate this feature by vary-
ing the inferred NO2 concentration to see if the sharpness of
this feature could be reduced and it could not. Thus, we at-
tribute this striking change at 400 nm to some compound in
the aerosol, or perhaps an unknown absorbing trace gas.

Figure 5 shows the average of all five cases, along with
other MAC determinations from some of the studies men-
tioned in Sect. 1. Specifically, Fig. 5 contains: (1) the MACs
from Kirchstetter et al. (2004) that were obtained from a lab-
oratory analysis of aerosol specimens collected in the field in
locations in the US, and (2) an analysis of existing laboratory
studies of organic absorption to find plausible MACs for at-
mospheric aerosols (Sun et al., 2007). We display the “com-
bustion” results from Sun et al. (2007). Given the wide vari-
ation in the three methodologies shown in Fig. 5, the agree-
ment is reasonably good.

For the sake of comparison, Table 2 lists AAEs derived
from our data, for wavelength ranges between 300 to 500 nm,
and 300 to 870 nm. Averaged over all cases, the AAE be-
tween 300 to 870 nm is about 2.4, and is consistent with other
values reported in the literature for aerosols that might be ex-
pected to have a significant amount of organic carbon (e.g.
biomass, some laboratory generated soot; Schnaiter et al.,
2006); these values are summarized in Table 2 in Bergstrom
et al. (2007).

3.2 Random and systematic uncertainties

The MACs shown in Fig. 4 are subject to significant
uncertainty discussed here. The overall uncertainty stems
from the individual errors of each component that composes
Eq. (5). These components, as well as their estimated errors,
are listed in Table 3. These errors are straightforward to in-
terpret, with the following caveats. Regarding theÅngstr̈om

exponent,n, we tacitly assume that the̊Angstr̈om relation-
ship, Eq. (4), is valid for the extrapolation ofτext,λ to wave-
lengths less than 415 nm. Accordingly, we assume that errors
associated with the use of this equation stem from uncertain-
ties in determiningn from τext,λ values at two wavelengths
(415 and 870 nm). This issue has been discussed thoroughly
in Wagner and Silva (2008), who note that the error in finding
n is less under turbid conditions, a criterion that is certainly
met in the MCMA. This “turbid conditions” error is quoted
in Table 3. We also assume that the 1/λ extrapolation of BC
absorption at 870 nm to lower wavelengths is error free. It
is difficult to determine the error associated withH because
the only independent verification comes from the lidar mea-
surements. As mentioned above, a difference of about 20%
is found between the median of the lidar-derived heights and
the H values from our method. Without additional informa-
tion, we assume that the error is about 20%.

The errors listed in Table 3 are used to find the overall un-
certainty for the MAC values, assuming that these errors are
random and uncorrelated. We calculate the uncertainty by
assuming that each variable in Eq. (5) is normally distributed
with means as listed in Table 1, and standard deviations as
listed in Table 3. Then, using Monte Carlo simulations the
distribution of MAC values and the corresponding standard
deviation is derived. The standard deviation values are typi-
cally about 3.5 m2/g at 300 nm and 1.7 m2/g at 500 nm for an
individual case. Statistical averaging over individual cases
will, of course, reduce the random error.

These uncertainty estimates do not include the effect of
systematic errors, which are virtually unknowable, and pos-
sibly a much more potent source of error. To illustrate the
possible effect of the systematic component, we note that re-
ducing the NO2 concentration by 1 DU increases the MAC
at wavelengths shorter than 450 nm. The most dramatic in-
crease occurs at wavelengths near the peak in NO2 absorp-
tion around 410 nm. For example, at 415 nm the MAC values
increase by about 1.3 m2/g when the NO2 concentration is re-
duced by 1 DU. At 500 nm, the increase is about 0.5 m2/g. To
attempt to account for all the systematic errors, we calculate
a “worst case” uncertainty that assumes all errors listed in
Table 3 act to maximize the overall uncertainty; that is, for
each variable (i.e.τext,λ) we assume that the error is maxi-
mum, and we allow no opportunity for an error in the positive
direction to cancel an error in the other direction. For this cir-
cumstance, the errors at 300 and 500 nm are about±8 m2/g
and ±2 m2/g, respectively. We must emphasize, however,
that these uncertainty estimates assume that “everything pos-
sible that can go wrong does go wrong” and therefore they
are unlikely to be representative of the true systematic un-
certainty, but rather serve as conservative estimates of upper
bounds of the systematic error. The magnitude of the random
and systematic error at 500 nm may account for the negative
MAC values as observed for some of the case studies shown
in Fig. 4.
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Table 3. Summary of individual errors.

Quantity Error Comments Source

$0,λ ±0.03 Dubovik et al. (2002), Goering et al. (2005),
Kassianov et al. (2007)

τext,λ ±0.01 valid for 500 and 870 nm Alexandrov et al. (2007), Michalsky et al. (2001)
Ångstr̈om exponent,n ±0.17 Turbid conditions,n=1.5 Wagner and Silva (2008)
H ±20% educated guess, comparison

to lidar mixing heights
ρOA ±10% guess
NO2 ±1 DU guess

Table 4. Results of radiative transfer calculation of TOA and sur-
face net fluxes, for the three cases indicated. The net fluxes are
defined positive in the downward direction, and are “instantaneous”
fluxes for the time of this case study (14 April 2003 09:35 LT).

Case TOA Surface Difference
net flux net flux
(W/m2) (W/m2) (W/m2)

No aerosol 816 667 149
Observed aerosol 805 629 176
BC only 803 635 168

3.3 Implications for solar heating rates

The absorption by OA, if not accounted for in radiative trans-
fer models, could have a significant effect on calculated pho-
tolysis rates and aerosol forcing. Here we focus on aerosol
forcing by examining the energy deposited in the atmo-
sphere, with and without the absorption depicted in Fig. 5,
in a manner similar to Hoffer et al. (2006). We use data
from case 14 April 2004 09:35 LT (µ0≈0.7) listed in Table 1
and make one calculation, termed “observed aerosol”, of the
broadband solar fluxes assuming the inferred$0,λ depicted
in Fig. 1. The calculations are made using the SBDART ra-
diative transfer model (Ricchiazzi et al., 1998). Then another
calculation is made assuming that the MAC of OA is 0 m2/g
at all wavelengths, while keeping the asymmetry parameter
andτext unchanged. This assumption implies that the only
absorber is BC and requires changes to the$0,λ for wave-
lengths less than 870 nm. The new$0,λ are found by extrap-
olating the BC absorption from 870 nm to lower wavelengths
using theλ−1 rule while keeping the extinction fixed, such
that

$0,λ=1−
(1−$0,λ=870nm)τext,λ=870nm

τext,λ

870

λ
; (6)

this formula is essentially the same as Eq. (2) found in Berg-

strom et al. (2002). The$0,λ for the two cases are shown
in Fig. 1. We call this calculation “BC only”. Finally, a cal-
culation is made assuming no aerosol at all (τext,λ=0), and
labeled “No aerosol”.

The results of these three calculations are shown in Table 4
that lists the instantaneous top of atmosphere (TOA) and sur-
face net fluxes as well as the difference. The net fluxes are
defined positive downward. For the case “No aerosol”, the
difference in TOA and surface fluxes is the energy deposited
in the atmosphere (W/m2) due to absorption by water vapor
and other gases. When aerosols are added, we note that, as
expected, the net effect is to cool the earth/atmosphere, be-
cause the incoming energy, the net TOA flux, is decreased
in the two cases with aerosols when compared to the “No
aerosol” case. However, when aerosols are allowed to ex-
ist in the calculation, additional atmospheric absorption does
occur. For the case with BC only, the additional heating due
to aerosols is 19 W/m2 (=168 W/m2; BC only – 149 W/m2;
no aerosol). On the other hand, for the observed case, the
additional heating is 27 W/m2. Thus, excluding the effect of
OA absorption below 500 nm results in a large error in com-
puting aerosol absorption, at least for this case. If there is
significant OA absorption in the visible as indicated by the
findings of Sun et al. (2007) and Kirchstetter et al. (2004)
and illustrated in Fig. 5, then this error would be significantly
larger.

4 Conclusions

We have calculated the mass absorption coefficient (MAC,
with units m2/g) for the organic part of the aerosol in the
shortwave spectral region. For these calculations, we used
measurements taken during the MCMA-2003 field cam-
paign, supplemented by some data from the 2006 MILA-
GRO campaign. Both field efforts took place in and around
Mexico City. Two important features of this inference of the
MAC are: (1) the measurements upon which it is based are
entirely in situ, and do not require laboratory analysis, and
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(2) the MAC so calculated is “radiatively correct”, meaning
that the MAC is consistent with the observed surface short-
wave radiation field. The disadvantage of this method is that
the uncertainty is rather large.

The MAC is highest at 300 nm, with a value of about
10.5 m2/g, and gradually decreases to about 0 m2/g at about
500 nm (see Fig. 5), and a comparison of these MAC values
with those found by Kirchstetter et al. (2004) – a laboratory
analysis of aerosol sample collected in the field, and Sun et
al. (2007) – an analysis of laboratory studies of the absorp-
tion by organic compounds, shows reasonably good agree-
ment. For individual cases, the uncertainties are typically
about 3.5 m2/g at 300 nm and 1.7 m2/g at 500 nm. These un-
certainties are due to random errors in the measurements and
do not include the effect of systematic error, which is much
more difficult to determine. We estimate an upper bound to
the systematic error by assuming that the individual sources
of error listed in Table 3 work in concert to maximize the
overall uncertainty. This “worst case estimate” of the sys-
tematic uncertainty is about 8 m2/g at 300 nm and 2 m2/g at
500 nm. Such large uncertainties are very unlikely to be real-
ized, however, because they are calculated assuming that no
error cancellation occurs and each individual error source is
acting with maximum force.

Neglecting the absorption by OA in radiation transfer cal-
culations certainly would affect calculated photolysis rates
that are influenced primarily by radiation in the near-UV re-
gion. For example, Castro et al. (1997, 2001) note that un-
certainties in$0,λ (or equivalently, refractive index) in the
near-UV can significantly influence calculated NO2 photoly-
sis rates. Like NO2 photolysis, most photochemical reactions
are driven by photons with wavelengths less than 400 nm
(e.g. Fig. 2 in Kraus and Hofzumahaus, 1998) making an
even stronger case to include OA absorption in photochem-
ical calculations. For Mexico City in particular, approxi-
mately 85% of the radical production depends on the amount
of sunlight that reaches the ground (Volkamer et al., 2007),
and the formation of secondary pollutants is radical limited
(Lei et al., 2007; Volkamer et al., 2007). Effectively this
means that significant organic aerosol absorption acts to slow
down the rate of formation of secondary pollutants like ozone
and SOA.

Furthermore, organic aerosol absorption needs to be ac-
counted for in radiative transfer calculations that underlie
quantitative satellite retrievals, particularly for those trace
gases that absorb light at wavelengths shorter than 420 nm;
i.e., HCHO, SO2, possibly NO2, and other gases. In the pol-
luted atmosphere the apparent vertical column density could
be underestimated by at least 20% in optically thin media, if
typical values of 0.95 are used for$0,λ. In air masses of high
aerosol optical depth, such as polluted urban atmosphere and
biomass burning plumes, the error may be even larger due to
multiple scattering processes and extend also to trace gases
that absorb light in the visible spectral range.

Finally, the potential for OA absorption to affect aerosol
broadband solar heating rates is also possible, as shown by
the simple calculation in Sect. 3.3, where the inclusion of OA
absorption increased the columnar aerosol absorption from
19 W/m2 to 27 W/m2. This effect may need to be considered
in estimates of the effect of aerosols in so-called “aerosol hot
spots” (Ramanathan et al., 2007; Seinfeld, 2008); in these
areas, increased absorption by OA may have important im-
plications for atmospheric stability and vertical motion, pre-
cipitation patterns, and the amount of radiation reaching the
ground.

These conclusions could be validated by performing simi-
lar experiments using more sophisticated instruments to mea-
sure aerosol absorption, such as a photoacoustic spectrome-
ters (Lack et al., 2008; Lewis et al., 2008; Arnott et al., 1999),
which are capable of making these measurements in the near-
UV and visible regions. Then it might be possible to deter-
mine the MAC – in situ – with greater accuracy, as well as
determine if OA contributes significantly to the absorption
in the visible wavelength region. If this is indeed the case,
then OA absorption probably should be included in aerosol
forcing studies related to climate. (However, one again faces
the dilemma of assessing the value of a presumably more ac-
curate surface point measurement versus a presumably less
accurate, but more relevant, columnar measurement.)
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and Mailĺe, M.: Iron oxides and light absorption by pure desert
dust: An experimental study, J. Geophys. Res., 109, D08208,
doi:1010.29/2003JD004374, 2004.

Atmos. Chem. Phys., 8, 6665–6679, 2008 www.atmos-chem-phys.net/8/6665/2008/



J. C. Barnard et al.: Mass absorption cross section of ogranic carbon 6677

Andreae, M. O. and Gelencsér, A.: Black carbon or brown car-
bon? The nature of light-absorbing carbonaceous aerosols, At-
mos. Chem. Phys., 6, 3131–3148, 2006,
http://www.atmos-chem-phys.net/6/3131/2006/.

Arnott, W. P., Moosmuller, H., Rogers, C. F., Jin, T., and Bruch,
R.: Photoacoustic spectrometer for measuring light absorption
by aerosols: Instrument description, Atmos. Environ., 33, 2845–
2852, 1999.

Barnard, J. C., Kassianov, E. I., Ackerman, T. P., Frey, S., Johnson,
K., Zuberi, B., Molina, L. T., Molina, M. J., Gaffney, J. S., and
Marley, N. A.: Measurements of Black Carbon Specific Absorp-
tion in the Mexico City Metropolitan Area during the MCMA
2003 Field Campaign, Atmos. Chem. Phys. Discuss., 5, 4083–
4113, 2005,
http://www.atmos-chem-phys-discuss.net/5/4083/2005/.

Beirle, S., Platt, U., Wenig, M., and Wagner, T.: Highly resolved
global distribution of tropospheric NO2 using GOME narrow
swath mode data, Atmos. Chem. Phys., 4, 1913–1924, 2004,
http://www.atmos-chem-phys.net/4/1913/2004/.

Bergstrom, R. W., Russell, P. B., and Hignett, P.: Wavelength de-
pendence of absorption of black carbon particles: Predictions
and results from the TARFOX experiment and implications for
the aerosol single scattering albedo, J. Atmos. Sci., 59, 567–577,
2002.

Bergstrom, R. W., Pilewskie, P., Russell, P. B., Redemann, J., Bond,
T. C., Quinn, P. K., and Sierau, B.: Spectral absorption proper-
ties of atmospheric aerosols, Atmos. Chem. Phys., 7, 5937–5943,
2007,http://www.atmos-chem-phys.net/7/5937/2007/.

Bohren, C. F. and Huffman, D. R.: Absorption and Scattering of
Light by Small Particles, John Wiley & Sons, New York, USA,
544 pp., 1983.

Bond, T. C., Bussemer, M., Wehner, B., Keller, S., Charlson, R.
J., and Heintzenberg, J.: Light absorption by primary particle
emissions from a lignite burning plant, Environ. Sci. Technol.,
33, 3887–3891, 1999.

Bond, T. C. and Bergstrom, R. W.: Light absorption by carbona-
ceous particles: An investigative review, Aerosol Sci. Technol.,
40, 27–67, 2006.

Bond, T. C., Habib, G., and Bergstrom, R. W.: Limitations in the
enhancement of visible light absorption due to mixing state, J.
Geophys. Res., 111, D20211, doi:10.1209/2006JD007315, 2006.

Cappa, C., Lack, D. A., Burkholder, J. B., and Ravishankara, A. R.:
Bias in filter-based aerosol absorption measurements due to or-
ganic aerosol loading: Evidence from laboratory measurements,
Aerosol Sci. Tech., 42(12), 1022–1032, 2008.

Castro, T., Ruiz-Suarez, L. G., Ruiz-Suarez, J. C., Molina, M. J.,
and Montero, M.: Sensitivity analysis of a UV radiation transfer
model and experimental photolysis rates of NO2 in the atmo-
sphere of Mexico City, Atmos. Environ., 31, 609–620, 1997.

Castro, T., Madronich, S., Rivale, S., Muhlia, A., and Mar, B.: The
influence of aerosols on photochemical smog in Mexico City, At-
mos. Environ., 35, 1765–1772, 2001.

Cede, A., Herman, J., Richter, A., Krotkov, N., and Burrows, J.:
Measurements of nitrogen dioxide total column amounts using
a Brewer double spectrometer in direct Sun mode, J. Geophys.
Res., 111, D05304, doi:10.1029/2005JD006585, 2006.

Clarke, A., McNaughton, C., Kapustin, V., Shinozuka, Y., Howell,
S., Dibb, J., Zhou, J., Anderson, B., Brekhovskikh, V., Turner,
H., and Pinkerton, M.: Biomass burning and pollution aerosol

over North America: Organic components and their influence on
spectral optical properties and humidification response, J. Geo-
phys. Res., 112, D12S18, doi:10.1029/2006JD007777, 2007.

Coddington, O., Schmidt, K. S., Pilewskie, P., Gore, W. J.,
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Mutschke, H.: Strong spectral dependence of light absorption by
organic carbon particles formed by propane combustion, Atmos.
Chem. Phys., 6, 2981–2990, 2006,
http://www.atmos-chem-phys.net/6/2981/2006/.

Schuster, G. L., Dubovik, O., Holben, B. N., and Clothiaux, E.
E.: Inferring the black carbon content and specific absorption
from AERONET retrievals, J. Geophys. Res., 101, D10S17,
doi:10.1029/2004JD004548, 2005.

Seinfeld, J. H.: Black carbon and brown clouds, Nature Geoscience,
1, 15, 2008.

Singh, H. B., Brune, W. H., Crawford, J. H., Jacob, D. J., and
Russell, P. B.: Overview of the summer 2004 Intercontinen-
tal Chemical Transport Experiment – North America (INTEX –
A), J. Geophys. Res., 111, D24S01, doi:10.1029/2006JD007905,
2006.

Sokolik, I. N. and Toon, O. B.: Incorporation of mineralogical com-
position of aerosols into models of radiative properties of min-
eral aerosol from the UV to IR wavelengths, J. Geophys. Res.,
104(D8), 9423–9444, 1999.

Subramanian, R., Roden, C. A., Boparai, P., and Bond, T. C.: Yel-
low beads and missing particles: Trouble ahead for filter-based
absorption measurements, Aerosol Sci. Tech. 41, 630–637, 2007.

Sun, H., Biedermann, L., and Bond, T. C.: The color of brown
carbon: A model for ultraviolet and visible light absorption
by organic carbon aerosol, Geophys. Res. Lett., 34, L17813,
doi:10.1029/2007GL029797, 2007.

Turpin, B. J. and Lim, H.-J.: Species contributions to PM2.5 mass
concentrations: Revisiting common assumptions for estimating
organic mass, Aerosol Sci. Tech., 35, 602–610, 2001.

Wagner, F. and Silva, A. M.: Some considerations aboutÅngstr̈om
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